diff options
author | Ton Voon <tonvoon@users.sourceforge.net> | 2007-01-24 22:47:25 (GMT) |
---|---|---|
committer | Ton Voon <tonvoon@users.sourceforge.net> | 2007-01-24 22:47:25 (GMT) |
commit | fe856aa957978504137c1d425815d4ed8a22be40 (patch) | |
tree | a5bb46ce0e64b2056f75700eadbf27aba7c39418 /gl/regcomp.c | |
parent | 210f39bc84cfbb21cd72dc054e43f13815ee0616 (diff) | |
download | monitoring-plugins-fe856aa957978504137c1d425815d4ed8a22be40.tar.gz |
Sync with gnulib - lots of extraneous code removed in preference to GNU code
git-svn-id: https://nagiosplug.svn.sourceforge.net/svnroot/nagiosplug/nagiosplug/trunk@1580 f882894a-f735-0410-b71e-b25c423dba1c
Diffstat (limited to 'gl/regcomp.c')
-rw-r--r-- | gl/regcomp.c | 3858 |
1 files changed, 3858 insertions, 0 deletions
diff --git a/gl/regcomp.c b/gl/regcomp.c new file mode 100644 index 0000000..8df6bb8 --- /dev/null +++ b/gl/regcomp.c | |||
@@ -0,0 +1,3858 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002,2003,2004,2005,2006 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, | ||
21 | size_t length, reg_syntax_t syntax); | ||
22 | static void re_compile_fastmap_iter (regex_t *bufp, | ||
23 | const re_dfastate_t *init_state, | ||
24 | char *fastmap); | ||
25 | static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len); | ||
26 | #ifdef RE_ENABLE_I18N | ||
27 | static void free_charset (re_charset_t *cset); | ||
28 | #endif /* RE_ENABLE_I18N */ | ||
29 | static void free_workarea_compile (regex_t *preg); | ||
30 | static reg_errcode_t create_initial_state (re_dfa_t *dfa); | ||
31 | #ifdef RE_ENABLE_I18N | ||
32 | static void optimize_utf8 (re_dfa_t *dfa); | ||
33 | #endif | ||
34 | static reg_errcode_t analyze (regex_t *preg); | ||
35 | static reg_errcode_t preorder (bin_tree_t *root, | ||
36 | reg_errcode_t (fn (void *, bin_tree_t *)), | ||
37 | void *extra); | ||
38 | static reg_errcode_t postorder (bin_tree_t *root, | ||
39 | reg_errcode_t (fn (void *, bin_tree_t *)), | ||
40 | void *extra); | ||
41 | static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); | ||
42 | static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); | ||
43 | static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, | ||
44 | bin_tree_t *node); | ||
45 | static reg_errcode_t calc_first (void *extra, bin_tree_t *node); | ||
46 | static reg_errcode_t calc_next (void *extra, bin_tree_t *node); | ||
47 | static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); | ||
48 | static Idx duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint); | ||
49 | static Idx search_duplicated_node (const re_dfa_t *dfa, Idx org_node, | ||
50 | unsigned int constraint); | ||
51 | static reg_errcode_t calc_eclosure (re_dfa_t *dfa); | ||
52 | static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, | ||
53 | Idx node, bool root); | ||
54 | static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); | ||
55 | static Idx fetch_number (re_string_t *input, re_token_t *token, | ||
56 | reg_syntax_t syntax); | ||
57 | static int peek_token (re_token_t *token, re_string_t *input, | ||
58 | reg_syntax_t syntax) internal_function; | ||
59 | static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, | ||
60 | reg_syntax_t syntax, reg_errcode_t *err); | ||
61 | static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, | ||
62 | re_token_t *token, reg_syntax_t syntax, | ||
63 | Idx nest, reg_errcode_t *err); | ||
64 | static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, | ||
65 | re_token_t *token, reg_syntax_t syntax, | ||
66 | Idx nest, reg_errcode_t *err); | ||
67 | static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, | ||
68 | re_token_t *token, reg_syntax_t syntax, | ||
69 | Idx nest, reg_errcode_t *err); | ||
70 | static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, | ||
71 | re_token_t *token, reg_syntax_t syntax, | ||
72 | Idx nest, reg_errcode_t *err); | ||
73 | static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, | ||
74 | re_dfa_t *dfa, re_token_t *token, | ||
75 | reg_syntax_t syntax, reg_errcode_t *err); | ||
76 | static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, | ||
77 | re_token_t *token, reg_syntax_t syntax, | ||
78 | reg_errcode_t *err); | ||
79 | static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, | ||
80 | re_string_t *regexp, | ||
81 | re_token_t *token, int token_len, | ||
82 | re_dfa_t *dfa, | ||
83 | reg_syntax_t syntax, | ||
84 | bool accept_hyphen); | ||
85 | static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, | ||
86 | re_string_t *regexp, | ||
87 | re_token_t *token); | ||
88 | #ifdef RE_ENABLE_I18N | ||
89 | static reg_errcode_t build_equiv_class (bitset_t sbcset, | ||
90 | re_charset_t *mbcset, | ||
91 | Idx *equiv_class_alloc, | ||
92 | const unsigned char *name); | ||
93 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, | ||
94 | bitset_t sbcset, | ||
95 | re_charset_t *mbcset, | ||
96 | Idx *char_class_alloc, | ||
97 | const unsigned char *class_name, | ||
98 | reg_syntax_t syntax); | ||
99 | #else /* not RE_ENABLE_I18N */ | ||
100 | static reg_errcode_t build_equiv_class (bitset_t sbcset, | ||
101 | const unsigned char *name); | ||
102 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, | ||
103 | bitset_t sbcset, | ||
104 | const unsigned char *class_name, | ||
105 | reg_syntax_t syntax); | ||
106 | #endif /* not RE_ENABLE_I18N */ | ||
107 | static bin_tree_t *build_charclass_op (re_dfa_t *dfa, | ||
108 | RE_TRANSLATE_TYPE trans, | ||
109 | const unsigned char *class_name, | ||
110 | const unsigned char *extra, | ||
111 | bool non_match, reg_errcode_t *err); | ||
112 | static bin_tree_t *create_tree (re_dfa_t *dfa, | ||
113 | bin_tree_t *left, bin_tree_t *right, | ||
114 | re_token_type_t type); | ||
115 | static bin_tree_t *create_token_tree (re_dfa_t *dfa, | ||
116 | bin_tree_t *left, bin_tree_t *right, | ||
117 | const re_token_t *token); | ||
118 | static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); | ||
119 | static void free_token (re_token_t *node); | ||
120 | static reg_errcode_t free_tree (void *extra, bin_tree_t *node); | ||
121 | static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); | ||
122 | |||
123 | /* This table gives an error message for each of the error codes listed | ||
124 | in regex.h. Obviously the order here has to be same as there. | ||
125 | POSIX doesn't require that we do anything for REG_NOERROR, | ||
126 | but why not be nice? */ | ||
127 | |||
128 | static const char __re_error_msgid[] = | ||
129 | { | ||
130 | #define REG_NOERROR_IDX 0 | ||
131 | gettext_noop ("Success") /* REG_NOERROR */ | ||
132 | "\0" | ||
133 | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") | ||
134 | gettext_noop ("No match") /* REG_NOMATCH */ | ||
135 | "\0" | ||
136 | #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") | ||
137 | gettext_noop ("Invalid regular expression") /* REG_BADPAT */ | ||
138 | "\0" | ||
139 | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") | ||
140 | gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ | ||
141 | "\0" | ||
142 | #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") | ||
143 | gettext_noop ("Invalid character class name") /* REG_ECTYPE */ | ||
144 | "\0" | ||
145 | #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") | ||
146 | gettext_noop ("Trailing backslash") /* REG_EESCAPE */ | ||
147 | "\0" | ||
148 | #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") | ||
149 | gettext_noop ("Invalid back reference") /* REG_ESUBREG */ | ||
150 | "\0" | ||
151 | #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") | ||
152 | gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ | ||
153 | "\0" | ||
154 | #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") | ||
155 | gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ | ||
156 | "\0" | ||
157 | #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") | ||
158 | gettext_noop ("Unmatched \\{") /* REG_EBRACE */ | ||
159 | "\0" | ||
160 | #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") | ||
161 | gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ | ||
162 | "\0" | ||
163 | #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") | ||
164 | gettext_noop ("Invalid range end") /* REG_ERANGE */ | ||
165 | "\0" | ||
166 | #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") | ||
167 | gettext_noop ("Memory exhausted") /* REG_ESPACE */ | ||
168 | "\0" | ||
169 | #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") | ||
170 | gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ | ||
171 | "\0" | ||
172 | #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") | ||
173 | gettext_noop ("Premature end of regular expression") /* REG_EEND */ | ||
174 | "\0" | ||
175 | #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") | ||
176 | gettext_noop ("Regular expression too big") /* REG_ESIZE */ | ||
177 | "\0" | ||
178 | #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") | ||
179 | gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ | ||
180 | }; | ||
181 | |||
182 | static const size_t __re_error_msgid_idx[] = | ||
183 | { | ||
184 | REG_NOERROR_IDX, | ||
185 | REG_NOMATCH_IDX, | ||
186 | REG_BADPAT_IDX, | ||
187 | REG_ECOLLATE_IDX, | ||
188 | REG_ECTYPE_IDX, | ||
189 | REG_EESCAPE_IDX, | ||
190 | REG_ESUBREG_IDX, | ||
191 | REG_EBRACK_IDX, | ||
192 | REG_EPAREN_IDX, | ||
193 | REG_EBRACE_IDX, | ||
194 | REG_BADBR_IDX, | ||
195 | REG_ERANGE_IDX, | ||
196 | REG_ESPACE_IDX, | ||
197 | REG_BADRPT_IDX, | ||
198 | REG_EEND_IDX, | ||
199 | REG_ESIZE_IDX, | ||
200 | REG_ERPAREN_IDX | ||
201 | }; | ||
202 | |||
203 | /* Entry points for GNU code. */ | ||
204 | |||
205 | /* re_compile_pattern is the GNU regular expression compiler: it | ||
206 | compiles PATTERN (of length LENGTH) and puts the result in BUFP. | ||
207 | Returns 0 if the pattern was valid, otherwise an error string. | ||
208 | |||
209 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields | ||
210 | are set in BUFP on entry. */ | ||
211 | |||
212 | #ifdef _LIBC | ||
213 | const char * | ||
214 | re_compile_pattern (pattern, length, bufp) | ||
215 | const char *pattern; | ||
216 | size_t length; | ||
217 | struct re_pattern_buffer *bufp; | ||
218 | #else /* size_t might promote */ | ||
219 | const char * | ||
220 | re_compile_pattern (const char *pattern, size_t length, | ||
221 | struct re_pattern_buffer *bufp) | ||
222 | #endif | ||
223 | { | ||
224 | reg_errcode_t ret; | ||
225 | |||
226 | /* And GNU code determines whether or not to get register information | ||
227 | by passing null for the REGS argument to re_match, etc., not by | ||
228 | setting no_sub, unless RE_NO_SUB is set. */ | ||
229 | bufp->no_sub = !!(re_syntax_options & RE_NO_SUB); | ||
230 | |||
231 | /* Match anchors at newline. */ | ||
232 | bufp->newline_anchor = 1; | ||
233 | |||
234 | ret = re_compile_internal (bufp, pattern, length, re_syntax_options); | ||
235 | |||
236 | if (!ret) | ||
237 | return NULL; | ||
238 | return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | ||
239 | } | ||
240 | #ifdef _LIBC | ||
241 | weak_alias (__re_compile_pattern, re_compile_pattern) | ||
242 | #endif | ||
243 | |||
244 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | ||
245 | also be assigned to arbitrarily: each pattern buffer stores its own | ||
246 | syntax, so it can be changed between regex compilations. */ | ||
247 | /* This has no initializer because initialized variables in Emacs | ||
248 | become read-only after dumping. */ | ||
249 | reg_syntax_t re_syntax_options; | ||
250 | |||
251 | |||
252 | /* Specify the precise syntax of regexps for compilation. This provides | ||
253 | for compatibility for various utilities which historically have | ||
254 | different, incompatible syntaxes. | ||
255 | |||
256 | The argument SYNTAX is a bit mask comprised of the various bits | ||
257 | defined in regex.h. We return the old syntax. */ | ||
258 | |||
259 | reg_syntax_t | ||
260 | re_set_syntax (syntax) | ||
261 | reg_syntax_t syntax; | ||
262 | { | ||
263 | reg_syntax_t ret = re_syntax_options; | ||
264 | |||
265 | re_syntax_options = syntax; | ||
266 | return ret; | ||
267 | } | ||
268 | #ifdef _LIBC | ||
269 | weak_alias (__re_set_syntax, re_set_syntax) | ||
270 | #endif | ||
271 | |||
272 | int | ||
273 | re_compile_fastmap (bufp) | ||
274 | struct re_pattern_buffer *bufp; | ||
275 | { | ||
276 | re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | ||
277 | char *fastmap = bufp->fastmap; | ||
278 | |||
279 | memset (fastmap, '\0', sizeof (char) * SBC_MAX); | ||
280 | re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); | ||
281 | if (dfa->init_state != dfa->init_state_word) | ||
282 | re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); | ||
283 | if (dfa->init_state != dfa->init_state_nl) | ||
284 | re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); | ||
285 | if (dfa->init_state != dfa->init_state_begbuf) | ||
286 | re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); | ||
287 | bufp->fastmap_accurate = 1; | ||
288 | return 0; | ||
289 | } | ||
290 | #ifdef _LIBC | ||
291 | weak_alias (__re_compile_fastmap, re_compile_fastmap) | ||
292 | #endif | ||
293 | |||
294 | static inline void | ||
295 | __attribute ((always_inline)) | ||
296 | re_set_fastmap (char *fastmap, bool icase, int ch) | ||
297 | { | ||
298 | fastmap[ch] = 1; | ||
299 | if (icase) | ||
300 | fastmap[tolower (ch)] = 1; | ||
301 | } | ||
302 | |||
303 | /* Helper function for re_compile_fastmap. | ||
304 | Compile fastmap for the initial_state INIT_STATE. */ | ||
305 | |||
306 | static void | ||
307 | re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, | ||
308 | char *fastmap) | ||
309 | { | ||
310 | re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | ||
311 | Idx node_cnt; | ||
312 | bool icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE)); | ||
313 | for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) | ||
314 | { | ||
315 | Idx node = init_state->nodes.elems[node_cnt]; | ||
316 | re_token_type_t type = dfa->nodes[node].type; | ||
317 | |||
318 | if (type == CHARACTER) | ||
319 | { | ||
320 | re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); | ||
321 | #ifdef RE_ENABLE_I18N | ||
322 | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) | ||
323 | { | ||
324 | unsigned char buf[MB_LEN_MAX]; | ||
325 | unsigned char *p; | ||
326 | wchar_t wc; | ||
327 | mbstate_t state; | ||
328 | |||
329 | p = buf; | ||
330 | *p++ = dfa->nodes[node].opr.c; | ||
331 | while (++node < dfa->nodes_len | ||
332 | && dfa->nodes[node].type == CHARACTER | ||
333 | && dfa->nodes[node].mb_partial) | ||
334 | *p++ = dfa->nodes[node].opr.c; | ||
335 | memset (&state, '\0', sizeof (state)); | ||
336 | if (mbrtowc (&wc, (const char *) buf, p - buf, | ||
337 | &state) == p - buf | ||
338 | && (__wcrtomb ((char *) buf, towlower (wc), &state) | ||
339 | != (size_t) -1)) | ||
340 | re_set_fastmap (fastmap, false, buf[0]); | ||
341 | } | ||
342 | #endif | ||
343 | } | ||
344 | else if (type == SIMPLE_BRACKET) | ||
345 | { | ||
346 | int i, ch; | ||
347 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
348 | { | ||
349 | int j; | ||
350 | bitset_word_t w = dfa->nodes[node].opr.sbcset[i]; | ||
351 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
352 | if (w & ((bitset_word_t) 1 << j)) | ||
353 | re_set_fastmap (fastmap, icase, ch); | ||
354 | } | ||
355 | } | ||
356 | #ifdef RE_ENABLE_I18N | ||
357 | else if (type == COMPLEX_BRACKET) | ||
358 | { | ||
359 | Idx i; | ||
360 | re_charset_t *cset = dfa->nodes[node].opr.mbcset; | ||
361 | if (cset->non_match || cset->ncoll_syms || cset->nequiv_classes | ||
362 | || cset->nranges || cset->nchar_classes) | ||
363 | { | ||
364 | # ifdef _LIBC | ||
365 | if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0) | ||
366 | { | ||
367 | /* In this case we want to catch the bytes which are | ||
368 | the first byte of any collation elements. | ||
369 | e.g. In da_DK, we want to catch 'a' since "aa" | ||
370 | is a valid collation element, and don't catch | ||
371 | 'b' since 'b' is the only collation element | ||
372 | which starts from 'b'. */ | ||
373 | const int32_t *table = (const int32_t *) | ||
374 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
375 | for (i = 0; i < SBC_MAX; ++i) | ||
376 | if (table[i] < 0) | ||
377 | re_set_fastmap (fastmap, icase, i); | ||
378 | } | ||
379 | # else | ||
380 | if (dfa->mb_cur_max > 1) | ||
381 | for (i = 0; i < SBC_MAX; ++i) | ||
382 | if (__btowc (i) == WEOF) | ||
383 | re_set_fastmap (fastmap, icase, i); | ||
384 | # endif /* not _LIBC */ | ||
385 | } | ||
386 | for (i = 0; i < cset->nmbchars; ++i) | ||
387 | { | ||
388 | char buf[256]; | ||
389 | mbstate_t state; | ||
390 | memset (&state, '\0', sizeof (state)); | ||
391 | if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) | ||
392 | re_set_fastmap (fastmap, icase, *(unsigned char *) buf); | ||
393 | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) | ||
394 | { | ||
395 | if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) | ||
396 | != (size_t) -1) | ||
397 | re_set_fastmap (fastmap, false, *(unsigned char *) buf); | ||
398 | } | ||
399 | } | ||
400 | } | ||
401 | #endif /* RE_ENABLE_I18N */ | ||
402 | else if (type == OP_PERIOD | ||
403 | #ifdef RE_ENABLE_I18N | ||
404 | || type == OP_UTF8_PERIOD | ||
405 | #endif /* RE_ENABLE_I18N */ | ||
406 | || type == END_OF_RE) | ||
407 | { | ||
408 | memset (fastmap, '\1', sizeof (char) * SBC_MAX); | ||
409 | if (type == END_OF_RE) | ||
410 | bufp->can_be_null = 1; | ||
411 | return; | ||
412 | } | ||
413 | } | ||
414 | } | ||
415 | |||
416 | /* Entry point for POSIX code. */ | ||
417 | /* regcomp takes a regular expression as a string and compiles it. | ||
418 | |||
419 | PREG is a regex_t *. We do not expect any fields to be initialized, | ||
420 | since POSIX says we shouldn't. Thus, we set | ||
421 | |||
422 | `buffer' to the compiled pattern; | ||
423 | `used' to the length of the compiled pattern; | ||
424 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | ||
425 | REG_EXTENDED bit in CFLAGS is set; otherwise, to | ||
426 | RE_SYNTAX_POSIX_BASIC; | ||
427 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; | ||
428 | `fastmap' to an allocated space for the fastmap; | ||
429 | `fastmap_accurate' to zero; | ||
430 | `re_nsub' to the number of subexpressions in PATTERN. | ||
431 | |||
432 | PATTERN is the address of the pattern string. | ||
433 | |||
434 | CFLAGS is a series of bits which affect compilation. | ||
435 | |||
436 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | ||
437 | use POSIX basic syntax. | ||
438 | |||
439 | If REG_NEWLINE is set, then . and [^...] don't match newline. | ||
440 | Also, regexec will try a match beginning after every newline. | ||
441 | |||
442 | If REG_ICASE is set, then we considers upper- and lowercase | ||
443 | versions of letters to be equivalent when matching. | ||
444 | |||
445 | If REG_NOSUB is set, then when PREG is passed to regexec, that | ||
446 | routine will report only success or failure, and nothing about the | ||
447 | registers. | ||
448 | |||
449 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | ||
450 | the return codes and their meanings.) */ | ||
451 | |||
452 | int | ||
453 | regcomp (preg, pattern, cflags) | ||
454 | regex_t *__restrict preg; | ||
455 | const char *__restrict pattern; | ||
456 | int cflags; | ||
457 | { | ||
458 | reg_errcode_t ret; | ||
459 | reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED | ||
460 | : RE_SYNTAX_POSIX_BASIC); | ||
461 | |||
462 | preg->buffer = NULL; | ||
463 | preg->allocated = 0; | ||
464 | preg->used = 0; | ||
465 | |||
466 | /* Try to allocate space for the fastmap. */ | ||
467 | preg->fastmap = re_malloc (char, SBC_MAX); | ||
468 | if (BE (preg->fastmap == NULL, 0)) | ||
469 | return REG_ESPACE; | ||
470 | |||
471 | syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; | ||
472 | |||
473 | /* If REG_NEWLINE is set, newlines are treated differently. */ | ||
474 | if (cflags & REG_NEWLINE) | ||
475 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | ||
476 | syntax &= ~RE_DOT_NEWLINE; | ||
477 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; | ||
478 | /* It also changes the matching behavior. */ | ||
479 | preg->newline_anchor = 1; | ||
480 | } | ||
481 | else | ||
482 | preg->newline_anchor = 0; | ||
483 | preg->no_sub = !!(cflags & REG_NOSUB); | ||
484 | preg->translate = NULL; | ||
485 | |||
486 | ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); | ||
487 | |||
488 | /* POSIX doesn't distinguish between an unmatched open-group and an | ||
489 | unmatched close-group: both are REG_EPAREN. */ | ||
490 | if (ret == REG_ERPAREN) | ||
491 | ret = REG_EPAREN; | ||
492 | |||
493 | /* We have already checked preg->fastmap != NULL. */ | ||
494 | if (BE (ret == REG_NOERROR, 1)) | ||
495 | /* Compute the fastmap now, since regexec cannot modify the pattern | ||
496 | buffer. This function never fails in this implementation. */ | ||
497 | (void) re_compile_fastmap (preg); | ||
498 | else | ||
499 | { | ||
500 | /* Some error occurred while compiling the expression. */ | ||
501 | re_free (preg->fastmap); | ||
502 | preg->fastmap = NULL; | ||
503 | } | ||
504 | |||
505 | return (int) ret; | ||
506 | } | ||
507 | #ifdef _LIBC | ||
508 | weak_alias (__regcomp, regcomp) | ||
509 | #endif | ||
510 | |||
511 | /* Returns a message corresponding to an error code, ERRCODE, returned | ||
512 | from either regcomp or regexec. We don't use PREG here. */ | ||
513 | |||
514 | #ifdef _LIBC | ||
515 | size_t | ||
516 | regerror (errcode, preg, errbuf, errbuf_size) | ||
517 | int errcode; | ||
518 | const regex_t *__restrict preg; | ||
519 | char *__restrict errbuf; | ||
520 | size_t errbuf_size; | ||
521 | #else /* size_t might promote */ | ||
522 | size_t | ||
523 | regerror (int errcode, const regex_t *__restrict preg, | ||
524 | char *__restrict errbuf, size_t errbuf_size) | ||
525 | #endif | ||
526 | { | ||
527 | const char *msg; | ||
528 | size_t msg_size; | ||
529 | |||
530 | if (BE (errcode < 0 | ||
531 | || errcode >= (int) (sizeof (__re_error_msgid_idx) | ||
532 | / sizeof (__re_error_msgid_idx[0])), 0)) | ||
533 | /* Only error codes returned by the rest of the code should be passed | ||
534 | to this routine. If we are given anything else, or if other regex | ||
535 | code generates an invalid error code, then the program has a bug. | ||
536 | Dump core so we can fix it. */ | ||
537 | abort (); | ||
538 | |||
539 | msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); | ||
540 | |||
541 | msg_size = strlen (msg) + 1; /* Includes the null. */ | ||
542 | |||
543 | if (BE (errbuf_size != 0, 1)) | ||
544 | { | ||
545 | if (BE (msg_size > errbuf_size, 0)) | ||
546 | { | ||
547 | #if defined HAVE_MEMPCPY || defined _LIBC | ||
548 | *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0'; | ||
549 | #else | ||
550 | memcpy (errbuf, msg, errbuf_size - 1); | ||
551 | errbuf[errbuf_size - 1] = 0; | ||
552 | #endif | ||
553 | } | ||
554 | else | ||
555 | memcpy (errbuf, msg, msg_size); | ||
556 | } | ||
557 | |||
558 | return msg_size; | ||
559 | } | ||
560 | #ifdef _LIBC | ||
561 | weak_alias (__regerror, regerror) | ||
562 | #endif | ||
563 | |||
564 | |||
565 | #ifdef RE_ENABLE_I18N | ||
566 | /* This static array is used for the map to single-byte characters when | ||
567 | UTF-8 is used. Otherwise we would allocate memory just to initialize | ||
568 | it the same all the time. UTF-8 is the preferred encoding so this is | ||
569 | a worthwhile optimization. */ | ||
570 | static const bitset_t utf8_sb_map = | ||
571 | { | ||
572 | /* Set the first 128 bits. */ | ||
573 | # if 4 * BITSET_WORD_BITS < ASCII_CHARS | ||
574 | # error "bitset_word_t is narrower than 32 bits" | ||
575 | # elif 3 * BITSET_WORD_BITS < ASCII_CHARS | ||
576 | BITSET_WORD_MAX, BITSET_WORD_MAX, BITSET_WORD_MAX, | ||
577 | # elif 2 * BITSET_WORD_BITS < ASCII_CHARS | ||
578 | BITSET_WORD_MAX, BITSET_WORD_MAX, | ||
579 | # elif 1 * BITSET_WORD_BITS < ASCII_CHARS | ||
580 | BITSET_WORD_MAX, | ||
581 | # endif | ||
582 | (BITSET_WORD_MAX | ||
583 | >> (SBC_MAX % BITSET_WORD_BITS == 0 | ||
584 | ? 0 | ||
585 | : BITSET_WORD_BITS - SBC_MAX % BITSET_WORD_BITS)) | ||
586 | }; | ||
587 | #endif | ||
588 | |||
589 | |||
590 | static void | ||
591 | free_dfa_content (re_dfa_t *dfa) | ||
592 | { | ||
593 | Idx i, j; | ||
594 | |||
595 | if (dfa->nodes) | ||
596 | for (i = 0; i < dfa->nodes_len; ++i) | ||
597 | free_token (dfa->nodes + i); | ||
598 | re_free (dfa->nexts); | ||
599 | for (i = 0; i < dfa->nodes_len; ++i) | ||
600 | { | ||
601 | if (dfa->eclosures != NULL) | ||
602 | re_node_set_free (dfa->eclosures + i); | ||
603 | if (dfa->inveclosures != NULL) | ||
604 | re_node_set_free (dfa->inveclosures + i); | ||
605 | if (dfa->edests != NULL) | ||
606 | re_node_set_free (dfa->edests + i); | ||
607 | } | ||
608 | re_free (dfa->edests); | ||
609 | re_free (dfa->eclosures); | ||
610 | re_free (dfa->inveclosures); | ||
611 | re_free (dfa->nodes); | ||
612 | |||
613 | if (dfa->state_table) | ||
614 | for (i = 0; i <= dfa->state_hash_mask; ++i) | ||
615 | { | ||
616 | struct re_state_table_entry *entry = dfa->state_table + i; | ||
617 | for (j = 0; j < entry->num; ++j) | ||
618 | { | ||
619 | re_dfastate_t *state = entry->array[j]; | ||
620 | free_state (state); | ||
621 | } | ||
622 | re_free (entry->array); | ||
623 | } | ||
624 | re_free (dfa->state_table); | ||
625 | #ifdef RE_ENABLE_I18N | ||
626 | if (dfa->sb_char != utf8_sb_map) | ||
627 | re_free (dfa->sb_char); | ||
628 | #endif | ||
629 | re_free (dfa->subexp_map); | ||
630 | #ifdef DEBUG | ||
631 | re_free (dfa->re_str); | ||
632 | #endif | ||
633 | |||
634 | re_free (dfa); | ||
635 | } | ||
636 | |||
637 | |||
638 | /* Free dynamically allocated space used by PREG. */ | ||
639 | |||
640 | void | ||
641 | regfree (preg) | ||
642 | regex_t *preg; | ||
643 | { | ||
644 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
645 | if (BE (dfa != NULL, 1)) | ||
646 | free_dfa_content (dfa); | ||
647 | preg->buffer = NULL; | ||
648 | preg->allocated = 0; | ||
649 | |||
650 | re_free (preg->fastmap); | ||
651 | preg->fastmap = NULL; | ||
652 | |||
653 | re_free (preg->translate); | ||
654 | preg->translate = NULL; | ||
655 | } | ||
656 | #ifdef _LIBC | ||
657 | weak_alias (__regfree, regfree) | ||
658 | #endif | ||
659 | |||
660 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
661 | them unless specifically requested. */ | ||
662 | |||
663 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
664 | |||
665 | /* BSD has one and only one pattern buffer. */ | ||
666 | static struct re_pattern_buffer re_comp_buf; | ||
667 | |||
668 | char * | ||
669 | # ifdef _LIBC | ||
670 | /* Make these definitions weak in libc, so POSIX programs can redefine | ||
671 | these names if they don't use our functions, and still use | ||
672 | regcomp/regexec above without link errors. */ | ||
673 | weak_function | ||
674 | # endif | ||
675 | re_comp (s) | ||
676 | const char *s; | ||
677 | { | ||
678 | reg_errcode_t ret; | ||
679 | char *fastmap; | ||
680 | |||
681 | if (!s) | ||
682 | { | ||
683 | if (!re_comp_buf.buffer) | ||
684 | return gettext ("No previous regular expression"); | ||
685 | return 0; | ||
686 | } | ||
687 | |||
688 | if (re_comp_buf.buffer) | ||
689 | { | ||
690 | fastmap = re_comp_buf.fastmap; | ||
691 | re_comp_buf.fastmap = NULL; | ||
692 | __regfree (&re_comp_buf); | ||
693 | memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); | ||
694 | re_comp_buf.fastmap = fastmap; | ||
695 | } | ||
696 | |||
697 | if (re_comp_buf.fastmap == NULL) | ||
698 | { | ||
699 | re_comp_buf.fastmap = (char *) malloc (SBC_MAX); | ||
700 | if (re_comp_buf.fastmap == NULL) | ||
701 | return (char *) gettext (__re_error_msgid | ||
702 | + __re_error_msgid_idx[(int) REG_ESPACE]); | ||
703 | } | ||
704 | |||
705 | /* Since `re_exec' always passes NULL for the `regs' argument, we | ||
706 | don't need to initialize the pattern buffer fields which affect it. */ | ||
707 | |||
708 | /* Match anchors at newlines. */ | ||
709 | re_comp_buf.newline_anchor = 1; | ||
710 | |||
711 | ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); | ||
712 | |||
713 | if (!ret) | ||
714 | return NULL; | ||
715 | |||
716 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | ||
717 | return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | ||
718 | } | ||
719 | |||
720 | #ifdef _LIBC | ||
721 | libc_freeres_fn (free_mem) | ||
722 | { | ||
723 | __regfree (&re_comp_buf); | ||
724 | } | ||
725 | #endif | ||
726 | |||
727 | #endif /* _REGEX_RE_COMP */ | ||
728 | |||
729 | /* Internal entry point. | ||
730 | Compile the regular expression PATTERN, whose length is LENGTH. | ||
731 | SYNTAX indicate regular expression's syntax. */ | ||
732 | |||
733 | static reg_errcode_t | ||
734 | re_compile_internal (regex_t *preg, const char * pattern, size_t length, | ||
735 | reg_syntax_t syntax) | ||
736 | { | ||
737 | reg_errcode_t err = REG_NOERROR; | ||
738 | re_dfa_t *dfa; | ||
739 | re_string_t regexp; | ||
740 | |||
741 | /* Initialize the pattern buffer. */ | ||
742 | preg->fastmap_accurate = 0; | ||
743 | preg->syntax = syntax; | ||
744 | preg->not_bol = preg->not_eol = 0; | ||
745 | preg->used = 0; | ||
746 | preg->re_nsub = 0; | ||
747 | preg->can_be_null = 0; | ||
748 | preg->regs_allocated = REGS_UNALLOCATED; | ||
749 | |||
750 | /* Initialize the dfa. */ | ||
751 | dfa = (re_dfa_t *) preg->buffer; | ||
752 | if (BE (preg->allocated < sizeof (re_dfa_t), 0)) | ||
753 | { | ||
754 | /* If zero allocated, but buffer is non-null, try to realloc | ||
755 | enough space. This loses if buffer's address is bogus, but | ||
756 | that is the user's responsibility. If ->buffer is NULL this | ||
757 | is a simple allocation. */ | ||
758 | dfa = re_realloc (preg->buffer, re_dfa_t, 1); | ||
759 | if (dfa == NULL) | ||
760 | return REG_ESPACE; | ||
761 | preg->allocated = sizeof (re_dfa_t); | ||
762 | preg->buffer = (unsigned char *) dfa; | ||
763 | } | ||
764 | preg->used = sizeof (re_dfa_t); | ||
765 | |||
766 | err = init_dfa (dfa, length); | ||
767 | if (BE (err != REG_NOERROR, 0)) | ||
768 | { | ||
769 | free_dfa_content (dfa); | ||
770 | preg->buffer = NULL; | ||
771 | preg->allocated = 0; | ||
772 | return err; | ||
773 | } | ||
774 | #ifdef DEBUG | ||
775 | /* Note: length+1 will not overflow since it is checked in init_dfa. */ | ||
776 | dfa->re_str = re_malloc (char, length + 1); | ||
777 | strncpy (dfa->re_str, pattern, length + 1); | ||
778 | #endif | ||
779 | |||
780 | __libc_lock_init (dfa->lock); | ||
781 | |||
782 | err = re_string_construct (®exp, pattern, length, preg->translate, | ||
783 | syntax & RE_ICASE, dfa); | ||
784 | if (BE (err != REG_NOERROR, 0)) | ||
785 | { | ||
786 | re_compile_internal_free_return: | ||
787 | free_workarea_compile (preg); | ||
788 | re_string_destruct (®exp); | ||
789 | free_dfa_content (dfa); | ||
790 | preg->buffer = NULL; | ||
791 | preg->allocated = 0; | ||
792 | return err; | ||
793 | } | ||
794 | |||
795 | /* Parse the regular expression, and build a structure tree. */ | ||
796 | preg->re_nsub = 0; | ||
797 | dfa->str_tree = parse (®exp, preg, syntax, &err); | ||
798 | if (BE (dfa->str_tree == NULL, 0)) | ||
799 | goto re_compile_internal_free_return; | ||
800 | |||
801 | /* Analyze the tree and create the nfa. */ | ||
802 | err = analyze (preg); | ||
803 | if (BE (err != REG_NOERROR, 0)) | ||
804 | goto re_compile_internal_free_return; | ||
805 | |||
806 | #ifdef RE_ENABLE_I18N | ||
807 | /* If possible, do searching in single byte encoding to speed things up. */ | ||
808 | if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL) | ||
809 | optimize_utf8 (dfa); | ||
810 | #endif | ||
811 | |||
812 | /* Then create the initial state of the dfa. */ | ||
813 | err = create_initial_state (dfa); | ||
814 | |||
815 | /* Release work areas. */ | ||
816 | free_workarea_compile (preg); | ||
817 | re_string_destruct (®exp); | ||
818 | |||
819 | if (BE (err != REG_NOERROR, 0)) | ||
820 | { | ||
821 | free_dfa_content (dfa); | ||
822 | preg->buffer = NULL; | ||
823 | preg->allocated = 0; | ||
824 | } | ||
825 | |||
826 | return err; | ||
827 | } | ||
828 | |||
829 | /* Initialize DFA. We use the length of the regular expression PAT_LEN | ||
830 | as the initial length of some arrays. */ | ||
831 | |||
832 | static reg_errcode_t | ||
833 | init_dfa (re_dfa_t *dfa, size_t pat_len) | ||
834 | { | ||
835 | __re_size_t table_size; | ||
836 | #ifndef _LIBC | ||
837 | char *codeset_name; | ||
838 | #endif | ||
839 | #ifdef RE_ENABLE_I18N | ||
840 | size_t max_i18n_object_size = MAX (sizeof (wchar_t), sizeof (wctype_t)); | ||
841 | #else | ||
842 | size_t max_i18n_object_size = 0; | ||
843 | #endif | ||
844 | size_t max_object_size = | ||
845 | MAX (sizeof (struct re_state_table_entry), | ||
846 | MAX (sizeof (re_token_t), | ||
847 | MAX (sizeof (re_node_set), | ||
848 | MAX (sizeof (regmatch_t), | ||
849 | max_i18n_object_size)))); | ||
850 | |||
851 | memset (dfa, '\0', sizeof (re_dfa_t)); | ||
852 | |||
853 | /* Force allocation of str_tree_storage the first time. */ | ||
854 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | ||
855 | |||
856 | /* Avoid overflows. The extra "/ 2" is for the table_size doubling | ||
857 | calculation below, and for similar doubling calculations | ||
858 | elsewhere. And it's <= rather than <, because some of the | ||
859 | doubling calculations add 1 afterwards. */ | ||
860 | if (BE (SIZE_MAX / max_object_size / 2 <= pat_len, 0)) | ||
861 | return REG_ESPACE; | ||
862 | |||
863 | dfa->nodes_alloc = pat_len + 1; | ||
864 | dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); | ||
865 | |||
866 | /* table_size = 2 ^ ceil(log pat_len) */ | ||
867 | for (table_size = 1; ; table_size <<= 1) | ||
868 | if (table_size > pat_len) | ||
869 | break; | ||
870 | |||
871 | dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size); | ||
872 | dfa->state_hash_mask = table_size - 1; | ||
873 | |||
874 | dfa->mb_cur_max = MB_CUR_MAX; | ||
875 | #ifdef _LIBC | ||
876 | if (dfa->mb_cur_max == 6 | ||
877 | && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) | ||
878 | dfa->is_utf8 = 1; | ||
879 | dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) | ||
880 | != 0); | ||
881 | #else | ||
882 | # ifdef HAVE_LANGINFO_CODESET | ||
883 | codeset_name = nl_langinfo (CODESET); | ||
884 | # else | ||
885 | codeset_name = getenv ("LC_ALL"); | ||
886 | if (codeset_name == NULL || codeset_name[0] == '\0') | ||
887 | codeset_name = getenv ("LC_CTYPE"); | ||
888 | if (codeset_name == NULL || codeset_name[0] == '\0') | ||
889 | codeset_name = getenv ("LANG"); | ||
890 | if (codeset_name == NULL) | ||
891 | codeset_name = ""; | ||
892 | else if (strchr (codeset_name, '.') != NULL) | ||
893 | codeset_name = strchr (codeset_name, '.') + 1; | ||
894 | # endif | ||
895 | |||
896 | if (strcasecmp (codeset_name, "UTF-8") == 0 | ||
897 | || strcasecmp (codeset_name, "UTF8") == 0) | ||
898 | dfa->is_utf8 = 1; | ||
899 | |||
900 | /* We check exhaustively in the loop below if this charset is a | ||
901 | superset of ASCII. */ | ||
902 | dfa->map_notascii = 0; | ||
903 | #endif | ||
904 | |||
905 | #ifdef RE_ENABLE_I18N | ||
906 | if (dfa->mb_cur_max > 1) | ||
907 | { | ||
908 | if (dfa->is_utf8) | ||
909 | dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; | ||
910 | else | ||
911 | { | ||
912 | int i, j, ch; | ||
913 | |||
914 | dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | ||
915 | if (BE (dfa->sb_char == NULL, 0)) | ||
916 | return REG_ESPACE; | ||
917 | |||
918 | /* Set the bits corresponding to single byte chars. */ | ||
919 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
920 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
921 | { | ||
922 | wint_t wch = __btowc (ch); | ||
923 | if (wch != WEOF) | ||
924 | dfa->sb_char[i] |= (bitset_word_t) 1 << j; | ||
925 | # ifndef _LIBC | ||
926 | if (isascii (ch) && wch != ch) | ||
927 | dfa->map_notascii = 1; | ||
928 | # endif | ||
929 | } | ||
930 | } | ||
931 | } | ||
932 | #endif | ||
933 | |||
934 | if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) | ||
935 | return REG_ESPACE; | ||
936 | return REG_NOERROR; | ||
937 | } | ||
938 | |||
939 | /* Initialize WORD_CHAR table, which indicate which character is | ||
940 | "word". In this case "word" means that it is the word construction | ||
941 | character used by some operators like "\<", "\>", etc. */ | ||
942 | |||
943 | static void | ||
944 | internal_function | ||
945 | init_word_char (re_dfa_t *dfa) | ||
946 | { | ||
947 | int i, j, ch; | ||
948 | dfa->word_ops_used = 1; | ||
949 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
950 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
951 | if (isalnum (ch) || ch == '_') | ||
952 | dfa->word_char[i] |= (bitset_word_t) 1 << j; | ||
953 | } | ||
954 | |||
955 | /* Free the work area which are only used while compiling. */ | ||
956 | |||
957 | static void | ||
958 | free_workarea_compile (regex_t *preg) | ||
959 | { | ||
960 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
961 | bin_tree_storage_t *storage, *next; | ||
962 | for (storage = dfa->str_tree_storage; storage; storage = next) | ||
963 | { | ||
964 | next = storage->next; | ||
965 | re_free (storage); | ||
966 | } | ||
967 | dfa->str_tree_storage = NULL; | ||
968 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | ||
969 | dfa->str_tree = NULL; | ||
970 | re_free (dfa->org_indices); | ||
971 | dfa->org_indices = NULL; | ||
972 | } | ||
973 | |||
974 | /* Create initial states for all contexts. */ | ||
975 | |||
976 | static reg_errcode_t | ||
977 | create_initial_state (re_dfa_t *dfa) | ||
978 | { | ||
979 | Idx first, i; | ||
980 | reg_errcode_t err; | ||
981 | re_node_set init_nodes; | ||
982 | |||
983 | /* Initial states have the epsilon closure of the node which is | ||
984 | the first node of the regular expression. */ | ||
985 | first = dfa->str_tree->first->node_idx; | ||
986 | dfa->init_node = first; | ||
987 | err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); | ||
988 | if (BE (err != REG_NOERROR, 0)) | ||
989 | return err; | ||
990 | |||
991 | /* The back-references which are in initial states can epsilon transit, | ||
992 | since in this case all of the subexpressions can be null. | ||
993 | Then we add epsilon closures of the nodes which are the next nodes of | ||
994 | the back-references. */ | ||
995 | if (dfa->nbackref > 0) | ||
996 | for (i = 0; i < init_nodes.nelem; ++i) | ||
997 | { | ||
998 | Idx node_idx = init_nodes.elems[i]; | ||
999 | re_token_type_t type = dfa->nodes[node_idx].type; | ||
1000 | |||
1001 | Idx clexp_idx; | ||
1002 | if (type != OP_BACK_REF) | ||
1003 | continue; | ||
1004 | for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) | ||
1005 | { | ||
1006 | re_token_t *clexp_node; | ||
1007 | clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; | ||
1008 | if (clexp_node->type == OP_CLOSE_SUBEXP | ||
1009 | && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) | ||
1010 | break; | ||
1011 | } | ||
1012 | if (clexp_idx == init_nodes.nelem) | ||
1013 | continue; | ||
1014 | |||
1015 | if (type == OP_BACK_REF) | ||
1016 | { | ||
1017 | Idx dest_idx = dfa->edests[node_idx].elems[0]; | ||
1018 | if (!re_node_set_contains (&init_nodes, dest_idx)) | ||
1019 | { | ||
1020 | re_node_set_merge (&init_nodes, dfa->eclosures + dest_idx); | ||
1021 | i = 0; | ||
1022 | } | ||
1023 | } | ||
1024 | } | ||
1025 | |||
1026 | /* It must be the first time to invoke acquire_state. */ | ||
1027 | dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); | ||
1028 | /* We don't check ERR here, since the initial state must not be NULL. */ | ||
1029 | if (BE (dfa->init_state == NULL, 0)) | ||
1030 | return err; | ||
1031 | if (dfa->init_state->has_constraint) | ||
1032 | { | ||
1033 | dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, | ||
1034 | CONTEXT_WORD); | ||
1035 | dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, | ||
1036 | CONTEXT_NEWLINE); | ||
1037 | dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, | ||
1038 | &init_nodes, | ||
1039 | CONTEXT_NEWLINE | ||
1040 | | CONTEXT_BEGBUF); | ||
1041 | if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL | ||
1042 | || dfa->init_state_begbuf == NULL, 0)) | ||
1043 | return err; | ||
1044 | } | ||
1045 | else | ||
1046 | dfa->init_state_word = dfa->init_state_nl | ||
1047 | = dfa->init_state_begbuf = dfa->init_state; | ||
1048 | |||
1049 | re_node_set_free (&init_nodes); | ||
1050 | return REG_NOERROR; | ||
1051 | } | ||
1052 | |||
1053 | #ifdef RE_ENABLE_I18N | ||
1054 | /* If it is possible to do searching in single byte encoding instead of UTF-8 | ||
1055 | to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change | ||
1056 | DFA nodes where needed. */ | ||
1057 | |||
1058 | static void | ||
1059 | optimize_utf8 (re_dfa_t *dfa) | ||
1060 | { | ||
1061 | Idx node; | ||
1062 | int i; | ||
1063 | bool mb_chars = false; | ||
1064 | bool has_period = false; | ||
1065 | |||
1066 | for (node = 0; node < dfa->nodes_len; ++node) | ||
1067 | switch (dfa->nodes[node].type) | ||
1068 | { | ||
1069 | case CHARACTER: | ||
1070 | if (dfa->nodes[node].opr.c >= ASCII_CHARS) | ||
1071 | mb_chars = true; | ||
1072 | break; | ||
1073 | case ANCHOR: | ||
1074 | switch (dfa->nodes[node].opr.idx) | ||
1075 | { | ||
1076 | case LINE_FIRST: | ||
1077 | case LINE_LAST: | ||
1078 | case BUF_FIRST: | ||
1079 | case BUF_LAST: | ||
1080 | break; | ||
1081 | default: | ||
1082 | /* Word anchors etc. cannot be handled. */ | ||
1083 | return; | ||
1084 | } | ||
1085 | break; | ||
1086 | case OP_PERIOD: | ||
1087 | has_period = true; | ||
1088 | break; | ||
1089 | case OP_BACK_REF: | ||
1090 | case OP_ALT: | ||
1091 | case END_OF_RE: | ||
1092 | case OP_DUP_ASTERISK: | ||
1093 | case OP_OPEN_SUBEXP: | ||
1094 | case OP_CLOSE_SUBEXP: | ||
1095 | break; | ||
1096 | case COMPLEX_BRACKET: | ||
1097 | return; | ||
1098 | case SIMPLE_BRACKET: | ||
1099 | /* Just double check. */ | ||
1100 | { | ||
1101 | int rshift = (ASCII_CHARS % BITSET_WORD_BITS == 0 | ||
1102 | ? 0 | ||
1103 | : BITSET_WORD_BITS - ASCII_CHARS % BITSET_WORD_BITS); | ||
1104 | for (i = ASCII_CHARS / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) | ||
1105 | { | ||
1106 | if (dfa->nodes[node].opr.sbcset[i] >> rshift != 0) | ||
1107 | return; | ||
1108 | rshift = 0; | ||
1109 | } | ||
1110 | } | ||
1111 | break; | ||
1112 | default: | ||
1113 | abort (); | ||
1114 | } | ||
1115 | |||
1116 | if (mb_chars || has_period) | ||
1117 | for (node = 0; node < dfa->nodes_len; ++node) | ||
1118 | { | ||
1119 | if (dfa->nodes[node].type == CHARACTER | ||
1120 | && dfa->nodes[node].opr.c >= ASCII_CHARS) | ||
1121 | dfa->nodes[node].mb_partial = 0; | ||
1122 | else if (dfa->nodes[node].type == OP_PERIOD) | ||
1123 | dfa->nodes[node].type = OP_UTF8_PERIOD; | ||
1124 | } | ||
1125 | |||
1126 | /* The search can be in single byte locale. */ | ||
1127 | dfa->mb_cur_max = 1; | ||
1128 | dfa->is_utf8 = 0; | ||
1129 | dfa->has_mb_node = dfa->nbackref > 0 || has_period; | ||
1130 | } | ||
1131 | #endif | ||
1132 | |||
1133 | /* Analyze the structure tree, and calculate "first", "next", "edest", | ||
1134 | "eclosure", and "inveclosure". */ | ||
1135 | |||
1136 | static reg_errcode_t | ||
1137 | analyze (regex_t *preg) | ||
1138 | { | ||
1139 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
1140 | reg_errcode_t ret; | ||
1141 | |||
1142 | /* Allocate arrays. */ | ||
1143 | dfa->nexts = re_malloc (Idx, dfa->nodes_alloc); | ||
1144 | dfa->org_indices = re_malloc (Idx, dfa->nodes_alloc); | ||
1145 | dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); | ||
1146 | dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); | ||
1147 | if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL | ||
1148 | || dfa->eclosures == NULL, 0)) | ||
1149 | return REG_ESPACE; | ||
1150 | |||
1151 | dfa->subexp_map = re_malloc (Idx, preg->re_nsub); | ||
1152 | if (dfa->subexp_map != NULL) | ||
1153 | { | ||
1154 | Idx i; | ||
1155 | for (i = 0; i < preg->re_nsub; i++) | ||
1156 | dfa->subexp_map[i] = i; | ||
1157 | preorder (dfa->str_tree, optimize_subexps, dfa); | ||
1158 | for (i = 0; i < preg->re_nsub; i++) | ||
1159 | if (dfa->subexp_map[i] != i) | ||
1160 | break; | ||
1161 | if (i == preg->re_nsub) | ||
1162 | { | ||
1163 | free (dfa->subexp_map); | ||
1164 | dfa->subexp_map = NULL; | ||
1165 | } | ||
1166 | } | ||
1167 | |||
1168 | ret = postorder (dfa->str_tree, lower_subexps, preg); | ||
1169 | if (BE (ret != REG_NOERROR, 0)) | ||
1170 | return ret; | ||
1171 | ret = postorder (dfa->str_tree, calc_first, dfa); | ||
1172 | if (BE (ret != REG_NOERROR, 0)) | ||
1173 | return ret; | ||
1174 | preorder (dfa->str_tree, calc_next, dfa); | ||
1175 | ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); | ||
1176 | if (BE (ret != REG_NOERROR, 0)) | ||
1177 | return ret; | ||
1178 | ret = calc_eclosure (dfa); | ||
1179 | if (BE (ret != REG_NOERROR, 0)) | ||
1180 | return ret; | ||
1181 | |||
1182 | /* We only need this during the prune_impossible_nodes pass in regexec.c; | ||
1183 | skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */ | ||
1184 | if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match) | ||
1185 | || dfa->nbackref) | ||
1186 | { | ||
1187 | dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len); | ||
1188 | if (BE (dfa->inveclosures == NULL, 0)) | ||
1189 | return REG_ESPACE; | ||
1190 | ret = calc_inveclosure (dfa); | ||
1191 | } | ||
1192 | |||
1193 | return ret; | ||
1194 | } | ||
1195 | |||
1196 | /* Our parse trees are very unbalanced, so we cannot use a stack to | ||
1197 | implement parse tree visits. Instead, we use parent pointers and | ||
1198 | some hairy code in these two functions. */ | ||
1199 | static reg_errcode_t | ||
1200 | postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | ||
1201 | void *extra) | ||
1202 | { | ||
1203 | bin_tree_t *node, *prev; | ||
1204 | |||
1205 | for (node = root; ; ) | ||
1206 | { | ||
1207 | /* Descend down the tree, preferably to the left (or to the right | ||
1208 | if that's the only child). */ | ||
1209 | while (node->left || node->right) | ||
1210 | if (node->left) | ||
1211 | node = node->left; | ||
1212 | else | ||
1213 | node = node->right; | ||
1214 | |||
1215 | do | ||
1216 | { | ||
1217 | reg_errcode_t err = fn (extra, node); | ||
1218 | if (BE (err != REG_NOERROR, 0)) | ||
1219 | return err; | ||
1220 | if (node->parent == NULL) | ||
1221 | return REG_NOERROR; | ||
1222 | prev = node; | ||
1223 | node = node->parent; | ||
1224 | } | ||
1225 | /* Go up while we have a node that is reached from the right. */ | ||
1226 | while (node->right == prev || node->right == NULL); | ||
1227 | node = node->right; | ||
1228 | } | ||
1229 | } | ||
1230 | |||
1231 | static reg_errcode_t | ||
1232 | preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | ||
1233 | void *extra) | ||
1234 | { | ||
1235 | bin_tree_t *node; | ||
1236 | |||
1237 | for (node = root; ; ) | ||
1238 | { | ||
1239 | reg_errcode_t err = fn (extra, node); | ||
1240 | if (BE (err != REG_NOERROR, 0)) | ||
1241 | return err; | ||
1242 | |||
1243 | /* Go to the left node, or up and to the right. */ | ||
1244 | if (node->left) | ||
1245 | node = node->left; | ||
1246 | else | ||
1247 | { | ||
1248 | bin_tree_t *prev = NULL; | ||
1249 | while (node->right == prev || node->right == NULL) | ||
1250 | { | ||
1251 | prev = node; | ||
1252 | node = node->parent; | ||
1253 | if (!node) | ||
1254 | return REG_NOERROR; | ||
1255 | } | ||
1256 | node = node->right; | ||
1257 | } | ||
1258 | } | ||
1259 | } | ||
1260 | |||
1261 | /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell | ||
1262 | re_search_internal to map the inner one's opr.idx to this one's. Adjust | ||
1263 | backreferences as well. Requires a preorder visit. */ | ||
1264 | static reg_errcode_t | ||
1265 | optimize_subexps (void *extra, bin_tree_t *node) | ||
1266 | { | ||
1267 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1268 | |||
1269 | if (node->token.type == OP_BACK_REF && dfa->subexp_map) | ||
1270 | { | ||
1271 | int idx = node->token.opr.idx; | ||
1272 | node->token.opr.idx = dfa->subexp_map[idx]; | ||
1273 | dfa->used_bkref_map |= 1 << node->token.opr.idx; | ||
1274 | } | ||
1275 | |||
1276 | else if (node->token.type == SUBEXP | ||
1277 | && node->left && node->left->token.type == SUBEXP) | ||
1278 | { | ||
1279 | Idx other_idx = node->left->token.opr.idx; | ||
1280 | |||
1281 | node->left = node->left->left; | ||
1282 | if (node->left) | ||
1283 | node->left->parent = node; | ||
1284 | |||
1285 | dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; | ||
1286 | if (other_idx < BITSET_WORD_BITS) | ||
1287 | dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx); | ||
1288 | } | ||
1289 | |||
1290 | return REG_NOERROR; | ||
1291 | } | ||
1292 | |||
1293 | /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation | ||
1294 | of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */ | ||
1295 | static reg_errcode_t | ||
1296 | lower_subexps (void *extra, bin_tree_t *node) | ||
1297 | { | ||
1298 | regex_t *preg = (regex_t *) extra; | ||
1299 | reg_errcode_t err = REG_NOERROR; | ||
1300 | |||
1301 | if (node->left && node->left->token.type == SUBEXP) | ||
1302 | { | ||
1303 | node->left = lower_subexp (&err, preg, node->left); | ||
1304 | if (node->left) | ||
1305 | node->left->parent = node; | ||
1306 | } | ||
1307 | if (node->right && node->right->token.type == SUBEXP) | ||
1308 | { | ||
1309 | node->right = lower_subexp (&err, preg, node->right); | ||
1310 | if (node->right) | ||
1311 | node->right->parent = node; | ||
1312 | } | ||
1313 | |||
1314 | return err; | ||
1315 | } | ||
1316 | |||
1317 | static bin_tree_t * | ||
1318 | lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) | ||
1319 | { | ||
1320 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
1321 | bin_tree_t *body = node->left; | ||
1322 | bin_tree_t *op, *cls, *tree1, *tree; | ||
1323 | |||
1324 | if (preg->no_sub | ||
1325 | /* We do not optimize empty subexpressions, because otherwise we may | ||
1326 | have bad CONCAT nodes with NULL children. This is obviously not | ||
1327 | very common, so we do not lose much. An example that triggers | ||
1328 | this case is the sed "script" /\(\)/x. */ | ||
1329 | && node->left != NULL | ||
1330 | && (node->token.opr.idx >= BITSET_WORD_BITS | ||
1331 | || !(dfa->used_bkref_map | ||
1332 | & ((bitset_word_t) 1 << node->token.opr.idx)))) | ||
1333 | return node->left; | ||
1334 | |||
1335 | /* Convert the SUBEXP node to the concatenation of an | ||
1336 | OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */ | ||
1337 | op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); | ||
1338 | cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); | ||
1339 | tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; | ||
1340 | tree = create_tree (dfa, op, tree1, CONCAT); | ||
1341 | if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) | ||
1342 | { | ||
1343 | *err = REG_ESPACE; | ||
1344 | return NULL; | ||
1345 | } | ||
1346 | |||
1347 | op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; | ||
1348 | op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; | ||
1349 | return tree; | ||
1350 | } | ||
1351 | |||
1352 | /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton | ||
1353 | nodes. Requires a postorder visit. */ | ||
1354 | static reg_errcode_t | ||
1355 | calc_first (void *extra, bin_tree_t *node) | ||
1356 | { | ||
1357 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1358 | if (node->token.type == CONCAT) | ||
1359 | { | ||
1360 | node->first = node->left->first; | ||
1361 | node->node_idx = node->left->node_idx; | ||
1362 | } | ||
1363 | else | ||
1364 | { | ||
1365 | node->first = node; | ||
1366 | node->node_idx = re_dfa_add_node (dfa, node->token); | ||
1367 | if (BE (node->node_idx == REG_MISSING, 0)) | ||
1368 | return REG_ESPACE; | ||
1369 | } | ||
1370 | return REG_NOERROR; | ||
1371 | } | ||
1372 | |||
1373 | /* Pass 2: compute NEXT on the tree. Preorder visit. */ | ||
1374 | static reg_errcode_t | ||
1375 | calc_next (void *extra, bin_tree_t *node) | ||
1376 | { | ||
1377 | switch (node->token.type) | ||
1378 | { | ||
1379 | case OP_DUP_ASTERISK: | ||
1380 | node->left->next = node; | ||
1381 | break; | ||
1382 | case CONCAT: | ||
1383 | node->left->next = node->right->first; | ||
1384 | node->right->next = node->next; | ||
1385 | break; | ||
1386 | default: | ||
1387 | if (node->left) | ||
1388 | node->left->next = node->next; | ||
1389 | if (node->right) | ||
1390 | node->right->next = node->next; | ||
1391 | break; | ||
1392 | } | ||
1393 | return REG_NOERROR; | ||
1394 | } | ||
1395 | |||
1396 | /* Pass 3: link all DFA nodes to their NEXT node (any order will do). */ | ||
1397 | static reg_errcode_t | ||
1398 | link_nfa_nodes (void *extra, bin_tree_t *node) | ||
1399 | { | ||
1400 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1401 | Idx idx = node->node_idx; | ||
1402 | reg_errcode_t err = REG_NOERROR; | ||
1403 | |||
1404 | switch (node->token.type) | ||
1405 | { | ||
1406 | case CONCAT: | ||
1407 | break; | ||
1408 | |||
1409 | case END_OF_RE: | ||
1410 | assert (node->next == NULL); | ||
1411 | break; | ||
1412 | |||
1413 | case OP_DUP_ASTERISK: | ||
1414 | case OP_ALT: | ||
1415 | { | ||
1416 | Idx left, right; | ||
1417 | dfa->has_plural_match = 1; | ||
1418 | if (node->left != NULL) | ||
1419 | left = node->left->first->node_idx; | ||
1420 | else | ||
1421 | left = node->next->node_idx; | ||
1422 | if (node->right != NULL) | ||
1423 | right = node->right->first->node_idx; | ||
1424 | else | ||
1425 | right = node->next->node_idx; | ||
1426 | assert (REG_VALID_INDEX (left)); | ||
1427 | assert (REG_VALID_INDEX (right)); | ||
1428 | err = re_node_set_init_2 (dfa->edests + idx, left, right); | ||
1429 | } | ||
1430 | break; | ||
1431 | |||
1432 | case ANCHOR: | ||
1433 | case OP_OPEN_SUBEXP: | ||
1434 | case OP_CLOSE_SUBEXP: | ||
1435 | err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); | ||
1436 | break; | ||
1437 | |||
1438 | case OP_BACK_REF: | ||
1439 | dfa->nexts[idx] = node->next->node_idx; | ||
1440 | if (node->token.type == OP_BACK_REF) | ||
1441 | re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); | ||
1442 | break; | ||
1443 | |||
1444 | default: | ||
1445 | assert (!IS_EPSILON_NODE (node->token.type)); | ||
1446 | dfa->nexts[idx] = node->next->node_idx; | ||
1447 | break; | ||
1448 | } | ||
1449 | |||
1450 | return err; | ||
1451 | } | ||
1452 | |||
1453 | /* Duplicate the epsilon closure of the node ROOT_NODE. | ||
1454 | Note that duplicated nodes have constraint INIT_CONSTRAINT in addition | ||
1455 | to their own constraint. */ | ||
1456 | |||
1457 | static reg_errcode_t | ||
1458 | internal_function | ||
1459 | duplicate_node_closure (re_dfa_t *dfa, Idx top_org_node, Idx top_clone_node, | ||
1460 | Idx root_node, unsigned int init_constraint) | ||
1461 | { | ||
1462 | Idx org_node, clone_node; | ||
1463 | bool ok; | ||
1464 | unsigned int constraint = init_constraint; | ||
1465 | for (org_node = top_org_node, clone_node = top_clone_node;;) | ||
1466 | { | ||
1467 | Idx org_dest, clone_dest; | ||
1468 | if (dfa->nodes[org_node].type == OP_BACK_REF) | ||
1469 | { | ||
1470 | /* If the back reference epsilon-transit, its destination must | ||
1471 | also have the constraint. Then duplicate the epsilon closure | ||
1472 | of the destination of the back reference, and store it in | ||
1473 | edests of the back reference. */ | ||
1474 | org_dest = dfa->nexts[org_node]; | ||
1475 | re_node_set_empty (dfa->edests + clone_node); | ||
1476 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1477 | if (BE (clone_dest == REG_MISSING, 0)) | ||
1478 | return REG_ESPACE; | ||
1479 | dfa->nexts[clone_node] = dfa->nexts[org_node]; | ||
1480 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1481 | if (BE (! ok, 0)) | ||
1482 | return REG_ESPACE; | ||
1483 | } | ||
1484 | else if (dfa->edests[org_node].nelem == 0) | ||
1485 | { | ||
1486 | /* In case of the node can't epsilon-transit, don't duplicate the | ||
1487 | destination and store the original destination as the | ||
1488 | destination of the node. */ | ||
1489 | dfa->nexts[clone_node] = dfa->nexts[org_node]; | ||
1490 | break; | ||
1491 | } | ||
1492 | else if (dfa->edests[org_node].nelem == 1) | ||
1493 | { | ||
1494 | /* In case of the node can epsilon-transit, and it has only one | ||
1495 | destination. */ | ||
1496 | org_dest = dfa->edests[org_node].elems[0]; | ||
1497 | re_node_set_empty (dfa->edests + clone_node); | ||
1498 | if (dfa->nodes[org_node].type == ANCHOR) | ||
1499 | { | ||
1500 | /* In case of the node has another constraint, append it. */ | ||
1501 | if (org_node == root_node && clone_node != org_node) | ||
1502 | { | ||
1503 | /* ...but if the node is root_node itself, it means the | ||
1504 | epsilon closure have a loop, then tie it to the | ||
1505 | destination of the root_node. */ | ||
1506 | ok = re_node_set_insert (dfa->edests + clone_node, org_dest); | ||
1507 | if (BE (! ok, 0)) | ||
1508 | return REG_ESPACE; | ||
1509 | break; | ||
1510 | } | ||
1511 | constraint |= dfa->nodes[org_node].opr.ctx_type; | ||
1512 | } | ||
1513 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1514 | if (BE (clone_dest == REG_MISSING, 0)) | ||
1515 | return REG_ESPACE; | ||
1516 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1517 | if (BE (! ok, 0)) | ||
1518 | return REG_ESPACE; | ||
1519 | } | ||
1520 | else /* dfa->edests[org_node].nelem == 2 */ | ||
1521 | { | ||
1522 | /* In case of the node can epsilon-transit, and it has two | ||
1523 | destinations. In the bin_tree_t and DFA, that's '|' and '*'. */ | ||
1524 | org_dest = dfa->edests[org_node].elems[0]; | ||
1525 | re_node_set_empty (dfa->edests + clone_node); | ||
1526 | /* Search for a duplicated node which satisfies the constraint. */ | ||
1527 | clone_dest = search_duplicated_node (dfa, org_dest, constraint); | ||
1528 | if (clone_dest == REG_MISSING) | ||
1529 | { | ||
1530 | /* There are no such a duplicated node, create a new one. */ | ||
1531 | reg_errcode_t err; | ||
1532 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1533 | if (BE (clone_dest == REG_MISSING, 0)) | ||
1534 | return REG_ESPACE; | ||
1535 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1536 | if (BE (! ok, 0)) | ||
1537 | return REG_ESPACE; | ||
1538 | err = duplicate_node_closure (dfa, org_dest, clone_dest, | ||
1539 | root_node, constraint); | ||
1540 | if (BE (err != REG_NOERROR, 0)) | ||
1541 | return err; | ||
1542 | } | ||
1543 | else | ||
1544 | { | ||
1545 | /* There are a duplicated node which satisfy the constraint, | ||
1546 | use it to avoid infinite loop. */ | ||
1547 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1548 | if (BE (! ok, 0)) | ||
1549 | return REG_ESPACE; | ||
1550 | } | ||
1551 | |||
1552 | org_dest = dfa->edests[org_node].elems[1]; | ||
1553 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1554 | if (BE (clone_dest == REG_MISSING, 0)) | ||
1555 | return REG_ESPACE; | ||
1556 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1557 | if (BE (! ok, 0)) | ||
1558 | return REG_ESPACE; | ||
1559 | } | ||
1560 | org_node = org_dest; | ||
1561 | clone_node = clone_dest; | ||
1562 | } | ||
1563 | return REG_NOERROR; | ||
1564 | } | ||
1565 | |||
1566 | /* Search for a node which is duplicated from the node ORG_NODE, and | ||
1567 | satisfies the constraint CONSTRAINT. */ | ||
1568 | |||
1569 | static Idx | ||
1570 | search_duplicated_node (const re_dfa_t *dfa, Idx org_node, | ||
1571 | unsigned int constraint) | ||
1572 | { | ||
1573 | Idx idx; | ||
1574 | for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) | ||
1575 | { | ||
1576 | if (org_node == dfa->org_indices[idx] | ||
1577 | && constraint == dfa->nodes[idx].constraint) | ||
1578 | return idx; /* Found. */ | ||
1579 | } | ||
1580 | return REG_MISSING; /* Not found. */ | ||
1581 | } | ||
1582 | |||
1583 | /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. | ||
1584 | Return the index of the new node, or REG_MISSING if insufficient storage is | ||
1585 | available. */ | ||
1586 | |||
1587 | static Idx | ||
1588 | duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint) | ||
1589 | { | ||
1590 | Idx dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); | ||
1591 | if (BE (dup_idx != REG_MISSING, 1)) | ||
1592 | { | ||
1593 | dfa->nodes[dup_idx].constraint = constraint; | ||
1594 | if (dfa->nodes[org_idx].type == ANCHOR) | ||
1595 | dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].opr.ctx_type; | ||
1596 | dfa->nodes[dup_idx].duplicated = 1; | ||
1597 | |||
1598 | /* Store the index of the original node. */ | ||
1599 | dfa->org_indices[dup_idx] = org_idx; | ||
1600 | } | ||
1601 | return dup_idx; | ||
1602 | } | ||
1603 | |||
1604 | static reg_errcode_t | ||
1605 | calc_inveclosure (re_dfa_t *dfa) | ||
1606 | { | ||
1607 | Idx src, idx; | ||
1608 | bool ok; | ||
1609 | for (idx = 0; idx < dfa->nodes_len; ++idx) | ||
1610 | re_node_set_init_empty (dfa->inveclosures + idx); | ||
1611 | |||
1612 | for (src = 0; src < dfa->nodes_len; ++src) | ||
1613 | { | ||
1614 | Idx *elems = dfa->eclosures[src].elems; | ||
1615 | for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) | ||
1616 | { | ||
1617 | ok = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); | ||
1618 | if (BE (! ok, 0)) | ||
1619 | return REG_ESPACE; | ||
1620 | } | ||
1621 | } | ||
1622 | |||
1623 | return REG_NOERROR; | ||
1624 | } | ||
1625 | |||
1626 | /* Calculate "eclosure" for all the node in DFA. */ | ||
1627 | |||
1628 | static reg_errcode_t | ||
1629 | calc_eclosure (re_dfa_t *dfa) | ||
1630 | { | ||
1631 | Idx node_idx; | ||
1632 | bool incomplete; | ||
1633 | #ifdef DEBUG | ||
1634 | assert (dfa->nodes_len > 0); | ||
1635 | #endif | ||
1636 | incomplete = false; | ||
1637 | /* For each nodes, calculate epsilon closure. */ | ||
1638 | for (node_idx = 0; ; ++node_idx) | ||
1639 | { | ||
1640 | reg_errcode_t err; | ||
1641 | re_node_set eclosure_elem; | ||
1642 | if (node_idx == dfa->nodes_len) | ||
1643 | { | ||
1644 | if (!incomplete) | ||
1645 | break; | ||
1646 | incomplete = false; | ||
1647 | node_idx = 0; | ||
1648 | } | ||
1649 | |||
1650 | #ifdef DEBUG | ||
1651 | assert (dfa->eclosures[node_idx].nelem != REG_MISSING); | ||
1652 | #endif | ||
1653 | |||
1654 | /* If we have already calculated, skip it. */ | ||
1655 | if (dfa->eclosures[node_idx].nelem != 0) | ||
1656 | continue; | ||
1657 | /* Calculate epsilon closure of `node_idx'. */ | ||
1658 | err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, true); | ||
1659 | if (BE (err != REG_NOERROR, 0)) | ||
1660 | return err; | ||
1661 | |||
1662 | if (dfa->eclosures[node_idx].nelem == 0) | ||
1663 | { | ||
1664 | incomplete = true; | ||
1665 | re_node_set_free (&eclosure_elem); | ||
1666 | } | ||
1667 | } | ||
1668 | return REG_NOERROR; | ||
1669 | } | ||
1670 | |||
1671 | /* Calculate epsilon closure of NODE. */ | ||
1672 | |||
1673 | static reg_errcode_t | ||
1674 | calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, Idx node, bool root) | ||
1675 | { | ||
1676 | reg_errcode_t err; | ||
1677 | unsigned int constraint; | ||
1678 | Idx i; | ||
1679 | bool incomplete; | ||
1680 | bool ok; | ||
1681 | re_node_set eclosure; | ||
1682 | incomplete = false; | ||
1683 | err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); | ||
1684 | if (BE (err != REG_NOERROR, 0)) | ||
1685 | return err; | ||
1686 | |||
1687 | /* This indicates that we are calculating this node now. | ||
1688 | We reference this value to avoid infinite loop. */ | ||
1689 | dfa->eclosures[node].nelem = REG_MISSING; | ||
1690 | |||
1691 | constraint = ((dfa->nodes[node].type == ANCHOR) | ||
1692 | ? dfa->nodes[node].opr.ctx_type : 0); | ||
1693 | /* If the current node has constraints, duplicate all nodes. | ||
1694 | Since they must inherit the constraints. */ | ||
1695 | if (constraint | ||
1696 | && dfa->edests[node].nelem | ||
1697 | && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) | ||
1698 | { | ||
1699 | err = duplicate_node_closure (dfa, node, node, node, constraint); | ||
1700 | if (BE (err != REG_NOERROR, 0)) | ||
1701 | return err; | ||
1702 | } | ||
1703 | |||
1704 | /* Expand each epsilon destination nodes. */ | ||
1705 | if (IS_EPSILON_NODE(dfa->nodes[node].type)) | ||
1706 | for (i = 0; i < dfa->edests[node].nelem; ++i) | ||
1707 | { | ||
1708 | re_node_set eclosure_elem; | ||
1709 | Idx edest = dfa->edests[node].elems[i]; | ||
1710 | /* If calculating the epsilon closure of `edest' is in progress, | ||
1711 | return intermediate result. */ | ||
1712 | if (dfa->eclosures[edest].nelem == REG_MISSING) | ||
1713 | { | ||
1714 | incomplete = true; | ||
1715 | continue; | ||
1716 | } | ||
1717 | /* If we haven't calculated the epsilon closure of `edest' yet, | ||
1718 | calculate now. Otherwise use calculated epsilon closure. */ | ||
1719 | if (dfa->eclosures[edest].nelem == 0) | ||
1720 | { | ||
1721 | err = calc_eclosure_iter (&eclosure_elem, dfa, edest, false); | ||
1722 | if (BE (err != REG_NOERROR, 0)) | ||
1723 | return err; | ||
1724 | } | ||
1725 | else | ||
1726 | eclosure_elem = dfa->eclosures[edest]; | ||
1727 | /* Merge the epsilon closure of `edest'. */ | ||
1728 | re_node_set_merge (&eclosure, &eclosure_elem); | ||
1729 | /* If the epsilon closure of `edest' is incomplete, | ||
1730 | the epsilon closure of this node is also incomplete. */ | ||
1731 | if (dfa->eclosures[edest].nelem == 0) | ||
1732 | { | ||
1733 | incomplete = true; | ||
1734 | re_node_set_free (&eclosure_elem); | ||
1735 | } | ||
1736 | } | ||
1737 | |||
1738 | /* Epsilon closures include itself. */ | ||
1739 | ok = re_node_set_insert (&eclosure, node); | ||
1740 | if (BE (! ok, 0)) | ||
1741 | return REG_ESPACE; | ||
1742 | if (incomplete && !root) | ||
1743 | dfa->eclosures[node].nelem = 0; | ||
1744 | else | ||
1745 | dfa->eclosures[node] = eclosure; | ||
1746 | *new_set = eclosure; | ||
1747 | return REG_NOERROR; | ||
1748 | } | ||
1749 | |||
1750 | /* Functions for token which are used in the parser. */ | ||
1751 | |||
1752 | /* Fetch a token from INPUT. | ||
1753 | We must not use this function inside bracket expressions. */ | ||
1754 | |||
1755 | static void | ||
1756 | internal_function | ||
1757 | fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) | ||
1758 | { | ||
1759 | re_string_skip_bytes (input, peek_token (result, input, syntax)); | ||
1760 | } | ||
1761 | |||
1762 | /* Peek a token from INPUT, and return the length of the token. | ||
1763 | We must not use this function inside bracket expressions. */ | ||
1764 | |||
1765 | static int | ||
1766 | internal_function | ||
1767 | peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | ||
1768 | { | ||
1769 | unsigned char c; | ||
1770 | |||
1771 | if (re_string_eoi (input)) | ||
1772 | { | ||
1773 | token->type = END_OF_RE; | ||
1774 | return 0; | ||
1775 | } | ||
1776 | |||
1777 | c = re_string_peek_byte (input, 0); | ||
1778 | token->opr.c = c; | ||
1779 | |||
1780 | token->word_char = 0; | ||
1781 | #ifdef RE_ENABLE_I18N | ||
1782 | token->mb_partial = 0; | ||
1783 | if (input->mb_cur_max > 1 && | ||
1784 | !re_string_first_byte (input, re_string_cur_idx (input))) | ||
1785 | { | ||
1786 | token->type = CHARACTER; | ||
1787 | token->mb_partial = 1; | ||
1788 | return 1; | ||
1789 | } | ||
1790 | #endif | ||
1791 | if (c == '\\') | ||
1792 | { | ||
1793 | unsigned char c2; | ||
1794 | if (re_string_cur_idx (input) + 1 >= re_string_length (input)) | ||
1795 | { | ||
1796 | token->type = BACK_SLASH; | ||
1797 | return 1; | ||
1798 | } | ||
1799 | |||
1800 | c2 = re_string_peek_byte_case (input, 1); | ||
1801 | token->opr.c = c2; | ||
1802 | token->type = CHARACTER; | ||
1803 | #ifdef RE_ENABLE_I18N | ||
1804 | if (input->mb_cur_max > 1) | ||
1805 | { | ||
1806 | wint_t wc = re_string_wchar_at (input, | ||
1807 | re_string_cur_idx (input) + 1); | ||
1808 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | ||
1809 | } | ||
1810 | else | ||
1811 | #endif | ||
1812 | token->word_char = IS_WORD_CHAR (c2) != 0; | ||
1813 | |||
1814 | switch (c2) | ||
1815 | { | ||
1816 | case '|': | ||
1817 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) | ||
1818 | token->type = OP_ALT; | ||
1819 | break; | ||
1820 | case '1': case '2': case '3': case '4': case '5': | ||
1821 | case '6': case '7': case '8': case '9': | ||
1822 | if (!(syntax & RE_NO_BK_REFS)) | ||
1823 | { | ||
1824 | token->type = OP_BACK_REF; | ||
1825 | token->opr.idx = c2 - '1'; | ||
1826 | } | ||
1827 | break; | ||
1828 | case '<': | ||
1829 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1830 | { | ||
1831 | token->type = ANCHOR; | ||
1832 | token->opr.ctx_type = WORD_FIRST; | ||
1833 | } | ||
1834 | break; | ||
1835 | case '>': | ||
1836 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1837 | { | ||
1838 | token->type = ANCHOR; | ||
1839 | token->opr.ctx_type = WORD_LAST; | ||
1840 | } | ||
1841 | break; | ||
1842 | case 'b': | ||
1843 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1844 | { | ||
1845 | token->type = ANCHOR; | ||
1846 | token->opr.ctx_type = WORD_DELIM; | ||
1847 | } | ||
1848 | break; | ||
1849 | case 'B': | ||
1850 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1851 | { | ||
1852 | token->type = ANCHOR; | ||
1853 | token->opr.ctx_type = NOT_WORD_DELIM; | ||
1854 | } | ||
1855 | break; | ||
1856 | case 'w': | ||
1857 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1858 | token->type = OP_WORD; | ||
1859 | break; | ||
1860 | case 'W': | ||
1861 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1862 | token->type = OP_NOTWORD; | ||
1863 | break; | ||
1864 | case 's': | ||
1865 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1866 | token->type = OP_SPACE; | ||
1867 | break; | ||
1868 | case 'S': | ||
1869 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1870 | token->type = OP_NOTSPACE; | ||
1871 | break; | ||
1872 | case '`': | ||
1873 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1874 | { | ||
1875 | token->type = ANCHOR; | ||
1876 | token->opr.ctx_type = BUF_FIRST; | ||
1877 | } | ||
1878 | break; | ||
1879 | case '\'': | ||
1880 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1881 | { | ||
1882 | token->type = ANCHOR; | ||
1883 | token->opr.ctx_type = BUF_LAST; | ||
1884 | } | ||
1885 | break; | ||
1886 | case '(': | ||
1887 | if (!(syntax & RE_NO_BK_PARENS)) | ||
1888 | token->type = OP_OPEN_SUBEXP; | ||
1889 | break; | ||
1890 | case ')': | ||
1891 | if (!(syntax & RE_NO_BK_PARENS)) | ||
1892 | token->type = OP_CLOSE_SUBEXP; | ||
1893 | break; | ||
1894 | case '+': | ||
1895 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) | ||
1896 | token->type = OP_DUP_PLUS; | ||
1897 | break; | ||
1898 | case '?': | ||
1899 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) | ||
1900 | token->type = OP_DUP_QUESTION; | ||
1901 | break; | ||
1902 | case '{': | ||
1903 | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) | ||
1904 | token->type = OP_OPEN_DUP_NUM; | ||
1905 | break; | ||
1906 | case '}': | ||
1907 | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) | ||
1908 | token->type = OP_CLOSE_DUP_NUM; | ||
1909 | break; | ||
1910 | default: | ||
1911 | break; | ||
1912 | } | ||
1913 | return 2; | ||
1914 | } | ||
1915 | |||
1916 | token->type = CHARACTER; | ||
1917 | #ifdef RE_ENABLE_I18N | ||
1918 | if (input->mb_cur_max > 1) | ||
1919 | { | ||
1920 | wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); | ||
1921 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | ||
1922 | } | ||
1923 | else | ||
1924 | #endif | ||
1925 | token->word_char = IS_WORD_CHAR (token->opr.c); | ||
1926 | |||
1927 | switch (c) | ||
1928 | { | ||
1929 | case '\n': | ||
1930 | if (syntax & RE_NEWLINE_ALT) | ||
1931 | token->type = OP_ALT; | ||
1932 | break; | ||
1933 | case '|': | ||
1934 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) | ||
1935 | token->type = OP_ALT; | ||
1936 | break; | ||
1937 | case '*': | ||
1938 | token->type = OP_DUP_ASTERISK; | ||
1939 | break; | ||
1940 | case '+': | ||
1941 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) | ||
1942 | token->type = OP_DUP_PLUS; | ||
1943 | break; | ||
1944 | case '?': | ||
1945 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) | ||
1946 | token->type = OP_DUP_QUESTION; | ||
1947 | break; | ||
1948 | case '{': | ||
1949 | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | ||
1950 | token->type = OP_OPEN_DUP_NUM; | ||
1951 | break; | ||
1952 | case '}': | ||
1953 | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | ||
1954 | token->type = OP_CLOSE_DUP_NUM; | ||
1955 | break; | ||
1956 | case '(': | ||
1957 | if (syntax & RE_NO_BK_PARENS) | ||
1958 | token->type = OP_OPEN_SUBEXP; | ||
1959 | break; | ||
1960 | case ')': | ||
1961 | if (syntax & RE_NO_BK_PARENS) | ||
1962 | token->type = OP_CLOSE_SUBEXP; | ||
1963 | break; | ||
1964 | case '[': | ||
1965 | token->type = OP_OPEN_BRACKET; | ||
1966 | break; | ||
1967 | case '.': | ||
1968 | token->type = OP_PERIOD; | ||
1969 | break; | ||
1970 | case '^': | ||
1971 | if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) && | ||
1972 | re_string_cur_idx (input) != 0) | ||
1973 | { | ||
1974 | char prev = re_string_peek_byte (input, -1); | ||
1975 | if (!(syntax & RE_NEWLINE_ALT) || prev != '\n') | ||
1976 | break; | ||
1977 | } | ||
1978 | token->type = ANCHOR; | ||
1979 | token->opr.ctx_type = LINE_FIRST; | ||
1980 | break; | ||
1981 | case '$': | ||
1982 | if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && | ||
1983 | re_string_cur_idx (input) + 1 != re_string_length (input)) | ||
1984 | { | ||
1985 | re_token_t next; | ||
1986 | re_string_skip_bytes (input, 1); | ||
1987 | peek_token (&next, input, syntax); | ||
1988 | re_string_skip_bytes (input, -1); | ||
1989 | if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) | ||
1990 | break; | ||
1991 | } | ||
1992 | token->type = ANCHOR; | ||
1993 | token->opr.ctx_type = LINE_LAST; | ||
1994 | break; | ||
1995 | default: | ||
1996 | break; | ||
1997 | } | ||
1998 | return 1; | ||
1999 | } | ||
2000 | |||
2001 | /* Peek a token from INPUT, and return the length of the token. | ||
2002 | We must not use this function out of bracket expressions. */ | ||
2003 | |||
2004 | static int | ||
2005 | internal_function | ||
2006 | peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | ||
2007 | { | ||
2008 | unsigned char c; | ||
2009 | if (re_string_eoi (input)) | ||
2010 | { | ||
2011 | token->type = END_OF_RE; | ||
2012 | return 0; | ||
2013 | } | ||
2014 | c = re_string_peek_byte (input, 0); | ||
2015 | token->opr.c = c; | ||
2016 | |||
2017 | #ifdef RE_ENABLE_I18N | ||
2018 | if (input->mb_cur_max > 1 && | ||
2019 | !re_string_first_byte (input, re_string_cur_idx (input))) | ||
2020 | { | ||
2021 | token->type = CHARACTER; | ||
2022 | return 1; | ||
2023 | } | ||
2024 | #endif /* RE_ENABLE_I18N */ | ||
2025 | |||
2026 | if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) | ||
2027 | && re_string_cur_idx (input) + 1 < re_string_length (input)) | ||
2028 | { | ||
2029 | /* In this case, '\' escape a character. */ | ||
2030 | unsigned char c2; | ||
2031 | re_string_skip_bytes (input, 1); | ||
2032 | c2 = re_string_peek_byte (input, 0); | ||
2033 | token->opr.c = c2; | ||
2034 | token->type = CHARACTER; | ||
2035 | return 1; | ||
2036 | } | ||
2037 | if (c == '[') /* '[' is a special char in a bracket exps. */ | ||
2038 | { | ||
2039 | unsigned char c2; | ||
2040 | int token_len; | ||
2041 | if (re_string_cur_idx (input) + 1 < re_string_length (input)) | ||
2042 | c2 = re_string_peek_byte (input, 1); | ||
2043 | else | ||
2044 | c2 = 0; | ||
2045 | token->opr.c = c2; | ||
2046 | token_len = 2; | ||
2047 | switch (c2) | ||
2048 | { | ||
2049 | case '.': | ||
2050 | token->type = OP_OPEN_COLL_ELEM; | ||
2051 | break; | ||
2052 | case '=': | ||
2053 | token->type = OP_OPEN_EQUIV_CLASS; | ||
2054 | break; | ||
2055 | case ':': | ||
2056 | if (syntax & RE_CHAR_CLASSES) | ||
2057 | { | ||
2058 | token->type = OP_OPEN_CHAR_CLASS; | ||
2059 | break; | ||
2060 | } | ||
2061 | /* else fall through. */ | ||
2062 | default: | ||
2063 | token->type = CHARACTER; | ||
2064 | token->opr.c = c; | ||
2065 | token_len = 1; | ||
2066 | break; | ||
2067 | } | ||
2068 | return token_len; | ||
2069 | } | ||
2070 | switch (c) | ||
2071 | { | ||
2072 | case '-': | ||
2073 | token->type = OP_CHARSET_RANGE; | ||
2074 | break; | ||
2075 | case ']': | ||
2076 | token->type = OP_CLOSE_BRACKET; | ||
2077 | break; | ||
2078 | case '^': | ||
2079 | token->type = OP_NON_MATCH_LIST; | ||
2080 | break; | ||
2081 | default: | ||
2082 | token->type = CHARACTER; | ||
2083 | } | ||
2084 | return 1; | ||
2085 | } | ||
2086 | |||
2087 | /* Functions for parser. */ | ||
2088 | |||
2089 | /* Entry point of the parser. | ||
2090 | Parse the regular expression REGEXP and return the structure tree. | ||
2091 | If an error is occured, ERR is set by error code, and return NULL. | ||
2092 | This function build the following tree, from regular expression <reg_exp>: | ||
2093 | CAT | ||
2094 | / \ | ||
2095 | / \ | ||
2096 | <reg_exp> EOR | ||
2097 | |||
2098 | CAT means concatenation. | ||
2099 | EOR means end of regular expression. */ | ||
2100 | |||
2101 | static bin_tree_t * | ||
2102 | parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, | ||
2103 | reg_errcode_t *err) | ||
2104 | { | ||
2105 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2106 | bin_tree_t *tree, *eor, *root; | ||
2107 | re_token_t current_token; | ||
2108 | dfa->syntax = syntax; | ||
2109 | fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE); | ||
2110 | tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); | ||
2111 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2112 | return NULL; | ||
2113 | eor = create_tree (dfa, NULL, NULL, END_OF_RE); | ||
2114 | if (tree != NULL) | ||
2115 | root = create_tree (dfa, tree, eor, CONCAT); | ||
2116 | else | ||
2117 | root = eor; | ||
2118 | if (BE (eor == NULL || root == NULL, 0)) | ||
2119 | { | ||
2120 | *err = REG_ESPACE; | ||
2121 | return NULL; | ||
2122 | } | ||
2123 | return root; | ||
2124 | } | ||
2125 | |||
2126 | /* This function build the following tree, from regular expression | ||
2127 | <branch1>|<branch2>: | ||
2128 | ALT | ||
2129 | / \ | ||
2130 | / \ | ||
2131 | <branch1> <branch2> | ||
2132 | |||
2133 | ALT means alternative, which represents the operator `|'. */ | ||
2134 | |||
2135 | static bin_tree_t * | ||
2136 | parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2137 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
2138 | { | ||
2139 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2140 | bin_tree_t *tree, *branch = NULL; | ||
2141 | tree = parse_branch (regexp, preg, token, syntax, nest, err); | ||
2142 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2143 | return NULL; | ||
2144 | |||
2145 | while (token->type == OP_ALT) | ||
2146 | { | ||
2147 | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); | ||
2148 | if (token->type != OP_ALT && token->type != END_OF_RE | ||
2149 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | ||
2150 | { | ||
2151 | branch = parse_branch (regexp, preg, token, syntax, nest, err); | ||
2152 | if (BE (*err != REG_NOERROR && branch == NULL, 0)) | ||
2153 | return NULL; | ||
2154 | } | ||
2155 | else | ||
2156 | branch = NULL; | ||
2157 | tree = create_tree (dfa, tree, branch, OP_ALT); | ||
2158 | if (BE (tree == NULL, 0)) | ||
2159 | { | ||
2160 | *err = REG_ESPACE; | ||
2161 | return NULL; | ||
2162 | } | ||
2163 | } | ||
2164 | return tree; | ||
2165 | } | ||
2166 | |||
2167 | /* This function build the following tree, from regular expression | ||
2168 | <exp1><exp2>: | ||
2169 | CAT | ||
2170 | / \ | ||
2171 | / \ | ||
2172 | <exp1> <exp2> | ||
2173 | |||
2174 | CAT means concatenation. */ | ||
2175 | |||
2176 | static bin_tree_t * | ||
2177 | parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2178 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
2179 | { | ||
2180 | bin_tree_t *tree, *expr; | ||
2181 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2182 | tree = parse_expression (regexp, preg, token, syntax, nest, err); | ||
2183 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2184 | return NULL; | ||
2185 | |||
2186 | while (token->type != OP_ALT && token->type != END_OF_RE | ||
2187 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | ||
2188 | { | ||
2189 | expr = parse_expression (regexp, preg, token, syntax, nest, err); | ||
2190 | if (BE (*err != REG_NOERROR && expr == NULL, 0)) | ||
2191 | { | ||
2192 | return NULL; | ||
2193 | } | ||
2194 | if (tree != NULL && expr != NULL) | ||
2195 | { | ||
2196 | tree = create_tree (dfa, tree, expr, CONCAT); | ||
2197 | if (tree == NULL) | ||
2198 | { | ||
2199 | *err = REG_ESPACE; | ||
2200 | return NULL; | ||
2201 | } | ||
2202 | } | ||
2203 | else if (tree == NULL) | ||
2204 | tree = expr; | ||
2205 | /* Otherwise expr == NULL, we don't need to create new tree. */ | ||
2206 | } | ||
2207 | return tree; | ||
2208 | } | ||
2209 | |||
2210 | /* This function build the following tree, from regular expression a*: | ||
2211 | * | ||
2212 | | | ||
2213 | a | ||
2214 | */ | ||
2215 | |||
2216 | static bin_tree_t * | ||
2217 | parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2218 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
2219 | { | ||
2220 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2221 | bin_tree_t *tree; | ||
2222 | switch (token->type) | ||
2223 | { | ||
2224 | case CHARACTER: | ||
2225 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2226 | if (BE (tree == NULL, 0)) | ||
2227 | { | ||
2228 | *err = REG_ESPACE; | ||
2229 | return NULL; | ||
2230 | } | ||
2231 | #ifdef RE_ENABLE_I18N | ||
2232 | if (dfa->mb_cur_max > 1) | ||
2233 | { | ||
2234 | while (!re_string_eoi (regexp) | ||
2235 | && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) | ||
2236 | { | ||
2237 | bin_tree_t *mbc_remain; | ||
2238 | fetch_token (token, regexp, syntax); | ||
2239 | mbc_remain = create_token_tree (dfa, NULL, NULL, token); | ||
2240 | tree = create_tree (dfa, tree, mbc_remain, CONCAT); | ||
2241 | if (BE (mbc_remain == NULL || tree == NULL, 0)) | ||
2242 | { | ||
2243 | *err = REG_ESPACE; | ||
2244 | return NULL; | ||
2245 | } | ||
2246 | } | ||
2247 | } | ||
2248 | #endif | ||
2249 | break; | ||
2250 | case OP_OPEN_SUBEXP: | ||
2251 | tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); | ||
2252 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2253 | return NULL; | ||
2254 | break; | ||
2255 | case OP_OPEN_BRACKET: | ||
2256 | tree = parse_bracket_exp (regexp, dfa, token, syntax, err); | ||
2257 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2258 | return NULL; | ||
2259 | break; | ||
2260 | case OP_BACK_REF: | ||
2261 | if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) | ||
2262 | { | ||
2263 | *err = REG_ESUBREG; | ||
2264 | return NULL; | ||
2265 | } | ||
2266 | dfa->used_bkref_map |= 1 << token->opr.idx; | ||
2267 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2268 | if (BE (tree == NULL, 0)) | ||
2269 | { | ||
2270 | *err = REG_ESPACE; | ||
2271 | return NULL; | ||
2272 | } | ||
2273 | ++dfa->nbackref; | ||
2274 | dfa->has_mb_node = 1; | ||
2275 | break; | ||
2276 | case OP_OPEN_DUP_NUM: | ||
2277 | if (syntax & RE_CONTEXT_INVALID_DUP) | ||
2278 | { | ||
2279 | *err = REG_BADRPT; | ||
2280 | return NULL; | ||
2281 | } | ||
2282 | /* FALLTHROUGH */ | ||
2283 | case OP_DUP_ASTERISK: | ||
2284 | case OP_DUP_PLUS: | ||
2285 | case OP_DUP_QUESTION: | ||
2286 | if (syntax & RE_CONTEXT_INVALID_OPS) | ||
2287 | { | ||
2288 | *err = REG_BADRPT; | ||
2289 | return NULL; | ||
2290 | } | ||
2291 | else if (syntax & RE_CONTEXT_INDEP_OPS) | ||
2292 | { | ||
2293 | fetch_token (token, regexp, syntax); | ||
2294 | return parse_expression (regexp, preg, token, syntax, nest, err); | ||
2295 | } | ||
2296 | /* else fall through */ | ||
2297 | case OP_CLOSE_SUBEXP: | ||
2298 | if ((token->type == OP_CLOSE_SUBEXP) && | ||
2299 | !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) | ||
2300 | { | ||
2301 | *err = REG_ERPAREN; | ||
2302 | return NULL; | ||
2303 | } | ||
2304 | /* else fall through */ | ||
2305 | case OP_CLOSE_DUP_NUM: | ||
2306 | /* We treat it as a normal character. */ | ||
2307 | |||
2308 | /* Then we can these characters as normal characters. */ | ||
2309 | token->type = CHARACTER; | ||
2310 | /* mb_partial and word_char bits should be initialized already | ||
2311 | by peek_token. */ | ||
2312 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2313 | if (BE (tree == NULL, 0)) | ||
2314 | { | ||
2315 | *err = REG_ESPACE; | ||
2316 | return NULL; | ||
2317 | } | ||
2318 | break; | ||
2319 | case ANCHOR: | ||
2320 | if ((token->opr.ctx_type | ||
2321 | & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) | ||
2322 | && dfa->word_ops_used == 0) | ||
2323 | init_word_char (dfa); | ||
2324 | if (token->opr.ctx_type == WORD_DELIM | ||
2325 | || token->opr.ctx_type == NOT_WORD_DELIM) | ||
2326 | { | ||
2327 | bin_tree_t *tree_first, *tree_last; | ||
2328 | if (token->opr.ctx_type == WORD_DELIM) | ||
2329 | { | ||
2330 | token->opr.ctx_type = WORD_FIRST; | ||
2331 | tree_first = create_token_tree (dfa, NULL, NULL, token); | ||
2332 | token->opr.ctx_type = WORD_LAST; | ||
2333 | } | ||
2334 | else | ||
2335 | { | ||
2336 | token->opr.ctx_type = INSIDE_WORD; | ||
2337 | tree_first = create_token_tree (dfa, NULL, NULL, token); | ||
2338 | token->opr.ctx_type = INSIDE_NOTWORD; | ||
2339 | } | ||
2340 | tree_last = create_token_tree (dfa, NULL, NULL, token); | ||
2341 | tree = create_tree (dfa, tree_first, tree_last, OP_ALT); | ||
2342 | if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) | ||
2343 | { | ||
2344 | *err = REG_ESPACE; | ||
2345 | return NULL; | ||
2346 | } | ||
2347 | } | ||
2348 | else | ||
2349 | { | ||
2350 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2351 | if (BE (tree == NULL, 0)) | ||
2352 | { | ||
2353 | *err = REG_ESPACE; | ||
2354 | return NULL; | ||
2355 | } | ||
2356 | } | ||
2357 | /* We must return here, since ANCHORs can't be followed | ||
2358 | by repetition operators. | ||
2359 | eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", | ||
2360 | it must not be "<ANCHOR(^)><REPEAT(*)>". */ | ||
2361 | fetch_token (token, regexp, syntax); | ||
2362 | return tree; | ||
2363 | case OP_PERIOD: | ||
2364 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2365 | if (BE (tree == NULL, 0)) | ||
2366 | { | ||
2367 | *err = REG_ESPACE; | ||
2368 | return NULL; | ||
2369 | } | ||
2370 | if (dfa->mb_cur_max > 1) | ||
2371 | dfa->has_mb_node = 1; | ||
2372 | break; | ||
2373 | case OP_WORD: | ||
2374 | case OP_NOTWORD: | ||
2375 | tree = build_charclass_op (dfa, regexp->trans, | ||
2376 | (const unsigned char *) "alnum", | ||
2377 | (const unsigned char *) "_", | ||
2378 | token->type == OP_NOTWORD, err); | ||
2379 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2380 | return NULL; | ||
2381 | break; | ||
2382 | case OP_SPACE: | ||
2383 | case OP_NOTSPACE: | ||
2384 | tree = build_charclass_op (dfa, regexp->trans, | ||
2385 | (const unsigned char *) "space", | ||
2386 | (const unsigned char *) "", | ||
2387 | token->type == OP_NOTSPACE, err); | ||
2388 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2389 | return NULL; | ||
2390 | break; | ||
2391 | case OP_ALT: | ||
2392 | case END_OF_RE: | ||
2393 | return NULL; | ||
2394 | case BACK_SLASH: | ||
2395 | *err = REG_EESCAPE; | ||
2396 | return NULL; | ||
2397 | default: | ||
2398 | /* Must not happen? */ | ||
2399 | #ifdef DEBUG | ||
2400 | assert (0); | ||
2401 | #endif | ||
2402 | return NULL; | ||
2403 | } | ||
2404 | fetch_token (token, regexp, syntax); | ||
2405 | |||
2406 | while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS | ||
2407 | || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) | ||
2408 | { | ||
2409 | tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); | ||
2410 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2411 | return NULL; | ||
2412 | /* In BRE consecutive duplications are not allowed. */ | ||
2413 | if ((syntax & RE_CONTEXT_INVALID_DUP) | ||
2414 | && (token->type == OP_DUP_ASTERISK | ||
2415 | || token->type == OP_OPEN_DUP_NUM)) | ||
2416 | { | ||
2417 | *err = REG_BADRPT; | ||
2418 | return NULL; | ||
2419 | } | ||
2420 | } | ||
2421 | |||
2422 | return tree; | ||
2423 | } | ||
2424 | |||
2425 | /* This function build the following tree, from regular expression | ||
2426 | (<reg_exp>): | ||
2427 | SUBEXP | ||
2428 | | | ||
2429 | <reg_exp> | ||
2430 | */ | ||
2431 | |||
2432 | static bin_tree_t * | ||
2433 | parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2434 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
2435 | { | ||
2436 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2437 | bin_tree_t *tree; | ||
2438 | size_t cur_nsub; | ||
2439 | cur_nsub = preg->re_nsub++; | ||
2440 | |||
2441 | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); | ||
2442 | |||
2443 | /* The subexpression may be a null string. */ | ||
2444 | if (token->type == OP_CLOSE_SUBEXP) | ||
2445 | tree = NULL; | ||
2446 | else | ||
2447 | { | ||
2448 | tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); | ||
2449 | if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) | ||
2450 | *err = REG_EPAREN; | ||
2451 | if (BE (*err != REG_NOERROR, 0)) | ||
2452 | return NULL; | ||
2453 | } | ||
2454 | |||
2455 | if (cur_nsub <= '9' - '1') | ||
2456 | dfa->completed_bkref_map |= 1 << cur_nsub; | ||
2457 | |||
2458 | tree = create_tree (dfa, tree, NULL, SUBEXP); | ||
2459 | if (BE (tree == NULL, 0)) | ||
2460 | { | ||
2461 | *err = REG_ESPACE; | ||
2462 | return NULL; | ||
2463 | } | ||
2464 | tree->token.opr.idx = cur_nsub; | ||
2465 | return tree; | ||
2466 | } | ||
2467 | |||
2468 | /* This function parse repetition operators like "*", "+", "{1,3}" etc. */ | ||
2469 | |||
2470 | static bin_tree_t * | ||
2471 | parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, | ||
2472 | re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) | ||
2473 | { | ||
2474 | bin_tree_t *tree = NULL, *old_tree = NULL; | ||
2475 | Idx i, start, end, start_idx = re_string_cur_idx (regexp); | ||
2476 | re_token_t start_token = *token; | ||
2477 | |||
2478 | if (token->type == OP_OPEN_DUP_NUM) | ||
2479 | { | ||
2480 | end = 0; | ||
2481 | start = fetch_number (regexp, token, syntax); | ||
2482 | if (start == REG_MISSING) | ||
2483 | { | ||
2484 | if (token->type == CHARACTER && token->opr.c == ',') | ||
2485 | start = 0; /* We treat "{,m}" as "{0,m}". */ | ||
2486 | else | ||
2487 | { | ||
2488 | *err = REG_BADBR; /* <re>{} is invalid. */ | ||
2489 | return NULL; | ||
2490 | } | ||
2491 | } | ||
2492 | if (BE (start != REG_ERROR, 1)) | ||
2493 | { | ||
2494 | /* We treat "{n}" as "{n,n}". */ | ||
2495 | end = ((token->type == OP_CLOSE_DUP_NUM) ? start | ||
2496 | : ((token->type == CHARACTER && token->opr.c == ',') | ||
2497 | ? fetch_number (regexp, token, syntax) : REG_ERROR)); | ||
2498 | } | ||
2499 | if (BE (start == REG_ERROR || end == REG_ERROR, 0)) | ||
2500 | { | ||
2501 | /* Invalid sequence. */ | ||
2502 | if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0)) | ||
2503 | { | ||
2504 | if (token->type == END_OF_RE) | ||
2505 | *err = REG_EBRACE; | ||
2506 | else | ||
2507 | *err = REG_BADBR; | ||
2508 | |||
2509 | return NULL; | ||
2510 | } | ||
2511 | |||
2512 | /* If the syntax bit is set, rollback. */ | ||
2513 | re_string_set_index (regexp, start_idx); | ||
2514 | *token = start_token; | ||
2515 | token->type = CHARACTER; | ||
2516 | /* mb_partial and word_char bits should be already initialized by | ||
2517 | peek_token. */ | ||
2518 | return elem; | ||
2519 | } | ||
2520 | |||
2521 | if (BE (end != REG_MISSING && start > end, 0)) | ||
2522 | { | ||
2523 | /* First number greater than second. */ | ||
2524 | *err = REG_BADBR; | ||
2525 | return NULL; | ||
2526 | } | ||
2527 | } | ||
2528 | else | ||
2529 | { | ||
2530 | start = (token->type == OP_DUP_PLUS) ? 1 : 0; | ||
2531 | end = (token->type == OP_DUP_QUESTION) ? 1 : REG_MISSING; | ||
2532 | } | ||
2533 | |||
2534 | fetch_token (token, regexp, syntax); | ||
2535 | |||
2536 | if (BE (elem == NULL, 0)) | ||
2537 | return NULL; | ||
2538 | if (BE (start == 0 && end == 0, 0)) | ||
2539 | { | ||
2540 | postorder (elem, free_tree, NULL); | ||
2541 | return NULL; | ||
2542 | } | ||
2543 | |||
2544 | /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */ | ||
2545 | if (BE (start > 0, 0)) | ||
2546 | { | ||
2547 | tree = elem; | ||
2548 | for (i = 2; i <= start; ++i) | ||
2549 | { | ||
2550 | elem = duplicate_tree (elem, dfa); | ||
2551 | tree = create_tree (dfa, tree, elem, CONCAT); | ||
2552 | if (BE (elem == NULL || tree == NULL, 0)) | ||
2553 | goto parse_dup_op_espace; | ||
2554 | } | ||
2555 | |||
2556 | if (start == end) | ||
2557 | return tree; | ||
2558 | |||
2559 | /* Duplicate ELEM before it is marked optional. */ | ||
2560 | elem = duplicate_tree (elem, dfa); | ||
2561 | old_tree = tree; | ||
2562 | } | ||
2563 | else | ||
2564 | old_tree = NULL; | ||
2565 | |||
2566 | if (elem->token.type == SUBEXP) | ||
2567 | postorder (elem, mark_opt_subexp, (void *) (long) elem->token.opr.idx); | ||
2568 | |||
2569 | tree = create_tree (dfa, elem, NULL, | ||
2570 | (end == REG_MISSING ? OP_DUP_ASTERISK : OP_ALT)); | ||
2571 | if (BE (tree == NULL, 0)) | ||
2572 | goto parse_dup_op_espace; | ||
2573 | |||
2574 | /* This loop is actually executed only when end != REG_MISSING, | ||
2575 | to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have | ||
2576 | already created the start+1-th copy. */ | ||
2577 | if ((Idx) -1 < 0 || end != REG_MISSING) | ||
2578 | for (i = start + 2; i <= end; ++i) | ||
2579 | { | ||
2580 | elem = duplicate_tree (elem, dfa); | ||
2581 | tree = create_tree (dfa, tree, elem, CONCAT); | ||
2582 | if (BE (elem == NULL || tree == NULL, 0)) | ||
2583 | goto parse_dup_op_espace; | ||
2584 | |||
2585 | tree = create_tree (dfa, tree, NULL, OP_ALT); | ||
2586 | if (BE (tree == NULL, 0)) | ||
2587 | goto parse_dup_op_espace; | ||
2588 | } | ||
2589 | |||
2590 | if (old_tree) | ||
2591 | tree = create_tree (dfa, old_tree, tree, CONCAT); | ||
2592 | |||
2593 | return tree; | ||
2594 | |||
2595 | parse_dup_op_espace: | ||
2596 | *err = REG_ESPACE; | ||
2597 | return NULL; | ||
2598 | } | ||
2599 | |||
2600 | /* Size of the names for collating symbol/equivalence_class/character_class. | ||
2601 | I'm not sure, but maybe enough. */ | ||
2602 | #define BRACKET_NAME_BUF_SIZE 32 | ||
2603 | |||
2604 | #ifndef _LIBC | ||
2605 | /* Local function for parse_bracket_exp only used in case of NOT _LIBC. | ||
2606 | Build the range expression which starts from START_ELEM, and ends | ||
2607 | at END_ELEM. The result are written to MBCSET and SBCSET. | ||
2608 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | ||
2609 | mbcset->range_ends, is a pointer argument sinse we may | ||
2610 | update it. */ | ||
2611 | |||
2612 | static reg_errcode_t | ||
2613 | internal_function | ||
2614 | # ifdef RE_ENABLE_I18N | ||
2615 | build_range_exp (bitset_t sbcset, re_charset_t *mbcset, Idx *range_alloc, | ||
2616 | bracket_elem_t *start_elem, bracket_elem_t *end_elem) | ||
2617 | # else /* not RE_ENABLE_I18N */ | ||
2618 | build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem, | ||
2619 | bracket_elem_t *end_elem) | ||
2620 | # endif /* not RE_ENABLE_I18N */ | ||
2621 | { | ||
2622 | unsigned int start_ch, end_ch; | ||
2623 | /* Equivalence Classes and Character Classes can't be a range start/end. */ | ||
2624 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | ||
2625 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | ||
2626 | 0)) | ||
2627 | return REG_ERANGE; | ||
2628 | |||
2629 | /* We can handle no multi character collating elements without libc | ||
2630 | support. */ | ||
2631 | if (BE ((start_elem->type == COLL_SYM | ||
2632 | && strlen ((char *) start_elem->opr.name) > 1) | ||
2633 | || (end_elem->type == COLL_SYM | ||
2634 | && strlen ((char *) end_elem->opr.name) > 1), 0)) | ||
2635 | return REG_ECOLLATE; | ||
2636 | |||
2637 | # ifdef RE_ENABLE_I18N | ||
2638 | { | ||
2639 | wchar_t wc; | ||
2640 | wint_t start_wc; | ||
2641 | wint_t end_wc; | ||
2642 | wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | ||
2643 | |||
2644 | start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch | ||
2645 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | ||
2646 | : 0)); | ||
2647 | end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch | ||
2648 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | ||
2649 | : 0)); | ||
2650 | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | ||
2651 | ? __btowc (start_ch) : start_elem->opr.wch); | ||
2652 | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | ||
2653 | ? __btowc (end_ch) : end_elem->opr.wch); | ||
2654 | if (start_wc == WEOF || end_wc == WEOF) | ||
2655 | return REG_ECOLLATE; | ||
2656 | cmp_buf[0] = start_wc; | ||
2657 | cmp_buf[4] = end_wc; | ||
2658 | if (wcscoll (cmp_buf, cmp_buf + 4) > 0) | ||
2659 | return REG_ERANGE; | ||
2660 | |||
2661 | /* Got valid collation sequence values, add them as a new entry. | ||
2662 | However, for !_LIBC we have no collation elements: if the | ||
2663 | character set is single byte, the single byte character set | ||
2664 | that we build below suffices. parse_bracket_exp passes | ||
2665 | no MBCSET if dfa->mb_cur_max == 1. */ | ||
2666 | if (mbcset) | ||
2667 | { | ||
2668 | /* Check the space of the arrays. */ | ||
2669 | if (BE (*range_alloc == mbcset->nranges, 0)) | ||
2670 | { | ||
2671 | /* There is not enough space, need realloc. */ | ||
2672 | wchar_t *new_array_start, *new_array_end; | ||
2673 | Idx new_nranges; | ||
2674 | |||
2675 | /* +1 in case of mbcset->nranges is 0. */ | ||
2676 | new_nranges = 2 * mbcset->nranges + 1; | ||
2677 | /* Use realloc since mbcset->range_starts and mbcset->range_ends | ||
2678 | are NULL if *range_alloc == 0. */ | ||
2679 | new_array_start = re_realloc (mbcset->range_starts, wchar_t, | ||
2680 | new_nranges); | ||
2681 | new_array_end = re_realloc (mbcset->range_ends, wchar_t, | ||
2682 | new_nranges); | ||
2683 | |||
2684 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | ||
2685 | return REG_ESPACE; | ||
2686 | |||
2687 | mbcset->range_starts = new_array_start; | ||
2688 | mbcset->range_ends = new_array_end; | ||
2689 | *range_alloc = new_nranges; | ||
2690 | } | ||
2691 | |||
2692 | mbcset->range_starts[mbcset->nranges] = start_wc; | ||
2693 | mbcset->range_ends[mbcset->nranges++] = end_wc; | ||
2694 | } | ||
2695 | |||
2696 | /* Build the table for single byte characters. */ | ||
2697 | for (wc = 0; wc < SBC_MAX; ++wc) | ||
2698 | { | ||
2699 | cmp_buf[2] = wc; | ||
2700 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | ||
2701 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | ||
2702 | bitset_set (sbcset, wc); | ||
2703 | } | ||
2704 | } | ||
2705 | # else /* not RE_ENABLE_I18N */ | ||
2706 | { | ||
2707 | unsigned int ch; | ||
2708 | start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch | ||
2709 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | ||
2710 | : 0)); | ||
2711 | end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch | ||
2712 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | ||
2713 | : 0)); | ||
2714 | if (start_ch > end_ch) | ||
2715 | return REG_ERANGE; | ||
2716 | /* Build the table for single byte characters. */ | ||
2717 | for (ch = 0; ch < SBC_MAX; ++ch) | ||
2718 | if (start_ch <= ch && ch <= end_ch) | ||
2719 | bitset_set (sbcset, ch); | ||
2720 | } | ||
2721 | # endif /* not RE_ENABLE_I18N */ | ||
2722 | return REG_NOERROR; | ||
2723 | } | ||
2724 | #endif /* not _LIBC */ | ||
2725 | |||
2726 | #ifndef _LIBC | ||
2727 | /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. | ||
2728 | Build the collating element which is represented by NAME. | ||
2729 | The result are written to MBCSET and SBCSET. | ||
2730 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | ||
2731 | pointer argument since we may update it. */ | ||
2732 | |||
2733 | static reg_errcode_t | ||
2734 | internal_function | ||
2735 | build_collating_symbol (bitset_t sbcset, | ||
2736 | # ifdef RE_ENABLE_I18N | ||
2737 | re_charset_t *mbcset, Idx *coll_sym_alloc, | ||
2738 | # endif | ||
2739 | const unsigned char *name) | ||
2740 | { | ||
2741 | size_t name_len = strlen ((const char *) name); | ||
2742 | if (BE (name_len != 1, 0)) | ||
2743 | return REG_ECOLLATE; | ||
2744 | else | ||
2745 | { | ||
2746 | bitset_set (sbcset, name[0]); | ||
2747 | return REG_NOERROR; | ||
2748 | } | ||
2749 | } | ||
2750 | #endif /* not _LIBC */ | ||
2751 | |||
2752 | /* This function parse bracket expression like "[abc]", "[a-c]", | ||
2753 | "[[.a-a.]]" etc. */ | ||
2754 | |||
2755 | static bin_tree_t * | ||
2756 | parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, | ||
2757 | reg_syntax_t syntax, reg_errcode_t *err) | ||
2758 | { | ||
2759 | #ifdef _LIBC | ||
2760 | const unsigned char *collseqmb; | ||
2761 | const char *collseqwc; | ||
2762 | uint32_t nrules; | ||
2763 | int32_t table_size; | ||
2764 | const int32_t *symb_table; | ||
2765 | const unsigned char *extra; | ||
2766 | |||
2767 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
2768 | Seek the collating symbol entry correspondings to NAME. | ||
2769 | Return the index of the symbol in the SYMB_TABLE. */ | ||
2770 | |||
2771 | auto inline int32_t | ||
2772 | __attribute ((always_inline)) | ||
2773 | seek_collating_symbol_entry (name, name_len) | ||
2774 | const unsigned char *name; | ||
2775 | size_t name_len; | ||
2776 | { | ||
2777 | int32_t hash = elem_hash ((const char *) name, name_len); | ||
2778 | int32_t elem = hash % table_size; | ||
2779 | if (symb_table[2 * elem] != 0) | ||
2780 | { | ||
2781 | int32_t second = hash % (table_size - 2) + 1; | ||
2782 | |||
2783 | do | ||
2784 | { | ||
2785 | /* First compare the hashing value. */ | ||
2786 | if (symb_table[2 * elem] == hash | ||
2787 | /* Compare the length of the name. */ | ||
2788 | && name_len == extra[symb_table[2 * elem + 1]] | ||
2789 | /* Compare the name. */ | ||
2790 | && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], | ||
2791 | name_len) == 0) | ||
2792 | { | ||
2793 | /* Yep, this is the entry. */ | ||
2794 | break; | ||
2795 | } | ||
2796 | |||
2797 | /* Next entry. */ | ||
2798 | elem += second; | ||
2799 | } | ||
2800 | while (symb_table[2 * elem] != 0); | ||
2801 | } | ||
2802 | return elem; | ||
2803 | } | ||
2804 | |||
2805 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
2806 | Look up the collation sequence value of BR_ELEM. | ||
2807 | Return the value if succeeded, UINT_MAX otherwise. */ | ||
2808 | |||
2809 | auto inline unsigned int | ||
2810 | __attribute ((always_inline)) | ||
2811 | lookup_collation_sequence_value (br_elem) | ||
2812 | bracket_elem_t *br_elem; | ||
2813 | { | ||
2814 | if (br_elem->type == SB_CHAR) | ||
2815 | { | ||
2816 | /* | ||
2817 | if (MB_CUR_MAX == 1) | ||
2818 | */ | ||
2819 | if (nrules == 0) | ||
2820 | return collseqmb[br_elem->opr.ch]; | ||
2821 | else | ||
2822 | { | ||
2823 | wint_t wc = __btowc (br_elem->opr.ch); | ||
2824 | return __collseq_table_lookup (collseqwc, wc); | ||
2825 | } | ||
2826 | } | ||
2827 | else if (br_elem->type == MB_CHAR) | ||
2828 | { | ||
2829 | return __collseq_table_lookup (collseqwc, br_elem->opr.wch); | ||
2830 | } | ||
2831 | else if (br_elem->type == COLL_SYM) | ||
2832 | { | ||
2833 | size_t sym_name_len = strlen ((char *) br_elem->opr.name); | ||
2834 | if (nrules != 0) | ||
2835 | { | ||
2836 | int32_t elem, idx; | ||
2837 | elem = seek_collating_symbol_entry (br_elem->opr.name, | ||
2838 | sym_name_len); | ||
2839 | if (symb_table[2 * elem] != 0) | ||
2840 | { | ||
2841 | /* We found the entry. */ | ||
2842 | idx = symb_table[2 * elem + 1]; | ||
2843 | /* Skip the name of collating element name. */ | ||
2844 | idx += 1 + extra[idx]; | ||
2845 | /* Skip the byte sequence of the collating element. */ | ||
2846 | idx += 1 + extra[idx]; | ||
2847 | /* Adjust for the alignment. */ | ||
2848 | idx = (idx + 3) & ~3; | ||
2849 | /* Skip the multibyte collation sequence value. */ | ||
2850 | idx += sizeof (unsigned int); | ||
2851 | /* Skip the wide char sequence of the collating element. */ | ||
2852 | idx += sizeof (unsigned int) * | ||
2853 | (1 + *(unsigned int *) (extra + idx)); | ||
2854 | /* Return the collation sequence value. */ | ||
2855 | return *(unsigned int *) (extra + idx); | ||
2856 | } | ||
2857 | else if (symb_table[2 * elem] == 0 && sym_name_len == 1) | ||
2858 | { | ||
2859 | /* No valid character. Match it as a single byte | ||
2860 | character. */ | ||
2861 | return collseqmb[br_elem->opr.name[0]]; | ||
2862 | } | ||
2863 | } | ||
2864 | else if (sym_name_len == 1) | ||
2865 | return collseqmb[br_elem->opr.name[0]]; | ||
2866 | } | ||
2867 | return UINT_MAX; | ||
2868 | } | ||
2869 | |||
2870 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
2871 | Build the range expression which starts from START_ELEM, and ends | ||
2872 | at END_ELEM. The result are written to MBCSET and SBCSET. | ||
2873 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | ||
2874 | mbcset->range_ends, is a pointer argument sinse we may | ||
2875 | update it. */ | ||
2876 | |||
2877 | auto inline reg_errcode_t | ||
2878 | __attribute ((always_inline)) | ||
2879 | build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem) | ||
2880 | re_charset_t *mbcset; | ||
2881 | Idx *range_alloc; | ||
2882 | bitset_t sbcset; | ||
2883 | bracket_elem_t *start_elem, *end_elem; | ||
2884 | { | ||
2885 | unsigned int ch; | ||
2886 | uint32_t start_collseq; | ||
2887 | uint32_t end_collseq; | ||
2888 | |||
2889 | /* Equivalence Classes and Character Classes can't be a range | ||
2890 | start/end. */ | ||
2891 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | ||
2892 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | ||
2893 | 0)) | ||
2894 | return REG_ERANGE; | ||
2895 | |||
2896 | start_collseq = lookup_collation_sequence_value (start_elem); | ||
2897 | end_collseq = lookup_collation_sequence_value (end_elem); | ||
2898 | /* Check start/end collation sequence values. */ | ||
2899 | if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) | ||
2900 | return REG_ECOLLATE; | ||
2901 | if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) | ||
2902 | return REG_ERANGE; | ||
2903 | |||
2904 | /* Got valid collation sequence values, add them as a new entry. | ||
2905 | However, if we have no collation elements, and the character set | ||
2906 | is single byte, the single byte character set that we | ||
2907 | build below suffices. */ | ||
2908 | if (nrules > 0 || dfa->mb_cur_max > 1) | ||
2909 | { | ||
2910 | /* Check the space of the arrays. */ | ||
2911 | if (BE (*range_alloc == mbcset->nranges, 0)) | ||
2912 | { | ||
2913 | /* There is not enough space, need realloc. */ | ||
2914 | uint32_t *new_array_start; | ||
2915 | uint32_t *new_array_end; | ||
2916 | Idx new_nranges; | ||
2917 | |||
2918 | /* +1 in case of mbcset->nranges is 0. */ | ||
2919 | new_nranges = 2 * mbcset->nranges + 1; | ||
2920 | new_array_start = re_realloc (mbcset->range_starts, uint32_t, | ||
2921 | new_nranges); | ||
2922 | new_array_end = re_realloc (mbcset->range_ends, uint32_t, | ||
2923 | new_nranges); | ||
2924 | |||
2925 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | ||
2926 | return REG_ESPACE; | ||
2927 | |||
2928 | mbcset->range_starts = new_array_start; | ||
2929 | mbcset->range_ends = new_array_end; | ||
2930 | *range_alloc = new_nranges; | ||
2931 | } | ||
2932 | |||
2933 | mbcset->range_starts[mbcset->nranges] = start_collseq; | ||
2934 | mbcset->range_ends[mbcset->nranges++] = end_collseq; | ||
2935 | } | ||
2936 | |||
2937 | /* Build the table for single byte characters. */ | ||
2938 | for (ch = 0; ch < SBC_MAX; ch++) | ||
2939 | { | ||
2940 | uint32_t ch_collseq; | ||
2941 | /* | ||
2942 | if (MB_CUR_MAX == 1) | ||
2943 | */ | ||
2944 | if (nrules == 0) | ||
2945 | ch_collseq = collseqmb[ch]; | ||
2946 | else | ||
2947 | ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); | ||
2948 | if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) | ||
2949 | bitset_set (sbcset, ch); | ||
2950 | } | ||
2951 | return REG_NOERROR; | ||
2952 | } | ||
2953 | |||
2954 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
2955 | Build the collating element which is represented by NAME. | ||
2956 | The result are written to MBCSET and SBCSET. | ||
2957 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | ||
2958 | pointer argument sinse we may update it. */ | ||
2959 | |||
2960 | auto inline reg_errcode_t | ||
2961 | __attribute ((always_inline)) | ||
2962 | build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name) | ||
2963 | re_charset_t *mbcset; | ||
2964 | Idx *coll_sym_alloc; | ||
2965 | bitset_t sbcset; | ||
2966 | const unsigned char *name; | ||
2967 | { | ||
2968 | int32_t elem, idx; | ||
2969 | size_t name_len = strlen ((const char *) name); | ||
2970 | if (nrules != 0) | ||
2971 | { | ||
2972 | elem = seek_collating_symbol_entry (name, name_len); | ||
2973 | if (symb_table[2 * elem] != 0) | ||
2974 | { | ||
2975 | /* We found the entry. */ | ||
2976 | idx = symb_table[2 * elem + 1]; | ||
2977 | /* Skip the name of collating element name. */ | ||
2978 | idx += 1 + extra[idx]; | ||
2979 | } | ||
2980 | else if (symb_table[2 * elem] == 0 && name_len == 1) | ||
2981 | { | ||
2982 | /* No valid character, treat it as a normal | ||
2983 | character. */ | ||
2984 | bitset_set (sbcset, name[0]); | ||
2985 | return REG_NOERROR; | ||
2986 | } | ||
2987 | else | ||
2988 | return REG_ECOLLATE; | ||
2989 | |||
2990 | /* Got valid collation sequence, add it as a new entry. */ | ||
2991 | /* Check the space of the arrays. */ | ||
2992 | if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) | ||
2993 | { | ||
2994 | /* Not enough, realloc it. */ | ||
2995 | /* +1 in case of mbcset->ncoll_syms is 0. */ | ||
2996 | Idx new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; | ||
2997 | /* Use realloc since mbcset->coll_syms is NULL | ||
2998 | if *alloc == 0. */ | ||
2999 | int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t, | ||
3000 | new_coll_sym_alloc); | ||
3001 | if (BE (new_coll_syms == NULL, 0)) | ||
3002 | return REG_ESPACE; | ||
3003 | mbcset->coll_syms = new_coll_syms; | ||
3004 | *coll_sym_alloc = new_coll_sym_alloc; | ||
3005 | } | ||
3006 | mbcset->coll_syms[mbcset->ncoll_syms++] = idx; | ||
3007 | return REG_NOERROR; | ||
3008 | } | ||
3009 | else | ||
3010 | { | ||
3011 | if (BE (name_len != 1, 0)) | ||
3012 | return REG_ECOLLATE; | ||
3013 | else | ||
3014 | { | ||
3015 | bitset_set (sbcset, name[0]); | ||
3016 | return REG_NOERROR; | ||
3017 | } | ||
3018 | } | ||
3019 | } | ||
3020 | #endif | ||
3021 | |||
3022 | re_token_t br_token; | ||
3023 | re_bitset_ptr_t sbcset; | ||
3024 | #ifdef RE_ENABLE_I18N | ||
3025 | re_charset_t *mbcset; | ||
3026 | Idx coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; | ||
3027 | Idx equiv_class_alloc = 0, char_class_alloc = 0; | ||
3028 | #endif /* not RE_ENABLE_I18N */ | ||
3029 | bool non_match = false; | ||
3030 | bin_tree_t *work_tree; | ||
3031 | int token_len; | ||
3032 | bool first_round = true; | ||
3033 | #ifdef _LIBC | ||
3034 | collseqmb = (const unsigned char *) | ||
3035 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | ||
3036 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3037 | if (nrules) | ||
3038 | { | ||
3039 | /* | ||
3040 | if (MB_CUR_MAX > 1) | ||
3041 | */ | ||
3042 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | ||
3043 | table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); | ||
3044 | symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
3045 | _NL_COLLATE_SYMB_TABLEMB); | ||
3046 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
3047 | _NL_COLLATE_SYMB_EXTRAMB); | ||
3048 | } | ||
3049 | #endif | ||
3050 | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | ||
3051 | #ifdef RE_ENABLE_I18N | ||
3052 | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); | ||
3053 | #endif /* RE_ENABLE_I18N */ | ||
3054 | #ifdef RE_ENABLE_I18N | ||
3055 | if (BE (sbcset == NULL || mbcset == NULL, 0)) | ||
3056 | #else | ||
3057 | if (BE (sbcset == NULL, 0)) | ||
3058 | #endif /* RE_ENABLE_I18N */ | ||
3059 | { | ||
3060 | *err = REG_ESPACE; | ||
3061 | return NULL; | ||
3062 | } | ||
3063 | |||
3064 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3065 | if (BE (token->type == END_OF_RE, 0)) | ||
3066 | { | ||
3067 | *err = REG_BADPAT; | ||
3068 | goto parse_bracket_exp_free_return; | ||
3069 | } | ||
3070 | if (token->type == OP_NON_MATCH_LIST) | ||
3071 | { | ||
3072 | #ifdef RE_ENABLE_I18N | ||
3073 | mbcset->non_match = 1; | ||
3074 | #endif /* not RE_ENABLE_I18N */ | ||
3075 | non_match = true; | ||
3076 | if (syntax & RE_HAT_LISTS_NOT_NEWLINE) | ||
3077 | bitset_set (sbcset, '\0'); | ||
3078 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3079 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3080 | if (BE (token->type == END_OF_RE, 0)) | ||
3081 | { | ||
3082 | *err = REG_BADPAT; | ||
3083 | goto parse_bracket_exp_free_return; | ||
3084 | } | ||
3085 | } | ||
3086 | |||
3087 | /* We treat the first ']' as a normal character. */ | ||
3088 | if (token->type == OP_CLOSE_BRACKET) | ||
3089 | token->type = CHARACTER; | ||
3090 | |||
3091 | while (1) | ||
3092 | { | ||
3093 | bracket_elem_t start_elem, end_elem; | ||
3094 | unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; | ||
3095 | unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; | ||
3096 | reg_errcode_t ret; | ||
3097 | int token_len2 = 0; | ||
3098 | bool is_range_exp = false; | ||
3099 | re_token_t token2; | ||
3100 | |||
3101 | start_elem.opr.name = start_name_buf; | ||
3102 | ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, | ||
3103 | syntax, first_round); | ||
3104 | if (BE (ret != REG_NOERROR, 0)) | ||
3105 | { | ||
3106 | *err = ret; | ||
3107 | goto parse_bracket_exp_free_return; | ||
3108 | } | ||
3109 | first_round = false; | ||
3110 | |||
3111 | /* Get information about the next token. We need it in any case. */ | ||
3112 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3113 | |||
3114 | /* Do not check for ranges if we know they are not allowed. */ | ||
3115 | if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) | ||
3116 | { | ||
3117 | if (BE (token->type == END_OF_RE, 0)) | ||
3118 | { | ||
3119 | *err = REG_EBRACK; | ||
3120 | goto parse_bracket_exp_free_return; | ||
3121 | } | ||
3122 | if (token->type == OP_CHARSET_RANGE) | ||
3123 | { | ||
3124 | re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ | ||
3125 | token_len2 = peek_token_bracket (&token2, regexp, syntax); | ||
3126 | if (BE (token2.type == END_OF_RE, 0)) | ||
3127 | { | ||
3128 | *err = REG_EBRACK; | ||
3129 | goto parse_bracket_exp_free_return; | ||
3130 | } | ||
3131 | if (token2.type == OP_CLOSE_BRACKET) | ||
3132 | { | ||
3133 | /* We treat the last '-' as a normal character. */ | ||
3134 | re_string_skip_bytes (regexp, -token_len); | ||
3135 | token->type = CHARACTER; | ||
3136 | } | ||
3137 | else | ||
3138 | is_range_exp = true; | ||
3139 | } | ||
3140 | } | ||
3141 | |||
3142 | if (is_range_exp == true) | ||
3143 | { | ||
3144 | end_elem.opr.name = end_name_buf; | ||
3145 | ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, | ||
3146 | dfa, syntax, true); | ||
3147 | if (BE (ret != REG_NOERROR, 0)) | ||
3148 | { | ||
3149 | *err = ret; | ||
3150 | goto parse_bracket_exp_free_return; | ||
3151 | } | ||
3152 | |||
3153 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3154 | |||
3155 | #ifdef _LIBC | ||
3156 | *err = build_range_exp (sbcset, mbcset, &range_alloc, | ||
3157 | &start_elem, &end_elem); | ||
3158 | #else | ||
3159 | # ifdef RE_ENABLE_I18N | ||
3160 | *err = build_range_exp (sbcset, | ||
3161 | dfa->mb_cur_max > 1 ? mbcset : NULL, | ||
3162 | &range_alloc, &start_elem, &end_elem); | ||
3163 | # else | ||
3164 | *err = build_range_exp (sbcset, &start_elem, &end_elem); | ||
3165 | # endif | ||
3166 | #endif /* RE_ENABLE_I18N */ | ||
3167 | if (BE (*err != REG_NOERROR, 0)) | ||
3168 | goto parse_bracket_exp_free_return; | ||
3169 | } | ||
3170 | else | ||
3171 | { | ||
3172 | switch (start_elem.type) | ||
3173 | { | ||
3174 | case SB_CHAR: | ||
3175 | bitset_set (sbcset, start_elem.opr.ch); | ||
3176 | break; | ||
3177 | #ifdef RE_ENABLE_I18N | ||
3178 | case MB_CHAR: | ||
3179 | /* Check whether the array has enough space. */ | ||
3180 | if (BE (mbchar_alloc == mbcset->nmbchars, 0)) | ||
3181 | { | ||
3182 | wchar_t *new_mbchars; | ||
3183 | /* Not enough, realloc it. */ | ||
3184 | /* +1 in case of mbcset->nmbchars is 0. */ | ||
3185 | mbchar_alloc = 2 * mbcset->nmbchars + 1; | ||
3186 | /* Use realloc since array is NULL if *alloc == 0. */ | ||
3187 | new_mbchars = re_realloc (mbcset->mbchars, wchar_t, | ||
3188 | mbchar_alloc); | ||
3189 | if (BE (new_mbchars == NULL, 0)) | ||
3190 | goto parse_bracket_exp_espace; | ||
3191 | mbcset->mbchars = new_mbchars; | ||
3192 | } | ||
3193 | mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; | ||
3194 | break; | ||
3195 | #endif /* RE_ENABLE_I18N */ | ||
3196 | case EQUIV_CLASS: | ||
3197 | *err = build_equiv_class (sbcset, | ||
3198 | #ifdef RE_ENABLE_I18N | ||
3199 | mbcset, &equiv_class_alloc, | ||
3200 | #endif /* RE_ENABLE_I18N */ | ||
3201 | start_elem.opr.name); | ||
3202 | if (BE (*err != REG_NOERROR, 0)) | ||
3203 | goto parse_bracket_exp_free_return; | ||
3204 | break; | ||
3205 | case COLL_SYM: | ||
3206 | *err = build_collating_symbol (sbcset, | ||
3207 | #ifdef RE_ENABLE_I18N | ||
3208 | mbcset, &coll_sym_alloc, | ||
3209 | #endif /* RE_ENABLE_I18N */ | ||
3210 | start_elem.opr.name); | ||
3211 | if (BE (*err != REG_NOERROR, 0)) | ||
3212 | goto parse_bracket_exp_free_return; | ||
3213 | break; | ||
3214 | case CHAR_CLASS: | ||
3215 | *err = build_charclass (regexp->trans, sbcset, | ||
3216 | #ifdef RE_ENABLE_I18N | ||
3217 | mbcset, &char_class_alloc, | ||
3218 | #endif /* RE_ENABLE_I18N */ | ||
3219 | start_elem.opr.name, syntax); | ||
3220 | if (BE (*err != REG_NOERROR, 0)) | ||
3221 | goto parse_bracket_exp_free_return; | ||
3222 | break; | ||
3223 | default: | ||
3224 | assert (0); | ||
3225 | break; | ||
3226 | } | ||
3227 | } | ||
3228 | if (BE (token->type == END_OF_RE, 0)) | ||
3229 | { | ||
3230 | *err = REG_EBRACK; | ||
3231 | goto parse_bracket_exp_free_return; | ||
3232 | } | ||
3233 | if (token->type == OP_CLOSE_BRACKET) | ||
3234 | break; | ||
3235 | } | ||
3236 | |||
3237 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3238 | |||
3239 | /* If it is non-matching list. */ | ||
3240 | if (non_match) | ||
3241 | bitset_not (sbcset); | ||
3242 | |||
3243 | #ifdef RE_ENABLE_I18N | ||
3244 | /* Ensure only single byte characters are set. */ | ||
3245 | if (dfa->mb_cur_max > 1) | ||
3246 | bitset_mask (sbcset, dfa->sb_char); | ||
3247 | |||
3248 | if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes | ||
3249 | || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes | ||
3250 | || mbcset->non_match))) | ||
3251 | { | ||
3252 | bin_tree_t *mbc_tree; | ||
3253 | int sbc_idx; | ||
3254 | /* Build a tree for complex bracket. */ | ||
3255 | dfa->has_mb_node = 1; | ||
3256 | br_token.type = COMPLEX_BRACKET; | ||
3257 | br_token.opr.mbcset = mbcset; | ||
3258 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3259 | if (BE (mbc_tree == NULL, 0)) | ||
3260 | goto parse_bracket_exp_espace; | ||
3261 | for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) | ||
3262 | if (sbcset[sbc_idx]) | ||
3263 | break; | ||
3264 | /* If there are no bits set in sbcset, there is no point | ||
3265 | of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */ | ||
3266 | if (sbc_idx < BITSET_WORDS) | ||
3267 | { | ||
3268 | /* Build a tree for simple bracket. */ | ||
3269 | br_token.type = SIMPLE_BRACKET; | ||
3270 | br_token.opr.sbcset = sbcset; | ||
3271 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3272 | if (BE (work_tree == NULL, 0)) | ||
3273 | goto parse_bracket_exp_espace; | ||
3274 | |||
3275 | /* Then join them by ALT node. */ | ||
3276 | work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); | ||
3277 | if (BE (work_tree == NULL, 0)) | ||
3278 | goto parse_bracket_exp_espace; | ||
3279 | } | ||
3280 | else | ||
3281 | { | ||
3282 | re_free (sbcset); | ||
3283 | work_tree = mbc_tree; | ||
3284 | } | ||
3285 | } | ||
3286 | else | ||
3287 | #endif /* not RE_ENABLE_I18N */ | ||
3288 | { | ||
3289 | #ifdef RE_ENABLE_I18N | ||
3290 | free_charset (mbcset); | ||
3291 | #endif | ||
3292 | /* Build a tree for simple bracket. */ | ||
3293 | br_token.type = SIMPLE_BRACKET; | ||
3294 | br_token.opr.sbcset = sbcset; | ||
3295 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3296 | if (BE (work_tree == NULL, 0)) | ||
3297 | goto parse_bracket_exp_espace; | ||
3298 | } | ||
3299 | return work_tree; | ||
3300 | |||
3301 | parse_bracket_exp_espace: | ||
3302 | *err = REG_ESPACE; | ||
3303 | parse_bracket_exp_free_return: | ||
3304 | re_free (sbcset); | ||
3305 | #ifdef RE_ENABLE_I18N | ||
3306 | free_charset (mbcset); | ||
3307 | #endif /* RE_ENABLE_I18N */ | ||
3308 | return NULL; | ||
3309 | } | ||
3310 | |||
3311 | /* Parse an element in the bracket expression. */ | ||
3312 | |||
3313 | static reg_errcode_t | ||
3314 | parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, | ||
3315 | re_token_t *token, int token_len, re_dfa_t *dfa, | ||
3316 | reg_syntax_t syntax, bool accept_hyphen) | ||
3317 | { | ||
3318 | #ifdef RE_ENABLE_I18N | ||
3319 | int cur_char_size; | ||
3320 | cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); | ||
3321 | if (cur_char_size > 1) | ||
3322 | { | ||
3323 | elem->type = MB_CHAR; | ||
3324 | elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); | ||
3325 | re_string_skip_bytes (regexp, cur_char_size); | ||
3326 | return REG_NOERROR; | ||
3327 | } | ||
3328 | #endif /* RE_ENABLE_I18N */ | ||
3329 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3330 | if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS | ||
3331 | || token->type == OP_OPEN_EQUIV_CLASS) | ||
3332 | return parse_bracket_symbol (elem, regexp, token); | ||
3333 | if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) | ||
3334 | { | ||
3335 | /* A '-' must only appear as anything but a range indicator before | ||
3336 | the closing bracket. Everything else is an error. */ | ||
3337 | re_token_t token2; | ||
3338 | (void) peek_token_bracket (&token2, regexp, syntax); | ||
3339 | if (token2.type != OP_CLOSE_BRACKET) | ||
3340 | /* The actual error value is not standardized since this whole | ||
3341 | case is undefined. But ERANGE makes good sense. */ | ||
3342 | return REG_ERANGE; | ||
3343 | } | ||
3344 | elem->type = SB_CHAR; | ||
3345 | elem->opr.ch = token->opr.c; | ||
3346 | return REG_NOERROR; | ||
3347 | } | ||
3348 | |||
3349 | /* Parse a bracket symbol in the bracket expression. Bracket symbols are | ||
3350 | such as [:<character_class>:], [.<collating_element>.], and | ||
3351 | [=<equivalent_class>=]. */ | ||
3352 | |||
3353 | static reg_errcode_t | ||
3354 | parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, | ||
3355 | re_token_t *token) | ||
3356 | { | ||
3357 | unsigned char ch, delim = token->opr.c; | ||
3358 | int i = 0; | ||
3359 | if (re_string_eoi(regexp)) | ||
3360 | return REG_EBRACK; | ||
3361 | for (;; ++i) | ||
3362 | { | ||
3363 | if (i >= BRACKET_NAME_BUF_SIZE) | ||
3364 | return REG_EBRACK; | ||
3365 | if (token->type == OP_OPEN_CHAR_CLASS) | ||
3366 | ch = re_string_fetch_byte_case (regexp); | ||
3367 | else | ||
3368 | ch = re_string_fetch_byte (regexp); | ||
3369 | if (re_string_eoi(regexp)) | ||
3370 | return REG_EBRACK; | ||
3371 | if (ch == delim && re_string_peek_byte (regexp, 0) == ']') | ||
3372 | break; | ||
3373 | elem->opr.name[i] = ch; | ||
3374 | } | ||
3375 | re_string_skip_bytes (regexp, 1); | ||
3376 | elem->opr.name[i] = '\0'; | ||
3377 | switch (token->type) | ||
3378 | { | ||
3379 | case OP_OPEN_COLL_ELEM: | ||
3380 | elem->type = COLL_SYM; | ||
3381 | break; | ||
3382 | case OP_OPEN_EQUIV_CLASS: | ||
3383 | elem->type = EQUIV_CLASS; | ||
3384 | break; | ||
3385 | case OP_OPEN_CHAR_CLASS: | ||
3386 | elem->type = CHAR_CLASS; | ||
3387 | break; | ||
3388 | default: | ||
3389 | break; | ||
3390 | } | ||
3391 | return REG_NOERROR; | ||
3392 | } | ||
3393 | |||
3394 | /* Helper function for parse_bracket_exp. | ||
3395 | Build the equivalence class which is represented by NAME. | ||
3396 | The result are written to MBCSET and SBCSET. | ||
3397 | EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, | ||
3398 | is a pointer argument sinse we may update it. */ | ||
3399 | |||
3400 | static reg_errcode_t | ||
3401 | #ifdef RE_ENABLE_I18N | ||
3402 | build_equiv_class (bitset_t sbcset, re_charset_t *mbcset, | ||
3403 | Idx *equiv_class_alloc, const unsigned char *name) | ||
3404 | #else /* not RE_ENABLE_I18N */ | ||
3405 | build_equiv_class (bitset_t sbcset, const unsigned char *name) | ||
3406 | #endif /* not RE_ENABLE_I18N */ | ||
3407 | { | ||
3408 | #ifdef _LIBC | ||
3409 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3410 | if (nrules != 0) | ||
3411 | { | ||
3412 | const int32_t *table, *indirect; | ||
3413 | const unsigned char *weights, *extra, *cp; | ||
3414 | unsigned char char_buf[2]; | ||
3415 | int32_t idx1, idx2; | ||
3416 | unsigned int ch; | ||
3417 | size_t len; | ||
3418 | /* This #include defines a local function! */ | ||
3419 | # include <locale/weight.h> | ||
3420 | /* Calculate the index for equivalence class. */ | ||
3421 | cp = name; | ||
3422 | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
3423 | weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
3424 | _NL_COLLATE_WEIGHTMB); | ||
3425 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
3426 | _NL_COLLATE_EXTRAMB); | ||
3427 | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
3428 | _NL_COLLATE_INDIRECTMB); | ||
3429 | idx1 = findidx (&cp); | ||
3430 | if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) | ||
3431 | /* This isn't a valid character. */ | ||
3432 | return REG_ECOLLATE; | ||
3433 | |||
3434 | /* Build single byte matcing table for this equivalence class. */ | ||
3435 | char_buf[1] = (unsigned char) '\0'; | ||
3436 | len = weights[idx1]; | ||
3437 | for (ch = 0; ch < SBC_MAX; ++ch) | ||
3438 | { | ||
3439 | char_buf[0] = ch; | ||
3440 | cp = char_buf; | ||
3441 | idx2 = findidx (&cp); | ||
3442 | /* | ||
3443 | idx2 = table[ch]; | ||
3444 | */ | ||
3445 | if (idx2 == 0) | ||
3446 | /* This isn't a valid character. */ | ||
3447 | continue; | ||
3448 | if (len == weights[idx2]) | ||
3449 | { | ||
3450 | int cnt = 0; | ||
3451 | while (cnt <= len && | ||
3452 | weights[idx1 + 1 + cnt] == weights[idx2 + 1 + cnt]) | ||
3453 | ++cnt; | ||
3454 | |||
3455 | if (cnt > len) | ||
3456 | bitset_set (sbcset, ch); | ||
3457 | } | ||
3458 | } | ||
3459 | /* Check whether the array has enough space. */ | ||
3460 | if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) | ||
3461 | { | ||
3462 | /* Not enough, realloc it. */ | ||
3463 | /* +1 in case of mbcset->nequiv_classes is 0. */ | ||
3464 | Idx new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; | ||
3465 | /* Use realloc since the array is NULL if *alloc == 0. */ | ||
3466 | int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes, | ||
3467 | int32_t, | ||
3468 | new_equiv_class_alloc); | ||
3469 | if (BE (new_equiv_classes == NULL, 0)) | ||
3470 | return REG_ESPACE; | ||
3471 | mbcset->equiv_classes = new_equiv_classes; | ||
3472 | *equiv_class_alloc = new_equiv_class_alloc; | ||
3473 | } | ||
3474 | mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; | ||
3475 | } | ||
3476 | else | ||
3477 | #endif /* _LIBC */ | ||
3478 | { | ||
3479 | if (BE (strlen ((const char *) name) != 1, 0)) | ||
3480 | return REG_ECOLLATE; | ||
3481 | bitset_set (sbcset, *name); | ||
3482 | } | ||
3483 | return REG_NOERROR; | ||
3484 | } | ||
3485 | |||
3486 | /* Helper function for parse_bracket_exp. | ||
3487 | Build the character class which is represented by NAME. | ||
3488 | The result are written to MBCSET and SBCSET. | ||
3489 | CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, | ||
3490 | is a pointer argument sinse we may update it. */ | ||
3491 | |||
3492 | static reg_errcode_t | ||
3493 | #ifdef RE_ENABLE_I18N | ||
3494 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, | ||
3495 | re_charset_t *mbcset, Idx *char_class_alloc, | ||
3496 | const unsigned char *class_name, reg_syntax_t syntax) | ||
3497 | #else /* not RE_ENABLE_I18N */ | ||
3498 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, | ||
3499 | const unsigned char *class_name, reg_syntax_t syntax) | ||
3500 | #endif /* not RE_ENABLE_I18N */ | ||
3501 | { | ||
3502 | int i; | ||
3503 | const char *name = (const char *) class_name; | ||
3504 | |||
3505 | /* In case of REG_ICASE "upper" and "lower" match the both of | ||
3506 | upper and lower cases. */ | ||
3507 | if ((syntax & RE_ICASE) | ||
3508 | && (strcmp (name, "upper") == 0 || strcmp (name, "lower") == 0)) | ||
3509 | name = "alpha"; | ||
3510 | |||
3511 | #ifdef RE_ENABLE_I18N | ||
3512 | /* Check the space of the arrays. */ | ||
3513 | if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) | ||
3514 | { | ||
3515 | /* Not enough, realloc it. */ | ||
3516 | /* +1 in case of mbcset->nchar_classes is 0. */ | ||
3517 | Idx new_char_class_alloc = 2 * mbcset->nchar_classes + 1; | ||
3518 | /* Use realloc since array is NULL if *alloc == 0. */ | ||
3519 | wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t, | ||
3520 | new_char_class_alloc); | ||
3521 | if (BE (new_char_classes == NULL, 0)) | ||
3522 | return REG_ESPACE; | ||
3523 | mbcset->char_classes = new_char_classes; | ||
3524 | *char_class_alloc = new_char_class_alloc; | ||
3525 | } | ||
3526 | mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name); | ||
3527 | #endif /* RE_ENABLE_I18N */ | ||
3528 | |||
3529 | #define BUILD_CHARCLASS_LOOP(ctype_func) \ | ||
3530 | do { \ | ||
3531 | if (BE (trans != NULL, 0)) \ | ||
3532 | { \ | ||
3533 | for (i = 0; i < SBC_MAX; ++i) \ | ||
3534 | if (ctype_func (i)) \ | ||
3535 | bitset_set (sbcset, trans[i]); \ | ||
3536 | } \ | ||
3537 | else \ | ||
3538 | { \ | ||
3539 | for (i = 0; i < SBC_MAX; ++i) \ | ||
3540 | if (ctype_func (i)) \ | ||
3541 | bitset_set (sbcset, i); \ | ||
3542 | } \ | ||
3543 | } while (0) | ||
3544 | |||
3545 | if (strcmp (name, "alnum") == 0) | ||
3546 | BUILD_CHARCLASS_LOOP (isalnum); | ||
3547 | else if (strcmp (name, "cntrl") == 0) | ||
3548 | BUILD_CHARCLASS_LOOP (iscntrl); | ||
3549 | else if (strcmp (name, "lower") == 0) | ||
3550 | BUILD_CHARCLASS_LOOP (islower); | ||
3551 | else if (strcmp (name, "space") == 0) | ||
3552 | BUILD_CHARCLASS_LOOP (isspace); | ||
3553 | else if (strcmp (name, "alpha") == 0) | ||
3554 | BUILD_CHARCLASS_LOOP (isalpha); | ||
3555 | else if (strcmp (name, "digit") == 0) | ||
3556 | BUILD_CHARCLASS_LOOP (isdigit); | ||
3557 | else if (strcmp (name, "print") == 0) | ||
3558 | BUILD_CHARCLASS_LOOP (isprint); | ||
3559 | else if (strcmp (name, "upper") == 0) | ||
3560 | BUILD_CHARCLASS_LOOP (isupper); | ||
3561 | else if (strcmp (name, "blank") == 0) | ||
3562 | BUILD_CHARCLASS_LOOP (isblank); | ||
3563 | else if (strcmp (name, "graph") == 0) | ||
3564 | BUILD_CHARCLASS_LOOP (isgraph); | ||
3565 | else if (strcmp (name, "punct") == 0) | ||
3566 | BUILD_CHARCLASS_LOOP (ispunct); | ||
3567 | else if (strcmp (name, "xdigit") == 0) | ||
3568 | BUILD_CHARCLASS_LOOP (isxdigit); | ||
3569 | else | ||
3570 | return REG_ECTYPE; | ||
3571 | |||
3572 | return REG_NOERROR; | ||
3573 | } | ||
3574 | |||
3575 | static bin_tree_t * | ||
3576 | build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans, | ||
3577 | const unsigned char *class_name, | ||
3578 | const unsigned char *extra, bool non_match, | ||
3579 | reg_errcode_t *err) | ||
3580 | { | ||
3581 | re_bitset_ptr_t sbcset; | ||
3582 | #ifdef RE_ENABLE_I18N | ||
3583 | re_charset_t *mbcset; | ||
3584 | Idx alloc = 0; | ||
3585 | #endif /* not RE_ENABLE_I18N */ | ||
3586 | reg_errcode_t ret; | ||
3587 | re_token_t br_token; | ||
3588 | bin_tree_t *tree; | ||
3589 | |||
3590 | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | ||
3591 | #ifdef RE_ENABLE_I18N | ||
3592 | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); | ||
3593 | #endif /* RE_ENABLE_I18N */ | ||
3594 | |||
3595 | #ifdef RE_ENABLE_I18N | ||
3596 | if (BE (sbcset == NULL || mbcset == NULL, 0)) | ||
3597 | #else /* not RE_ENABLE_I18N */ | ||
3598 | if (BE (sbcset == NULL, 0)) | ||
3599 | #endif /* not RE_ENABLE_I18N */ | ||
3600 | { | ||
3601 | *err = REG_ESPACE; | ||
3602 | return NULL; | ||
3603 | } | ||
3604 | |||
3605 | if (non_match) | ||
3606 | { | ||
3607 | #ifdef RE_ENABLE_I18N | ||
3608 | /* | ||
3609 | if (syntax & RE_HAT_LISTS_NOT_NEWLINE) | ||
3610 | bitset_set(cset->sbcset, '\0'); | ||
3611 | */ | ||
3612 | mbcset->non_match = 1; | ||
3613 | #endif /* not RE_ENABLE_I18N */ | ||
3614 | } | ||
3615 | |||
3616 | /* We don't care the syntax in this case. */ | ||
3617 | ret = build_charclass (trans, sbcset, | ||
3618 | #ifdef RE_ENABLE_I18N | ||
3619 | mbcset, &alloc, | ||
3620 | #endif /* RE_ENABLE_I18N */ | ||
3621 | class_name, 0); | ||
3622 | |||
3623 | if (BE (ret != REG_NOERROR, 0)) | ||
3624 | { | ||
3625 | re_free (sbcset); | ||
3626 | #ifdef RE_ENABLE_I18N | ||
3627 | free_charset (mbcset); | ||
3628 | #endif /* RE_ENABLE_I18N */ | ||
3629 | *err = ret; | ||
3630 | return NULL; | ||
3631 | } | ||
3632 | /* \w match '_' also. */ | ||
3633 | for (; *extra; extra++) | ||
3634 | bitset_set (sbcset, *extra); | ||
3635 | |||
3636 | /* If it is non-matching list. */ | ||
3637 | if (non_match) | ||
3638 | bitset_not (sbcset); | ||
3639 | |||
3640 | #ifdef RE_ENABLE_I18N | ||
3641 | /* Ensure only single byte characters are set. */ | ||
3642 | if (dfa->mb_cur_max > 1) | ||
3643 | bitset_mask (sbcset, dfa->sb_char); | ||
3644 | #endif | ||
3645 | |||
3646 | /* Build a tree for simple bracket. */ | ||
3647 | br_token.type = SIMPLE_BRACKET; | ||
3648 | br_token.opr.sbcset = sbcset; | ||
3649 | tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3650 | if (BE (tree == NULL, 0)) | ||
3651 | goto build_word_op_espace; | ||
3652 | |||
3653 | #ifdef RE_ENABLE_I18N | ||
3654 | if (dfa->mb_cur_max > 1) | ||
3655 | { | ||
3656 | bin_tree_t *mbc_tree; | ||
3657 | /* Build a tree for complex bracket. */ | ||
3658 | br_token.type = COMPLEX_BRACKET; | ||
3659 | br_token.opr.mbcset = mbcset; | ||
3660 | dfa->has_mb_node = 1; | ||
3661 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3662 | if (BE (mbc_tree == NULL, 0)) | ||
3663 | goto build_word_op_espace; | ||
3664 | /* Then join them by ALT node. */ | ||
3665 | tree = create_tree (dfa, tree, mbc_tree, OP_ALT); | ||
3666 | if (BE (mbc_tree != NULL, 1)) | ||
3667 | return tree; | ||
3668 | } | ||
3669 | else | ||
3670 | { | ||
3671 | free_charset (mbcset); | ||
3672 | return tree; | ||
3673 | } | ||
3674 | #else /* not RE_ENABLE_I18N */ | ||
3675 | return tree; | ||
3676 | #endif /* not RE_ENABLE_I18N */ | ||
3677 | |||
3678 | build_word_op_espace: | ||
3679 | re_free (sbcset); | ||
3680 | #ifdef RE_ENABLE_I18N | ||
3681 | free_charset (mbcset); | ||
3682 | #endif /* RE_ENABLE_I18N */ | ||
3683 | *err = REG_ESPACE; | ||
3684 | return NULL; | ||
3685 | } | ||
3686 | |||
3687 | /* This is intended for the expressions like "a{1,3}". | ||
3688 | Fetch a number from `input', and return the number. | ||
3689 | Return REG_MISSING if the number field is empty like "{,1}". | ||
3690 | Return REG_ERROR if an error occurred. */ | ||
3691 | |||
3692 | static Idx | ||
3693 | fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) | ||
3694 | { | ||
3695 | Idx num = REG_MISSING; | ||
3696 | unsigned char c; | ||
3697 | while (1) | ||
3698 | { | ||
3699 | fetch_token (token, input, syntax); | ||
3700 | c = token->opr.c; | ||
3701 | if (BE (token->type == END_OF_RE, 0)) | ||
3702 | return REG_ERROR; | ||
3703 | if (token->type == OP_CLOSE_DUP_NUM || c == ',') | ||
3704 | break; | ||
3705 | num = ((token->type != CHARACTER || c < '0' || '9' < c | ||
3706 | || num == REG_ERROR) | ||
3707 | ? REG_ERROR | ||
3708 | : ((num == REG_MISSING) ? c - '0' : num * 10 + c - '0')); | ||
3709 | num = (num > RE_DUP_MAX) ? REG_ERROR : num; | ||
3710 | } | ||
3711 | return num; | ||
3712 | } | ||
3713 | |||
3714 | #ifdef RE_ENABLE_I18N | ||
3715 | static void | ||
3716 | free_charset (re_charset_t *cset) | ||
3717 | { | ||
3718 | re_free (cset->mbchars); | ||
3719 | # ifdef _LIBC | ||
3720 | re_free (cset->coll_syms); | ||
3721 | re_free (cset->equiv_classes); | ||
3722 | re_free (cset->range_starts); | ||
3723 | re_free (cset->range_ends); | ||
3724 | # endif | ||
3725 | re_free (cset->char_classes); | ||
3726 | re_free (cset); | ||
3727 | } | ||
3728 | #endif /* RE_ENABLE_I18N */ | ||
3729 | |||
3730 | /* Functions for binary tree operation. */ | ||
3731 | |||
3732 | /* Create a tree node. */ | ||
3733 | |||
3734 | static bin_tree_t * | ||
3735 | create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | ||
3736 | re_token_type_t type) | ||
3737 | { | ||
3738 | re_token_t t; | ||
3739 | t.type = type; | ||
3740 | return create_token_tree (dfa, left, right, &t); | ||
3741 | } | ||
3742 | |||
3743 | static bin_tree_t * | ||
3744 | create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | ||
3745 | const re_token_t *token) | ||
3746 | { | ||
3747 | bin_tree_t *tree; | ||
3748 | if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) | ||
3749 | { | ||
3750 | bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); | ||
3751 | |||
3752 | if (storage == NULL) | ||
3753 | return NULL; | ||
3754 | storage->next = dfa->str_tree_storage; | ||
3755 | dfa->str_tree_storage = storage; | ||
3756 | dfa->str_tree_storage_idx = 0; | ||
3757 | } | ||
3758 | tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; | ||
3759 | |||
3760 | tree->parent = NULL; | ||
3761 | tree->left = left; | ||
3762 | tree->right = right; | ||
3763 | tree->token = *token; | ||
3764 | tree->token.duplicated = 0; | ||
3765 | tree->token.opt_subexp = 0; | ||
3766 | tree->first = NULL; | ||
3767 | tree->next = NULL; | ||
3768 | tree->node_idx = REG_MISSING; | ||
3769 | |||
3770 | if (left != NULL) | ||
3771 | left->parent = tree; | ||
3772 | if (right != NULL) | ||
3773 | right->parent = tree; | ||
3774 | return tree; | ||
3775 | } | ||
3776 | |||
3777 | /* Mark the tree SRC as an optional subexpression. | ||
3778 | To be called from preorder or postorder. */ | ||
3779 | |||
3780 | static reg_errcode_t | ||
3781 | mark_opt_subexp (void *extra, bin_tree_t *node) | ||
3782 | { | ||
3783 | Idx idx = (Idx) (long) extra; | ||
3784 | if (node->token.type == SUBEXP && node->token.opr.idx == idx) | ||
3785 | node->token.opt_subexp = 1; | ||
3786 | |||
3787 | return REG_NOERROR; | ||
3788 | } | ||
3789 | |||
3790 | /* Free the allocated memory inside NODE. */ | ||
3791 | |||
3792 | static void | ||
3793 | free_token (re_token_t *node) | ||
3794 | { | ||
3795 | #ifdef RE_ENABLE_I18N | ||
3796 | if (node->type == COMPLEX_BRACKET && node->duplicated == 0) | ||
3797 | free_charset (node->opr.mbcset); | ||
3798 | else | ||
3799 | #endif /* RE_ENABLE_I18N */ | ||
3800 | if (node->type == SIMPLE_BRACKET && node->duplicated == 0) | ||
3801 | re_free (node->opr.sbcset); | ||
3802 | } | ||
3803 | |||
3804 | /* Worker function for tree walking. Free the allocated memory inside NODE | ||
3805 | and its children. */ | ||
3806 | |||
3807 | static reg_errcode_t | ||
3808 | free_tree (void *extra, bin_tree_t *node) | ||
3809 | { | ||
3810 | free_token (&node->token); | ||
3811 | return REG_NOERROR; | ||
3812 | } | ||
3813 | |||
3814 | |||
3815 | /* Duplicate the node SRC, and return new node. This is a preorder | ||
3816 | visit similar to the one implemented by the generic visitor, but | ||
3817 | we need more infrastructure to maintain two parallel trees --- so, | ||
3818 | it's easier to duplicate. */ | ||
3819 | |||
3820 | static bin_tree_t * | ||
3821 | duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) | ||
3822 | { | ||
3823 | const bin_tree_t *node; | ||
3824 | bin_tree_t *dup_root; | ||
3825 | bin_tree_t **p_new = &dup_root, *dup_node = root->parent; | ||
3826 | |||
3827 | for (node = root; ; ) | ||
3828 | { | ||
3829 | /* Create a new tree and link it back to the current parent. */ | ||
3830 | *p_new = create_token_tree (dfa, NULL, NULL, &node->token); | ||
3831 | if (*p_new == NULL) | ||
3832 | return NULL; | ||
3833 | (*p_new)->parent = dup_node; | ||
3834 | (*p_new)->token.duplicated = 1; | ||
3835 | dup_node = *p_new; | ||
3836 | |||
3837 | /* Go to the left node, or up and to the right. */ | ||
3838 | if (node->left) | ||
3839 | { | ||
3840 | node = node->left; | ||
3841 | p_new = &dup_node->left; | ||
3842 | } | ||
3843 | else | ||
3844 | { | ||
3845 | const bin_tree_t *prev = NULL; | ||
3846 | while (node->right == prev || node->right == NULL) | ||
3847 | { | ||
3848 | prev = node; | ||
3849 | node = node->parent; | ||
3850 | dup_node = dup_node->parent; | ||
3851 | if (!node) | ||
3852 | return dup_root; | ||
3853 | } | ||
3854 | node = node->right; | ||
3855 | p_new = &dup_node->right; | ||
3856 | } | ||
3857 | } | ||
3858 | } | ||