diff options
author | Ton Voon <tonvoon@users.sourceforge.net> | 2007-01-24 22:47:25 (GMT) |
---|---|---|
committer | Ton Voon <tonvoon@users.sourceforge.net> | 2007-01-24 22:47:25 (GMT) |
commit | fe856aa957978504137c1d425815d4ed8a22be40 (patch) | |
tree | a5bb46ce0e64b2056f75700eadbf27aba7c39418 /gl/regex_internal.c | |
parent | 210f39bc84cfbb21cd72dc054e43f13815ee0616 (diff) | |
download | monitoring-plugins-fe856aa957978504137c1d425815d4ed8a22be40.tar.gz |
Sync with gnulib - lots of extraneous code removed in preference to GNU code
git-svn-id: https://nagiosplug.svn.sourceforge.net/svnroot/nagiosplug/nagiosplug/trunk@1580 f882894a-f735-0410-b71e-b25c423dba1c
Diffstat (limited to 'gl/regex_internal.c')
-rw-r--r-- | gl/regex_internal.c | 1742 |
1 files changed, 1742 insertions, 0 deletions
diff --git a/gl/regex_internal.c b/gl/regex_internal.c new file mode 100644 index 0000000..78e16f3 --- /dev/null +++ b/gl/regex_internal.c | |||
@@ -0,0 +1,1742 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | static void re_string_construct_common (const char *str, Idx len, | ||
21 | re_string_t *pstr, | ||
22 | RE_TRANSLATE_TYPE trans, bool icase, | ||
23 | const re_dfa_t *dfa) internal_function; | ||
24 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, | ||
25 | const re_node_set *nodes, | ||
26 | re_hashval_t hash) internal_function; | ||
27 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, | ||
28 | const re_node_set *nodes, | ||
29 | unsigned int context, | ||
30 | re_hashval_t hash) internal_function; | ||
31 | |||
32 | /* Functions for string operation. */ | ||
33 | |||
34 | /* This function allocate the buffers. It is necessary to call | ||
35 | re_string_reconstruct before using the object. */ | ||
36 | |||
37 | static reg_errcode_t | ||
38 | internal_function | ||
39 | re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len, | ||
40 | RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) | ||
41 | { | ||
42 | reg_errcode_t ret; | ||
43 | Idx init_buf_len; | ||
44 | |||
45 | /* Ensure at least one character fits into the buffers. */ | ||
46 | if (init_len < dfa->mb_cur_max) | ||
47 | init_len = dfa->mb_cur_max; | ||
48 | init_buf_len = (len + 1 < init_len) ? len + 1: init_len; | ||
49 | re_string_construct_common (str, len, pstr, trans, icase, dfa); | ||
50 | |||
51 | ret = re_string_realloc_buffers (pstr, init_buf_len); | ||
52 | if (BE (ret != REG_NOERROR, 0)) | ||
53 | return ret; | ||
54 | |||
55 | pstr->word_char = dfa->word_char; | ||
56 | pstr->word_ops_used = dfa->word_ops_used; | ||
57 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | ||
58 | pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; | ||
59 | pstr->valid_raw_len = pstr->valid_len; | ||
60 | return REG_NOERROR; | ||
61 | } | ||
62 | |||
63 | /* This function allocate the buffers, and initialize them. */ | ||
64 | |||
65 | static reg_errcode_t | ||
66 | internal_function | ||
67 | re_string_construct (re_string_t *pstr, const char *str, Idx len, | ||
68 | RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) | ||
69 | { | ||
70 | reg_errcode_t ret; | ||
71 | memset (pstr, '\0', sizeof (re_string_t)); | ||
72 | re_string_construct_common (str, len, pstr, trans, icase, dfa); | ||
73 | |||
74 | if (len > 0) | ||
75 | { | ||
76 | ret = re_string_realloc_buffers (pstr, len + 1); | ||
77 | if (BE (ret != REG_NOERROR, 0)) | ||
78 | return ret; | ||
79 | } | ||
80 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | ||
81 | |||
82 | if (icase) | ||
83 | { | ||
84 | #ifdef RE_ENABLE_I18N | ||
85 | if (dfa->mb_cur_max > 1) | ||
86 | { | ||
87 | while (1) | ||
88 | { | ||
89 | ret = build_wcs_upper_buffer (pstr); | ||
90 | if (BE (ret != REG_NOERROR, 0)) | ||
91 | return ret; | ||
92 | if (pstr->valid_raw_len >= len) | ||
93 | break; | ||
94 | if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) | ||
95 | break; | ||
96 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | ||
97 | if (BE (ret != REG_NOERROR, 0)) | ||
98 | return ret; | ||
99 | } | ||
100 | } | ||
101 | else | ||
102 | #endif /* RE_ENABLE_I18N */ | ||
103 | build_upper_buffer (pstr); | ||
104 | } | ||
105 | else | ||
106 | { | ||
107 | #ifdef RE_ENABLE_I18N | ||
108 | if (dfa->mb_cur_max > 1) | ||
109 | build_wcs_buffer (pstr); | ||
110 | else | ||
111 | #endif /* RE_ENABLE_I18N */ | ||
112 | { | ||
113 | if (trans != NULL) | ||
114 | re_string_translate_buffer (pstr); | ||
115 | else | ||
116 | { | ||
117 | pstr->valid_len = pstr->bufs_len; | ||
118 | pstr->valid_raw_len = pstr->bufs_len; | ||
119 | } | ||
120 | } | ||
121 | } | ||
122 | |||
123 | return REG_NOERROR; | ||
124 | } | ||
125 | |||
126 | /* Helper functions for re_string_allocate, and re_string_construct. */ | ||
127 | |||
128 | static reg_errcode_t | ||
129 | internal_function | ||
130 | re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len) | ||
131 | { | ||
132 | #ifdef RE_ENABLE_I18N | ||
133 | if (pstr->mb_cur_max > 1) | ||
134 | { | ||
135 | wint_t *new_wcs; | ||
136 | |||
137 | /* Avoid overflow. */ | ||
138 | size_t max_object_size = MAX (sizeof (wint_t), sizeof (Idx)); | ||
139 | if (BE (SIZE_MAX / max_object_size < new_buf_len, 0)) | ||
140 | return REG_ESPACE; | ||
141 | |||
142 | new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); | ||
143 | if (BE (new_wcs == NULL, 0)) | ||
144 | return REG_ESPACE; | ||
145 | pstr->wcs = new_wcs; | ||
146 | if (pstr->offsets != NULL) | ||
147 | { | ||
148 | Idx *new_offsets = re_realloc (pstr->offsets, Idx, new_buf_len); | ||
149 | if (BE (new_offsets == NULL, 0)) | ||
150 | return REG_ESPACE; | ||
151 | pstr->offsets = new_offsets; | ||
152 | } | ||
153 | } | ||
154 | #endif /* RE_ENABLE_I18N */ | ||
155 | if (pstr->mbs_allocated) | ||
156 | { | ||
157 | unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, | ||
158 | new_buf_len); | ||
159 | if (BE (new_mbs == NULL, 0)) | ||
160 | return REG_ESPACE; | ||
161 | pstr->mbs = new_mbs; | ||
162 | } | ||
163 | pstr->bufs_len = new_buf_len; | ||
164 | return REG_NOERROR; | ||
165 | } | ||
166 | |||
167 | |||
168 | static void | ||
169 | internal_function | ||
170 | re_string_construct_common (const char *str, Idx len, re_string_t *pstr, | ||
171 | RE_TRANSLATE_TYPE trans, bool icase, | ||
172 | const re_dfa_t *dfa) | ||
173 | { | ||
174 | pstr->raw_mbs = (const unsigned char *) str; | ||
175 | pstr->len = len; | ||
176 | pstr->raw_len = len; | ||
177 | pstr->trans = trans; | ||
178 | pstr->icase = icase; | ||
179 | pstr->mbs_allocated = (trans != NULL || icase); | ||
180 | pstr->mb_cur_max = dfa->mb_cur_max; | ||
181 | pstr->is_utf8 = dfa->is_utf8; | ||
182 | pstr->map_notascii = dfa->map_notascii; | ||
183 | pstr->stop = pstr->len; | ||
184 | pstr->raw_stop = pstr->stop; | ||
185 | } | ||
186 | |||
187 | #ifdef RE_ENABLE_I18N | ||
188 | |||
189 | /* Build wide character buffer PSTR->WCS. | ||
190 | If the byte sequence of the string are: | ||
191 | <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> | ||
192 | Then wide character buffer will be: | ||
193 | <wc1> , WEOF , <wc2> , WEOF , <wc3> | ||
194 | We use WEOF for padding, they indicate that the position isn't | ||
195 | a first byte of a multibyte character. | ||
196 | |||
197 | Note that this function assumes PSTR->VALID_LEN elements are already | ||
198 | built and starts from PSTR->VALID_LEN. */ | ||
199 | |||
200 | static void | ||
201 | internal_function | ||
202 | build_wcs_buffer (re_string_t *pstr) | ||
203 | { | ||
204 | #ifdef _LIBC | ||
205 | unsigned char buf[MB_LEN_MAX]; | ||
206 | assert (MB_LEN_MAX >= pstr->mb_cur_max); | ||
207 | #else | ||
208 | unsigned char buf[64]; | ||
209 | #endif | ||
210 | mbstate_t prev_st; | ||
211 | Idx byte_idx, end_idx, remain_len; | ||
212 | size_t mbclen; | ||
213 | |||
214 | /* Build the buffers from pstr->valid_len to either pstr->len or | ||
215 | pstr->bufs_len. */ | ||
216 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
217 | for (byte_idx = pstr->valid_len; byte_idx < end_idx;) | ||
218 | { | ||
219 | wchar_t wc; | ||
220 | const char *p; | ||
221 | |||
222 | remain_len = end_idx - byte_idx; | ||
223 | prev_st = pstr->cur_state; | ||
224 | /* Apply the translation if we need. */ | ||
225 | if (BE (pstr->trans != NULL, 0)) | ||
226 | { | ||
227 | int i, ch; | ||
228 | |||
229 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | ||
230 | { | ||
231 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; | ||
232 | buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; | ||
233 | } | ||
234 | p = (const char *) buf; | ||
235 | } | ||
236 | else | ||
237 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; | ||
238 | mbclen = mbrtowc (&wc, p, remain_len, &pstr->cur_state); | ||
239 | if (BE (mbclen == (size_t) -2, 0)) | ||
240 | { | ||
241 | /* The buffer doesn't have enough space, finish to build. */ | ||
242 | pstr->cur_state = prev_st; | ||
243 | break; | ||
244 | } | ||
245 | else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0)) | ||
246 | { | ||
247 | /* We treat these cases as a singlebyte character. */ | ||
248 | mbclen = 1; | ||
249 | wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | ||
250 | if (BE (pstr->trans != NULL, 0)) | ||
251 | wc = pstr->trans[wc]; | ||
252 | pstr->cur_state = prev_st; | ||
253 | } | ||
254 | |||
255 | /* Write wide character and padding. */ | ||
256 | pstr->wcs[byte_idx++] = wc; | ||
257 | /* Write paddings. */ | ||
258 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
259 | pstr->wcs[byte_idx++] = WEOF; | ||
260 | } | ||
261 | pstr->valid_len = byte_idx; | ||
262 | pstr->valid_raw_len = byte_idx; | ||
263 | } | ||
264 | |||
265 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, | ||
266 | but for REG_ICASE. */ | ||
267 | |||
268 | static reg_errcode_t | ||
269 | internal_function | ||
270 | build_wcs_upper_buffer (re_string_t *pstr) | ||
271 | { | ||
272 | mbstate_t prev_st; | ||
273 | Idx src_idx, byte_idx, end_idx, remain_len; | ||
274 | size_t mbclen; | ||
275 | #ifdef _LIBC | ||
276 | char buf[MB_LEN_MAX]; | ||
277 | assert (MB_LEN_MAX >= pstr->mb_cur_max); | ||
278 | #else | ||
279 | char buf[64]; | ||
280 | #endif | ||
281 | |||
282 | byte_idx = pstr->valid_len; | ||
283 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
284 | |||
285 | /* The following optimization assumes that ASCII characters can be | ||
286 | mapped to wide characters with a simple cast. */ | ||
287 | if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) | ||
288 | { | ||
289 | while (byte_idx < end_idx) | ||
290 | { | ||
291 | wchar_t wc; | ||
292 | |||
293 | if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) | ||
294 | && mbsinit (&pstr->cur_state)) | ||
295 | { | ||
296 | /* In case of a singlebyte character. */ | ||
297 | pstr->mbs[byte_idx] | ||
298 | = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); | ||
299 | /* The next step uses the assumption that wchar_t is encoded | ||
300 | ASCII-safe: all ASCII values can be converted like this. */ | ||
301 | pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; | ||
302 | ++byte_idx; | ||
303 | continue; | ||
304 | } | ||
305 | |||
306 | remain_len = end_idx - byte_idx; | ||
307 | prev_st = pstr->cur_state; | ||
308 | mbclen = mbrtowc (&wc, | ||
309 | ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx | ||
310 | + byte_idx), remain_len, &pstr->cur_state); | ||
311 | if (BE (mbclen < (size_t) -2, 1)) | ||
312 | { | ||
313 | wchar_t wcu = wc; | ||
314 | if (iswlower (wc)) | ||
315 | { | ||
316 | size_t mbcdlen; | ||
317 | |||
318 | wcu = towupper (wc); | ||
319 | mbcdlen = wcrtomb (buf, wcu, &prev_st); | ||
320 | if (BE (mbclen == mbcdlen, 1)) | ||
321 | memcpy (pstr->mbs + byte_idx, buf, mbclen); | ||
322 | else | ||
323 | { | ||
324 | src_idx = byte_idx; | ||
325 | goto offsets_needed; | ||
326 | } | ||
327 | } | ||
328 | else | ||
329 | memcpy (pstr->mbs + byte_idx, | ||
330 | pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); | ||
331 | pstr->wcs[byte_idx++] = wcu; | ||
332 | /* Write paddings. */ | ||
333 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
334 | pstr->wcs[byte_idx++] = WEOF; | ||
335 | } | ||
336 | else if (mbclen == (size_t) -1 || mbclen == 0) | ||
337 | { | ||
338 | /* It is an invalid character or '\0'. Just use the byte. */ | ||
339 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | ||
340 | pstr->mbs[byte_idx] = ch; | ||
341 | /* And also cast it to wide char. */ | ||
342 | pstr->wcs[byte_idx++] = (wchar_t) ch; | ||
343 | if (BE (mbclen == (size_t) -1, 0)) | ||
344 | pstr->cur_state = prev_st; | ||
345 | } | ||
346 | else | ||
347 | { | ||
348 | /* The buffer doesn't have enough space, finish to build. */ | ||
349 | pstr->cur_state = prev_st; | ||
350 | break; | ||
351 | } | ||
352 | } | ||
353 | pstr->valid_len = byte_idx; | ||
354 | pstr->valid_raw_len = byte_idx; | ||
355 | return REG_NOERROR; | ||
356 | } | ||
357 | else | ||
358 | for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) | ||
359 | { | ||
360 | wchar_t wc; | ||
361 | const char *p; | ||
362 | offsets_needed: | ||
363 | remain_len = end_idx - byte_idx; | ||
364 | prev_st = pstr->cur_state; | ||
365 | if (BE (pstr->trans != NULL, 0)) | ||
366 | { | ||
367 | int i, ch; | ||
368 | |||
369 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | ||
370 | { | ||
371 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; | ||
372 | buf[i] = pstr->trans[ch]; | ||
373 | } | ||
374 | p = (const char *) buf; | ||
375 | } | ||
376 | else | ||
377 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; | ||
378 | mbclen = mbrtowc (&wc, p, remain_len, &pstr->cur_state); | ||
379 | if (BE (mbclen < (size_t) -2, 1)) | ||
380 | { | ||
381 | wchar_t wcu = wc; | ||
382 | if (iswlower (wc)) | ||
383 | { | ||
384 | size_t mbcdlen; | ||
385 | |||
386 | wcu = towupper (wc); | ||
387 | mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st); | ||
388 | if (BE (mbclen == mbcdlen, 1)) | ||
389 | memcpy (pstr->mbs + byte_idx, buf, mbclen); | ||
390 | else if (mbcdlen != (size_t) -1) | ||
391 | { | ||
392 | size_t i; | ||
393 | |||
394 | if (byte_idx + mbcdlen > pstr->bufs_len) | ||
395 | { | ||
396 | pstr->cur_state = prev_st; | ||
397 | break; | ||
398 | } | ||
399 | |||
400 | if (pstr->offsets == NULL) | ||
401 | { | ||
402 | pstr->offsets = re_malloc (Idx, pstr->bufs_len); | ||
403 | |||
404 | if (pstr->offsets == NULL) | ||
405 | return REG_ESPACE; | ||
406 | } | ||
407 | if (!pstr->offsets_needed) | ||
408 | { | ||
409 | for (i = 0; i < (size_t) byte_idx; ++i) | ||
410 | pstr->offsets[i] = i; | ||
411 | pstr->offsets_needed = 1; | ||
412 | } | ||
413 | |||
414 | memcpy (pstr->mbs + byte_idx, buf, mbcdlen); | ||
415 | pstr->wcs[byte_idx] = wcu; | ||
416 | pstr->offsets[byte_idx] = src_idx; | ||
417 | for (i = 1; i < mbcdlen; ++i) | ||
418 | { | ||
419 | pstr->offsets[byte_idx + i] | ||
420 | = src_idx + (i < mbclen ? i : mbclen - 1); | ||
421 | pstr->wcs[byte_idx + i] = WEOF; | ||
422 | } | ||
423 | pstr->len += mbcdlen - mbclen; | ||
424 | if (pstr->raw_stop > src_idx) | ||
425 | pstr->stop += mbcdlen - mbclen; | ||
426 | end_idx = (pstr->bufs_len > pstr->len) | ||
427 | ? pstr->len : pstr->bufs_len; | ||
428 | byte_idx += mbcdlen; | ||
429 | src_idx += mbclen; | ||
430 | continue; | ||
431 | } | ||
432 | else | ||
433 | memcpy (pstr->mbs + byte_idx, p, mbclen); | ||
434 | } | ||
435 | else | ||
436 | memcpy (pstr->mbs + byte_idx, p, mbclen); | ||
437 | |||
438 | if (BE (pstr->offsets_needed != 0, 0)) | ||
439 | { | ||
440 | size_t i; | ||
441 | for (i = 0; i < mbclen; ++i) | ||
442 | pstr->offsets[byte_idx + i] = src_idx + i; | ||
443 | } | ||
444 | src_idx += mbclen; | ||
445 | |||
446 | pstr->wcs[byte_idx++] = wcu; | ||
447 | /* Write paddings. */ | ||
448 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
449 | pstr->wcs[byte_idx++] = WEOF; | ||
450 | } | ||
451 | else if (mbclen == (size_t) -1 || mbclen == 0) | ||
452 | { | ||
453 | /* It is an invalid character or '\0'. Just use the byte. */ | ||
454 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; | ||
455 | |||
456 | if (BE (pstr->trans != NULL, 0)) | ||
457 | ch = pstr->trans [ch]; | ||
458 | pstr->mbs[byte_idx] = ch; | ||
459 | |||
460 | if (BE (pstr->offsets_needed != 0, 0)) | ||
461 | pstr->offsets[byte_idx] = src_idx; | ||
462 | ++src_idx; | ||
463 | |||
464 | /* And also cast it to wide char. */ | ||
465 | pstr->wcs[byte_idx++] = (wchar_t) ch; | ||
466 | if (BE (mbclen == (size_t) -1, 0)) | ||
467 | pstr->cur_state = prev_st; | ||
468 | } | ||
469 | else | ||
470 | { | ||
471 | /* The buffer doesn't have enough space, finish to build. */ | ||
472 | pstr->cur_state = prev_st; | ||
473 | break; | ||
474 | } | ||
475 | } | ||
476 | pstr->valid_len = byte_idx; | ||
477 | pstr->valid_raw_len = src_idx; | ||
478 | return REG_NOERROR; | ||
479 | } | ||
480 | |||
481 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. | ||
482 | Return the index. */ | ||
483 | |||
484 | static Idx | ||
485 | internal_function | ||
486 | re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc) | ||
487 | { | ||
488 | mbstate_t prev_st; | ||
489 | Idx rawbuf_idx; | ||
490 | size_t mbclen; | ||
491 | wint_t wc = WEOF; | ||
492 | |||
493 | /* Skip the characters which are not necessary to check. */ | ||
494 | for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; | ||
495 | rawbuf_idx < new_raw_idx;) | ||
496 | { | ||
497 | wchar_t wc2; | ||
498 | Idx remain_len; | ||
499 | remain_len = pstr->len - rawbuf_idx; | ||
500 | prev_st = pstr->cur_state; | ||
501 | mbclen = mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, | ||
502 | remain_len, &pstr->cur_state); | ||
503 | if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) | ||
504 | { | ||
505 | /* We treat these cases as a single byte character. */ | ||
506 | if (mbclen == 0 || remain_len == 0) | ||
507 | wc = L'\0'; | ||
508 | else | ||
509 | wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); | ||
510 | mbclen = 1; | ||
511 | pstr->cur_state = prev_st; | ||
512 | } | ||
513 | else | ||
514 | wc = wc2; | ||
515 | /* Then proceed the next character. */ | ||
516 | rawbuf_idx += mbclen; | ||
517 | } | ||
518 | *last_wc = wc; | ||
519 | return rawbuf_idx; | ||
520 | } | ||
521 | #endif /* RE_ENABLE_I18N */ | ||
522 | |||
523 | /* Build the buffer PSTR->MBS, and apply the translation if we need. | ||
524 | This function is used in case of REG_ICASE. */ | ||
525 | |||
526 | static void | ||
527 | internal_function | ||
528 | build_upper_buffer (re_string_t *pstr) | ||
529 | { | ||
530 | Idx char_idx, end_idx; | ||
531 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
532 | |||
533 | for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) | ||
534 | { | ||
535 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; | ||
536 | if (BE (pstr->trans != NULL, 0)) | ||
537 | ch = pstr->trans[ch]; | ||
538 | if (islower (ch)) | ||
539 | pstr->mbs[char_idx] = toupper (ch); | ||
540 | else | ||
541 | pstr->mbs[char_idx] = ch; | ||
542 | } | ||
543 | pstr->valid_len = char_idx; | ||
544 | pstr->valid_raw_len = char_idx; | ||
545 | } | ||
546 | |||
547 | /* Apply TRANS to the buffer in PSTR. */ | ||
548 | |||
549 | static void | ||
550 | internal_function | ||
551 | re_string_translate_buffer (re_string_t *pstr) | ||
552 | { | ||
553 | Idx buf_idx, end_idx; | ||
554 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
555 | |||
556 | for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) | ||
557 | { | ||
558 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; | ||
559 | pstr->mbs[buf_idx] = pstr->trans[ch]; | ||
560 | } | ||
561 | |||
562 | pstr->valid_len = buf_idx; | ||
563 | pstr->valid_raw_len = buf_idx; | ||
564 | } | ||
565 | |||
566 | /* This function re-construct the buffers. | ||
567 | Concretely, convert to wide character in case of pstr->mb_cur_max > 1, | ||
568 | convert to upper case in case of REG_ICASE, apply translation. */ | ||
569 | |||
570 | static reg_errcode_t | ||
571 | internal_function | ||
572 | re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags) | ||
573 | { | ||
574 | Idx offset; | ||
575 | |||
576 | if (BE (pstr->raw_mbs_idx <= idx, 0)) | ||
577 | offset = idx - pstr->raw_mbs_idx; | ||
578 | else | ||
579 | { | ||
580 | /* Reset buffer. */ | ||
581 | #ifdef RE_ENABLE_I18N | ||
582 | if (pstr->mb_cur_max > 1) | ||
583 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | ||
584 | #endif /* RE_ENABLE_I18N */ | ||
585 | pstr->len = pstr->raw_len; | ||
586 | pstr->stop = pstr->raw_stop; | ||
587 | pstr->valid_len = 0; | ||
588 | pstr->raw_mbs_idx = 0; | ||
589 | pstr->valid_raw_len = 0; | ||
590 | pstr->offsets_needed = 0; | ||
591 | pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | ||
592 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF); | ||
593 | if (!pstr->mbs_allocated) | ||
594 | pstr->mbs = (unsigned char *) pstr->raw_mbs; | ||
595 | offset = idx; | ||
596 | } | ||
597 | |||
598 | if (BE (offset != 0, 1)) | ||
599 | { | ||
600 | /* Should the already checked characters be kept? */ | ||
601 | if (BE (offset < pstr->valid_raw_len, 1)) | ||
602 | { | ||
603 | /* Yes, move them to the front of the buffer. */ | ||
604 | #ifdef RE_ENABLE_I18N | ||
605 | if (BE (pstr->offsets_needed, 0)) | ||
606 | { | ||
607 | Idx low = 0, high = pstr->valid_len, mid; | ||
608 | do | ||
609 | { | ||
610 | mid = (high + low) / 2; | ||
611 | if (pstr->offsets[mid] > offset) | ||
612 | high = mid; | ||
613 | else if (pstr->offsets[mid] < offset) | ||
614 | low = mid + 1; | ||
615 | else | ||
616 | break; | ||
617 | } | ||
618 | while (low < high); | ||
619 | if (pstr->offsets[mid] < offset) | ||
620 | ++mid; | ||
621 | pstr->tip_context = re_string_context_at (pstr, mid - 1, | ||
622 | eflags); | ||
623 | /* This can be quite complicated, so handle specially | ||
624 | only the common and easy case where the character with | ||
625 | different length representation of lower and upper | ||
626 | case is present at or after offset. */ | ||
627 | if (pstr->valid_len > offset | ||
628 | && mid == offset && pstr->offsets[mid] == offset) | ||
629 | { | ||
630 | memmove (pstr->wcs, pstr->wcs + offset, | ||
631 | (pstr->valid_len - offset) * sizeof (wint_t)); | ||
632 | memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); | ||
633 | pstr->valid_len -= offset; | ||
634 | pstr->valid_raw_len -= offset; | ||
635 | for (low = 0; low < pstr->valid_len; low++) | ||
636 | pstr->offsets[low] = pstr->offsets[low + offset] - offset; | ||
637 | } | ||
638 | else | ||
639 | { | ||
640 | /* Otherwise, just find out how long the partial multibyte | ||
641 | character at offset is and fill it with WEOF/255. */ | ||
642 | pstr->len = pstr->raw_len - idx + offset; | ||
643 | pstr->stop = pstr->raw_stop - idx + offset; | ||
644 | pstr->offsets_needed = 0; | ||
645 | while (mid > 0 && pstr->offsets[mid - 1] == offset) | ||
646 | --mid; | ||
647 | while (mid < pstr->valid_len) | ||
648 | if (pstr->wcs[mid] != WEOF) | ||
649 | break; | ||
650 | else | ||
651 | ++mid; | ||
652 | if (mid == pstr->valid_len) | ||
653 | pstr->valid_len = 0; | ||
654 | else | ||
655 | { | ||
656 | pstr->valid_len = pstr->offsets[mid] - offset; | ||
657 | if (pstr->valid_len) | ||
658 | { | ||
659 | for (low = 0; low < pstr->valid_len; ++low) | ||
660 | pstr->wcs[low] = WEOF; | ||
661 | memset (pstr->mbs, 255, pstr->valid_len); | ||
662 | } | ||
663 | } | ||
664 | pstr->valid_raw_len = pstr->valid_len; | ||
665 | } | ||
666 | } | ||
667 | else | ||
668 | #endif | ||
669 | { | ||
670 | pstr->tip_context = re_string_context_at (pstr, offset - 1, | ||
671 | eflags); | ||
672 | #ifdef RE_ENABLE_I18N | ||
673 | if (pstr->mb_cur_max > 1) | ||
674 | memmove (pstr->wcs, pstr->wcs + offset, | ||
675 | (pstr->valid_len - offset) * sizeof (wint_t)); | ||
676 | #endif /* RE_ENABLE_I18N */ | ||
677 | if (BE (pstr->mbs_allocated, 0)) | ||
678 | memmove (pstr->mbs, pstr->mbs + offset, | ||
679 | pstr->valid_len - offset); | ||
680 | pstr->valid_len -= offset; | ||
681 | pstr->valid_raw_len -= offset; | ||
682 | #if DEBUG | ||
683 | assert (pstr->valid_len > 0); | ||
684 | #endif | ||
685 | } | ||
686 | } | ||
687 | else | ||
688 | { | ||
689 | /* No, skip all characters until IDX. */ | ||
690 | Idx prev_valid_len = pstr->valid_len; | ||
691 | |||
692 | #ifdef RE_ENABLE_I18N | ||
693 | if (BE (pstr->offsets_needed, 0)) | ||
694 | { | ||
695 | pstr->len = pstr->raw_len - idx + offset; | ||
696 | pstr->stop = pstr->raw_stop - idx + offset; | ||
697 | pstr->offsets_needed = 0; | ||
698 | } | ||
699 | #endif | ||
700 | pstr->valid_len = 0; | ||
701 | #ifdef RE_ENABLE_I18N | ||
702 | if (pstr->mb_cur_max > 1) | ||
703 | { | ||
704 | Idx wcs_idx; | ||
705 | wint_t wc = WEOF; | ||
706 | |||
707 | if (pstr->is_utf8) | ||
708 | { | ||
709 | const unsigned char *raw, *p, *q, *end; | ||
710 | |||
711 | /* Special case UTF-8. Multi-byte chars start with any | ||
712 | byte other than 0x80 - 0xbf. */ | ||
713 | raw = pstr->raw_mbs + pstr->raw_mbs_idx; | ||
714 | end = raw + (offset - pstr->mb_cur_max); | ||
715 | if (end < pstr->raw_mbs) | ||
716 | end = pstr->raw_mbs; | ||
717 | p = raw + offset - 1; | ||
718 | #ifdef _LIBC | ||
719 | /* We know the wchar_t encoding is UCS4, so for the simple | ||
720 | case, ASCII characters, skip the conversion step. */ | ||
721 | if (isascii (*p) && BE (pstr->trans == NULL, 1)) | ||
722 | { | ||
723 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | ||
724 | /* pstr->valid_len = 0; */ | ||
725 | wc = (wchar_t) *p; | ||
726 | } | ||
727 | else | ||
728 | #endif | ||
729 | for (; p >= end; --p) | ||
730 | if ((*p & 0xc0) != 0x80) | ||
731 | { | ||
732 | mbstate_t cur_state; | ||
733 | wchar_t wc2; | ||
734 | Idx mlen = raw + pstr->len - p; | ||
735 | unsigned char buf[6]; | ||
736 | size_t mbclen; | ||
737 | |||
738 | q = p; | ||
739 | if (BE (pstr->trans != NULL, 0)) | ||
740 | { | ||
741 | int i = mlen < 6 ? mlen : 6; | ||
742 | while (--i >= 0) | ||
743 | buf[i] = pstr->trans[p[i]]; | ||
744 | q = buf; | ||
745 | } | ||
746 | /* XXX Don't use mbrtowc, we know which conversion | ||
747 | to use (UTF-8 -> UCS4). */ | ||
748 | memset (&cur_state, 0, sizeof (cur_state)); | ||
749 | mbclen = mbrtowc (&wc2, (const char *) p, mlen, | ||
750 | &cur_state); | ||
751 | if (raw + offset - p <= mbclen | ||
752 | && mbclen < (size_t) -2) | ||
753 | { | ||
754 | memset (&pstr->cur_state, '\0', | ||
755 | sizeof (mbstate_t)); | ||
756 | pstr->valid_len = mbclen - (raw + offset - p); | ||
757 | wc = wc2; | ||
758 | } | ||
759 | break; | ||
760 | } | ||
761 | } | ||
762 | |||
763 | if (wc == WEOF) | ||
764 | pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; | ||
765 | if (wc == WEOF) | ||
766 | pstr->tip_context | ||
767 | = re_string_context_at (pstr, prev_valid_len - 1, eflags); | ||
768 | else | ||
769 | pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) | ||
770 | && IS_WIDE_WORD_CHAR (wc)) | ||
771 | ? CONTEXT_WORD | ||
772 | : ((IS_WIDE_NEWLINE (wc) | ||
773 | && pstr->newline_anchor) | ||
774 | ? CONTEXT_NEWLINE : 0)); | ||
775 | if (BE (pstr->valid_len, 0)) | ||
776 | { | ||
777 | for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) | ||
778 | pstr->wcs[wcs_idx] = WEOF; | ||
779 | if (pstr->mbs_allocated) | ||
780 | memset (pstr->mbs, 255, pstr->valid_len); | ||
781 | } | ||
782 | pstr->valid_raw_len = pstr->valid_len; | ||
783 | } | ||
784 | else | ||
785 | #endif /* RE_ENABLE_I18N */ | ||
786 | { | ||
787 | int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; | ||
788 | pstr->valid_raw_len = 0; | ||
789 | if (pstr->trans) | ||
790 | c = pstr->trans[c]; | ||
791 | pstr->tip_context = (bitset_contain (pstr->word_char, c) | ||
792 | ? CONTEXT_WORD | ||
793 | : ((IS_NEWLINE (c) && pstr->newline_anchor) | ||
794 | ? CONTEXT_NEWLINE : 0)); | ||
795 | } | ||
796 | } | ||
797 | if (!BE (pstr->mbs_allocated, 0)) | ||
798 | pstr->mbs += offset; | ||
799 | } | ||
800 | pstr->raw_mbs_idx = idx; | ||
801 | pstr->len -= offset; | ||
802 | pstr->stop -= offset; | ||
803 | |||
804 | /* Then build the buffers. */ | ||
805 | #ifdef RE_ENABLE_I18N | ||
806 | if (pstr->mb_cur_max > 1) | ||
807 | { | ||
808 | if (pstr->icase) | ||
809 | { | ||
810 | reg_errcode_t ret = build_wcs_upper_buffer (pstr); | ||
811 | if (BE (ret != REG_NOERROR, 0)) | ||
812 | return ret; | ||
813 | } | ||
814 | else | ||
815 | build_wcs_buffer (pstr); | ||
816 | } | ||
817 | else | ||
818 | #endif /* RE_ENABLE_I18N */ | ||
819 | if (BE (pstr->mbs_allocated, 0)) | ||
820 | { | ||
821 | if (pstr->icase) | ||
822 | build_upper_buffer (pstr); | ||
823 | else if (pstr->trans != NULL) | ||
824 | re_string_translate_buffer (pstr); | ||
825 | } | ||
826 | else | ||
827 | pstr->valid_len = pstr->len; | ||
828 | |||
829 | pstr->cur_idx = 0; | ||
830 | return REG_NOERROR; | ||
831 | } | ||
832 | |||
833 | static unsigned char | ||
834 | internal_function __attribute ((pure)) | ||
835 | re_string_peek_byte_case (const re_string_t *pstr, Idx idx) | ||
836 | { | ||
837 | int ch; | ||
838 | Idx off; | ||
839 | |||
840 | /* Handle the common (easiest) cases first. */ | ||
841 | if (BE (!pstr->mbs_allocated, 1)) | ||
842 | return re_string_peek_byte (pstr, idx); | ||
843 | |||
844 | #ifdef RE_ENABLE_I18N | ||
845 | if (pstr->mb_cur_max > 1 | ||
846 | && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) | ||
847 | return re_string_peek_byte (pstr, idx); | ||
848 | #endif | ||
849 | |||
850 | off = pstr->cur_idx + idx; | ||
851 | #ifdef RE_ENABLE_I18N | ||
852 | if (pstr->offsets_needed) | ||
853 | off = pstr->offsets[off]; | ||
854 | #endif | ||
855 | |||
856 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | ||
857 | |||
858 | #ifdef RE_ENABLE_I18N | ||
859 | /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I | ||
860 | this function returns CAPITAL LETTER I instead of first byte of | ||
861 | DOTLESS SMALL LETTER I. The latter would confuse the parser, | ||
862 | since peek_byte_case doesn't advance cur_idx in any way. */ | ||
863 | if (pstr->offsets_needed && !isascii (ch)) | ||
864 | return re_string_peek_byte (pstr, idx); | ||
865 | #endif | ||
866 | |||
867 | return ch; | ||
868 | } | ||
869 | |||
870 | static unsigned char | ||
871 | internal_function __attribute ((pure)) | ||
872 | re_string_fetch_byte_case (re_string_t *pstr) | ||
873 | { | ||
874 | if (BE (!pstr->mbs_allocated, 1)) | ||
875 | return re_string_fetch_byte (pstr); | ||
876 | |||
877 | #ifdef RE_ENABLE_I18N | ||
878 | if (pstr->offsets_needed) | ||
879 | { | ||
880 | Idx off; | ||
881 | int ch; | ||
882 | |||
883 | /* For tr_TR.UTF-8 [[:islower:]] there is | ||
884 | [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip | ||
885 | in that case the whole multi-byte character and return | ||
886 | the original letter. On the other side, with | ||
887 | [[: DOTLESS SMALL LETTER I return [[:I, as doing | ||
888 | anything else would complicate things too much. */ | ||
889 | |||
890 | if (!re_string_first_byte (pstr, pstr->cur_idx)) | ||
891 | return re_string_fetch_byte (pstr); | ||
892 | |||
893 | off = pstr->offsets[pstr->cur_idx]; | ||
894 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | ||
895 | |||
896 | if (! isascii (ch)) | ||
897 | return re_string_fetch_byte (pstr); | ||
898 | |||
899 | re_string_skip_bytes (pstr, | ||
900 | re_string_char_size_at (pstr, pstr->cur_idx)); | ||
901 | return ch; | ||
902 | } | ||
903 | #endif | ||
904 | |||
905 | return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; | ||
906 | } | ||
907 | |||
908 | static void | ||
909 | internal_function | ||
910 | re_string_destruct (re_string_t *pstr) | ||
911 | { | ||
912 | #ifdef RE_ENABLE_I18N | ||
913 | re_free (pstr->wcs); | ||
914 | re_free (pstr->offsets); | ||
915 | #endif /* RE_ENABLE_I18N */ | ||
916 | if (pstr->mbs_allocated) | ||
917 | re_free (pstr->mbs); | ||
918 | } | ||
919 | |||
920 | /* Return the context at IDX in INPUT. */ | ||
921 | |||
922 | static unsigned int | ||
923 | internal_function | ||
924 | re_string_context_at (const re_string_t *input, Idx idx, int eflags) | ||
925 | { | ||
926 | int c; | ||
927 | if (BE (! REG_VALID_INDEX (idx), 0)) | ||
928 | /* In this case, we use the value stored in input->tip_context, | ||
929 | since we can't know the character in input->mbs[-1] here. */ | ||
930 | return input->tip_context; | ||
931 | if (BE (idx == input->len, 0)) | ||
932 | return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF | ||
933 | : CONTEXT_NEWLINE | CONTEXT_ENDBUF); | ||
934 | #ifdef RE_ENABLE_I18N | ||
935 | if (input->mb_cur_max > 1) | ||
936 | { | ||
937 | wint_t wc; | ||
938 | Idx wc_idx = idx; | ||
939 | while(input->wcs[wc_idx] == WEOF) | ||
940 | { | ||
941 | #ifdef DEBUG | ||
942 | /* It must not happen. */ | ||
943 | assert (REG_VALID_INDEX (wc_idx)); | ||
944 | #endif | ||
945 | --wc_idx; | ||
946 | if (! REG_VALID_INDEX (wc_idx)) | ||
947 | return input->tip_context; | ||
948 | } | ||
949 | wc = input->wcs[wc_idx]; | ||
950 | if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) | ||
951 | return CONTEXT_WORD; | ||
952 | return (IS_WIDE_NEWLINE (wc) && input->newline_anchor | ||
953 | ? CONTEXT_NEWLINE : 0); | ||
954 | } | ||
955 | else | ||
956 | #endif | ||
957 | { | ||
958 | c = re_string_byte_at (input, idx); | ||
959 | if (bitset_contain (input->word_char, c)) | ||
960 | return CONTEXT_WORD; | ||
961 | return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; | ||
962 | } | ||
963 | } | ||
964 | |||
965 | /* Functions for set operation. */ | ||
966 | |||
967 | static reg_errcode_t | ||
968 | internal_function | ||
969 | re_node_set_alloc (re_node_set *set, Idx size) | ||
970 | { | ||
971 | set->alloc = size; | ||
972 | set->nelem = 0; | ||
973 | set->elems = re_malloc (Idx, size); | ||
974 | if (BE (set->elems == NULL, 0)) | ||
975 | return REG_ESPACE; | ||
976 | return REG_NOERROR; | ||
977 | } | ||
978 | |||
979 | static reg_errcode_t | ||
980 | internal_function | ||
981 | re_node_set_init_1 (re_node_set *set, Idx elem) | ||
982 | { | ||
983 | set->alloc = 1; | ||
984 | set->nelem = 1; | ||
985 | set->elems = re_malloc (Idx, 1); | ||
986 | if (BE (set->elems == NULL, 0)) | ||
987 | { | ||
988 | set->alloc = set->nelem = 0; | ||
989 | return REG_ESPACE; | ||
990 | } | ||
991 | set->elems[0] = elem; | ||
992 | return REG_NOERROR; | ||
993 | } | ||
994 | |||
995 | static reg_errcode_t | ||
996 | internal_function | ||
997 | re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2) | ||
998 | { | ||
999 | set->alloc = 2; | ||
1000 | set->elems = re_malloc (Idx, 2); | ||
1001 | if (BE (set->elems == NULL, 0)) | ||
1002 | return REG_ESPACE; | ||
1003 | if (elem1 == elem2) | ||
1004 | { | ||
1005 | set->nelem = 1; | ||
1006 | set->elems[0] = elem1; | ||
1007 | } | ||
1008 | else | ||
1009 | { | ||
1010 | set->nelem = 2; | ||
1011 | if (elem1 < elem2) | ||
1012 | { | ||
1013 | set->elems[0] = elem1; | ||
1014 | set->elems[1] = elem2; | ||
1015 | } | ||
1016 | else | ||
1017 | { | ||
1018 | set->elems[0] = elem2; | ||
1019 | set->elems[1] = elem1; | ||
1020 | } | ||
1021 | } | ||
1022 | return REG_NOERROR; | ||
1023 | } | ||
1024 | |||
1025 | static reg_errcode_t | ||
1026 | internal_function | ||
1027 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) | ||
1028 | { | ||
1029 | dest->nelem = src->nelem; | ||
1030 | if (src->nelem > 0) | ||
1031 | { | ||
1032 | dest->alloc = dest->nelem; | ||
1033 | dest->elems = re_malloc (Idx, dest->alloc); | ||
1034 | if (BE (dest->elems == NULL, 0)) | ||
1035 | { | ||
1036 | dest->alloc = dest->nelem = 0; | ||
1037 | return REG_ESPACE; | ||
1038 | } | ||
1039 | memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); | ||
1040 | } | ||
1041 | else | ||
1042 | re_node_set_init_empty (dest); | ||
1043 | return REG_NOERROR; | ||
1044 | } | ||
1045 | |||
1046 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to | ||
1047 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. | ||
1048 | Note: We assume dest->elems is NULL, when dest->alloc is 0. */ | ||
1049 | |||
1050 | static reg_errcode_t | ||
1051 | internal_function | ||
1052 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, | ||
1053 | const re_node_set *src2) | ||
1054 | { | ||
1055 | Idx i1, i2, is, id, delta, sbase; | ||
1056 | if (src1->nelem == 0 || src2->nelem == 0) | ||
1057 | return REG_NOERROR; | ||
1058 | |||
1059 | /* We need dest->nelem + 2 * elems_in_intersection; this is a | ||
1060 | conservative estimate. */ | ||
1061 | if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) | ||
1062 | { | ||
1063 | Idx new_alloc = src1->nelem + src2->nelem + dest->alloc; | ||
1064 | Idx *new_elems = re_realloc (dest->elems, Idx, new_alloc); | ||
1065 | if (BE (new_elems == NULL, 0)) | ||
1066 | return REG_ESPACE; | ||
1067 | dest->elems = new_elems; | ||
1068 | dest->alloc = new_alloc; | ||
1069 | } | ||
1070 | |||
1071 | /* Find the items in the intersection of SRC1 and SRC2, and copy | ||
1072 | into the top of DEST those that are not already in DEST itself. */ | ||
1073 | sbase = dest->nelem + src1->nelem + src2->nelem; | ||
1074 | i1 = src1->nelem - 1; | ||
1075 | i2 = src2->nelem - 1; | ||
1076 | id = dest->nelem - 1; | ||
1077 | for (;;) | ||
1078 | { | ||
1079 | if (src1->elems[i1] == src2->elems[i2]) | ||
1080 | { | ||
1081 | /* Try to find the item in DEST. Maybe we could binary search? */ | ||
1082 | while (REG_VALID_INDEX (id) && dest->elems[id] > src1->elems[i1]) | ||
1083 | --id; | ||
1084 | |||
1085 | if (! REG_VALID_INDEX (id) || dest->elems[id] != src1->elems[i1]) | ||
1086 | dest->elems[--sbase] = src1->elems[i1]; | ||
1087 | |||
1088 | if (! REG_VALID_INDEX (--i1) || ! REG_VALID_INDEX (--i2)) | ||
1089 | break; | ||
1090 | } | ||
1091 | |||
1092 | /* Lower the highest of the two items. */ | ||
1093 | else if (src1->elems[i1] < src2->elems[i2]) | ||
1094 | { | ||
1095 | if (! REG_VALID_INDEX (--i2)) | ||
1096 | break; | ||
1097 | } | ||
1098 | else | ||
1099 | { | ||
1100 | if (! REG_VALID_INDEX (--i1)) | ||
1101 | break; | ||
1102 | } | ||
1103 | } | ||
1104 | |||
1105 | id = dest->nelem - 1; | ||
1106 | is = dest->nelem + src1->nelem + src2->nelem - 1; | ||
1107 | delta = is - sbase + 1; | ||
1108 | |||
1109 | /* Now copy. When DELTA becomes zero, the remaining | ||
1110 | DEST elements are already in place; this is more or | ||
1111 | less the same loop that is in re_node_set_merge. */ | ||
1112 | dest->nelem += delta; | ||
1113 | if (delta > 0 && REG_VALID_INDEX (id)) | ||
1114 | for (;;) | ||
1115 | { | ||
1116 | if (dest->elems[is] > dest->elems[id]) | ||
1117 | { | ||
1118 | /* Copy from the top. */ | ||
1119 | dest->elems[id + delta--] = dest->elems[is--]; | ||
1120 | if (delta == 0) | ||
1121 | break; | ||
1122 | } | ||
1123 | else | ||
1124 | { | ||
1125 | /* Slide from the bottom. */ | ||
1126 | dest->elems[id + delta] = dest->elems[id]; | ||
1127 | if (! REG_VALID_INDEX (--id)) | ||
1128 | break; | ||
1129 | } | ||
1130 | } | ||
1131 | |||
1132 | /* Copy remaining SRC elements. */ | ||
1133 | memcpy (dest->elems, dest->elems + sbase, delta * sizeof (Idx)); | ||
1134 | |||
1135 | return REG_NOERROR; | ||
1136 | } | ||
1137 | |||
1138 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to | ||
1139 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ | ||
1140 | |||
1141 | static reg_errcode_t | ||
1142 | internal_function | ||
1143 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, | ||
1144 | const re_node_set *src2) | ||
1145 | { | ||
1146 | Idx i1, i2, id; | ||
1147 | if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) | ||
1148 | { | ||
1149 | dest->alloc = src1->nelem + src2->nelem; | ||
1150 | dest->elems = re_malloc (Idx, dest->alloc); | ||
1151 | if (BE (dest->elems == NULL, 0)) | ||
1152 | return REG_ESPACE; | ||
1153 | } | ||
1154 | else | ||
1155 | { | ||
1156 | if (src1 != NULL && src1->nelem > 0) | ||
1157 | return re_node_set_init_copy (dest, src1); | ||
1158 | else if (src2 != NULL && src2->nelem > 0) | ||
1159 | return re_node_set_init_copy (dest, src2); | ||
1160 | else | ||
1161 | re_node_set_init_empty (dest); | ||
1162 | return REG_NOERROR; | ||
1163 | } | ||
1164 | for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) | ||
1165 | { | ||
1166 | if (src1->elems[i1] > src2->elems[i2]) | ||
1167 | { | ||
1168 | dest->elems[id++] = src2->elems[i2++]; | ||
1169 | continue; | ||
1170 | } | ||
1171 | if (src1->elems[i1] == src2->elems[i2]) | ||
1172 | ++i2; | ||
1173 | dest->elems[id++] = src1->elems[i1++]; | ||
1174 | } | ||
1175 | if (i1 < src1->nelem) | ||
1176 | { | ||
1177 | memcpy (dest->elems + id, src1->elems + i1, | ||
1178 | (src1->nelem - i1) * sizeof (Idx)); | ||
1179 | id += src1->nelem - i1; | ||
1180 | } | ||
1181 | else if (i2 < src2->nelem) | ||
1182 | { | ||
1183 | memcpy (dest->elems + id, src2->elems + i2, | ||
1184 | (src2->nelem - i2) * sizeof (Idx)); | ||
1185 | id += src2->nelem - i2; | ||
1186 | } | ||
1187 | dest->nelem = id; | ||
1188 | return REG_NOERROR; | ||
1189 | } | ||
1190 | |||
1191 | /* Calculate the union set of the sets DEST and SRC. And store it to | ||
1192 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ | ||
1193 | |||
1194 | static reg_errcode_t | ||
1195 | internal_function | ||
1196 | re_node_set_merge (re_node_set *dest, const re_node_set *src) | ||
1197 | { | ||
1198 | Idx is, id, sbase, delta; | ||
1199 | if (src == NULL || src->nelem == 0) | ||
1200 | return REG_NOERROR; | ||
1201 | if (dest->alloc < 2 * src->nelem + dest->nelem) | ||
1202 | { | ||
1203 | Idx new_alloc = 2 * (src->nelem + dest->alloc); | ||
1204 | Idx *new_buffer = re_realloc (dest->elems, Idx, new_alloc); | ||
1205 | if (BE (new_buffer == NULL, 0)) | ||
1206 | return REG_ESPACE; | ||
1207 | dest->elems = new_buffer; | ||
1208 | dest->alloc = new_alloc; | ||
1209 | } | ||
1210 | |||
1211 | if (BE (dest->nelem == 0, 0)) | ||
1212 | { | ||
1213 | dest->nelem = src->nelem; | ||
1214 | memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); | ||
1215 | return REG_NOERROR; | ||
1216 | } | ||
1217 | |||
1218 | /* Copy into the top of DEST the items of SRC that are not | ||
1219 | found in DEST. Maybe we could binary search in DEST? */ | ||
1220 | for (sbase = dest->nelem + 2 * src->nelem, | ||
1221 | is = src->nelem - 1, id = dest->nelem - 1; | ||
1222 | REG_VALID_INDEX (is) && REG_VALID_INDEX (id); ) | ||
1223 | { | ||
1224 | if (dest->elems[id] == src->elems[is]) | ||
1225 | is--, id--; | ||
1226 | else if (dest->elems[id] < src->elems[is]) | ||
1227 | dest->elems[--sbase] = src->elems[is--]; | ||
1228 | else /* if (dest->elems[id] > src->elems[is]) */ | ||
1229 | --id; | ||
1230 | } | ||
1231 | |||
1232 | if (REG_VALID_INDEX (is)) | ||
1233 | { | ||
1234 | /* If DEST is exhausted, the remaining items of SRC must be unique. */ | ||
1235 | sbase -= is + 1; | ||
1236 | memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (Idx)); | ||
1237 | } | ||
1238 | |||
1239 | id = dest->nelem - 1; | ||
1240 | is = dest->nelem + 2 * src->nelem - 1; | ||
1241 | delta = is - sbase + 1; | ||
1242 | if (delta == 0) | ||
1243 | return REG_NOERROR; | ||
1244 | |||
1245 | /* Now copy. When DELTA becomes zero, the remaining | ||
1246 | DEST elements are already in place. */ | ||
1247 | dest->nelem += delta; | ||
1248 | for (;;) | ||
1249 | { | ||
1250 | if (dest->elems[is] > dest->elems[id]) | ||
1251 | { | ||
1252 | /* Copy from the top. */ | ||
1253 | dest->elems[id + delta--] = dest->elems[is--]; | ||
1254 | if (delta == 0) | ||
1255 | break; | ||
1256 | } | ||
1257 | else | ||
1258 | { | ||
1259 | /* Slide from the bottom. */ | ||
1260 | dest->elems[id + delta] = dest->elems[id]; | ||
1261 | if (! REG_VALID_INDEX (--id)) | ||
1262 | { | ||
1263 | /* Copy remaining SRC elements. */ | ||
1264 | memcpy (dest->elems, dest->elems + sbase, | ||
1265 | delta * sizeof (Idx)); | ||
1266 | break; | ||
1267 | } | ||
1268 | } | ||
1269 | } | ||
1270 | |||
1271 | return REG_NOERROR; | ||
1272 | } | ||
1273 | |||
1274 | /* Insert the new element ELEM to the re_node_set* SET. | ||
1275 | SET should not already have ELEM. | ||
1276 | Return true if successful. */ | ||
1277 | |||
1278 | static bool | ||
1279 | internal_function | ||
1280 | re_node_set_insert (re_node_set *set, Idx elem) | ||
1281 | { | ||
1282 | Idx idx; | ||
1283 | /* In case the set is empty. */ | ||
1284 | if (set->alloc == 0) | ||
1285 | return BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1); | ||
1286 | |||
1287 | if (BE (set->nelem, 0) == 0) | ||
1288 | { | ||
1289 | /* We already guaranteed above that set->alloc != 0. */ | ||
1290 | set->elems[0] = elem; | ||
1291 | ++set->nelem; | ||
1292 | return true; | ||
1293 | } | ||
1294 | |||
1295 | /* Realloc if we need. */ | ||
1296 | if (set->alloc == set->nelem) | ||
1297 | { | ||
1298 | Idx *new_elems; | ||
1299 | set->alloc = set->alloc * 2; | ||
1300 | new_elems = re_realloc (set->elems, Idx, set->alloc); | ||
1301 | if (BE (new_elems == NULL, 0)) | ||
1302 | return false; | ||
1303 | set->elems = new_elems; | ||
1304 | } | ||
1305 | |||
1306 | /* Move the elements which follows the new element. Test the | ||
1307 | first element separately to skip a check in the inner loop. */ | ||
1308 | if (elem < set->elems[0]) | ||
1309 | { | ||
1310 | idx = 0; | ||
1311 | for (idx = set->nelem; idx > 0; idx--) | ||
1312 | set->elems[idx] = set->elems[idx - 1]; | ||
1313 | } | ||
1314 | else | ||
1315 | { | ||
1316 | for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) | ||
1317 | set->elems[idx] = set->elems[idx - 1]; | ||
1318 | } | ||
1319 | |||
1320 | /* Insert the new element. */ | ||
1321 | set->elems[idx] = elem; | ||
1322 | ++set->nelem; | ||
1323 | return true; | ||
1324 | } | ||
1325 | |||
1326 | /* Insert the new element ELEM to the re_node_set* SET. | ||
1327 | SET should not already have any element greater than or equal to ELEM. | ||
1328 | Return true if successful. */ | ||
1329 | |||
1330 | static bool | ||
1331 | internal_function | ||
1332 | re_node_set_insert_last (re_node_set *set, Idx elem) | ||
1333 | { | ||
1334 | /* Realloc if we need. */ | ||
1335 | if (set->alloc == set->nelem) | ||
1336 | { | ||
1337 | Idx *new_elems; | ||
1338 | set->alloc = (set->alloc + 1) * 2; | ||
1339 | new_elems = re_realloc (set->elems, Idx, set->alloc); | ||
1340 | if (BE (new_elems == NULL, 0)) | ||
1341 | return false; | ||
1342 | set->elems = new_elems; | ||
1343 | } | ||
1344 | |||
1345 | /* Insert the new element. */ | ||
1346 | set->elems[set->nelem++] = elem; | ||
1347 | return true; | ||
1348 | } | ||
1349 | |||
1350 | /* Compare two node sets SET1 and SET2. | ||
1351 | Return true if SET1 and SET2 are equivalent. */ | ||
1352 | |||
1353 | static bool | ||
1354 | internal_function __attribute ((pure)) | ||
1355 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) | ||
1356 | { | ||
1357 | Idx i; | ||
1358 | if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) | ||
1359 | return false; | ||
1360 | for (i = set1->nelem ; REG_VALID_INDEX (--i) ; ) | ||
1361 | if (set1->elems[i] != set2->elems[i]) | ||
1362 | return false; | ||
1363 | return true; | ||
1364 | } | ||
1365 | |||
1366 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ | ||
1367 | |||
1368 | static Idx | ||
1369 | internal_function __attribute ((pure)) | ||
1370 | re_node_set_contains (const re_node_set *set, Idx elem) | ||
1371 | { | ||
1372 | __re_size_t idx, right, mid; | ||
1373 | if (! REG_VALID_NONZERO_INDEX (set->nelem)) | ||
1374 | return 0; | ||
1375 | |||
1376 | /* Binary search the element. */ | ||
1377 | idx = 0; | ||
1378 | right = set->nelem - 1; | ||
1379 | while (idx < right) | ||
1380 | { | ||
1381 | mid = (idx + right) / 2; | ||
1382 | if (set->elems[mid] < elem) | ||
1383 | idx = mid + 1; | ||
1384 | else | ||
1385 | right = mid; | ||
1386 | } | ||
1387 | return set->elems[idx] == elem ? idx + 1 : 0; | ||
1388 | } | ||
1389 | |||
1390 | static void | ||
1391 | internal_function | ||
1392 | re_node_set_remove_at (re_node_set *set, Idx idx) | ||
1393 | { | ||
1394 | if (idx < 0 || idx >= set->nelem) | ||
1395 | return; | ||
1396 | --set->nelem; | ||
1397 | for (; idx < set->nelem; idx++) | ||
1398 | set->elems[idx] = set->elems[idx + 1]; | ||
1399 | } | ||
1400 | |||
1401 | |||
1402 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. | ||
1403 | Or return REG_MISSING if an error occurred. */ | ||
1404 | |||
1405 | static Idx | ||
1406 | internal_function | ||
1407 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) | ||
1408 | { | ||
1409 | if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) | ||
1410 | { | ||
1411 | size_t new_nodes_alloc = dfa->nodes_alloc * 2; | ||
1412 | Idx *new_nexts, *new_indices; | ||
1413 | re_node_set *new_edests, *new_eclosures; | ||
1414 | re_token_t *new_nodes; | ||
1415 | size_t max_object_size = | ||
1416 | MAX (sizeof (re_token_t), | ||
1417 | MAX (sizeof (re_node_set), | ||
1418 | sizeof (Idx))); | ||
1419 | |||
1420 | /* Avoid overflows. */ | ||
1421 | if (BE (SIZE_MAX / 2 / max_object_size < dfa->nodes_alloc, 0)) | ||
1422 | return REG_MISSING; | ||
1423 | |||
1424 | new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); | ||
1425 | if (BE (new_nodes == NULL, 0)) | ||
1426 | return REG_MISSING; | ||
1427 | dfa->nodes = new_nodes; | ||
1428 | new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc); | ||
1429 | new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc); | ||
1430 | new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); | ||
1431 | new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); | ||
1432 | if (BE (new_nexts == NULL || new_indices == NULL | ||
1433 | || new_edests == NULL || new_eclosures == NULL, 0)) | ||
1434 | return REG_MISSING; | ||
1435 | dfa->nexts = new_nexts; | ||
1436 | dfa->org_indices = new_indices; | ||
1437 | dfa->edests = new_edests; | ||
1438 | dfa->eclosures = new_eclosures; | ||
1439 | dfa->nodes_alloc = new_nodes_alloc; | ||
1440 | } | ||
1441 | dfa->nodes[dfa->nodes_len] = token; | ||
1442 | dfa->nodes[dfa->nodes_len].constraint = 0; | ||
1443 | #ifdef RE_ENABLE_I18N | ||
1444 | { | ||
1445 | int type = token.type; | ||
1446 | dfa->nodes[dfa->nodes_len].accept_mb = | ||
1447 | (type == OP_PERIOD && dfa->mb_cur_max > 1) || type == COMPLEX_BRACKET; | ||
1448 | } | ||
1449 | #endif | ||
1450 | dfa->nexts[dfa->nodes_len] = REG_MISSING; | ||
1451 | re_node_set_init_empty (dfa->edests + dfa->nodes_len); | ||
1452 | re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); | ||
1453 | return dfa->nodes_len++; | ||
1454 | } | ||
1455 | |||
1456 | static inline re_hashval_t | ||
1457 | internal_function | ||
1458 | calc_state_hash (const re_node_set *nodes, unsigned int context) | ||
1459 | { | ||
1460 | re_hashval_t hash = nodes->nelem + context; | ||
1461 | Idx i; | ||
1462 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1463 | hash += nodes->elems[i]; | ||
1464 | return hash; | ||
1465 | } | ||
1466 | |||
1467 | /* Search for the state whose node_set is equivalent to NODES. | ||
1468 | Return the pointer to the state, if we found it in the DFA. | ||
1469 | Otherwise create the new one and return it. In case of an error | ||
1470 | return NULL and set the error code in ERR. | ||
1471 | Note: - We assume NULL as the invalid state, then it is possible that | ||
1472 | return value is NULL and ERR is REG_NOERROR. | ||
1473 | - We never return non-NULL value in case of any errors, it is for | ||
1474 | optimization. */ | ||
1475 | |||
1476 | static re_dfastate_t * | ||
1477 | internal_function | ||
1478 | re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, | ||
1479 | const re_node_set *nodes) | ||
1480 | { | ||
1481 | re_hashval_t hash; | ||
1482 | re_dfastate_t *new_state; | ||
1483 | struct re_state_table_entry *spot; | ||
1484 | Idx i; | ||
1485 | #ifdef lint | ||
1486 | /* Suppress bogus uninitialized-variable warnings. */ | ||
1487 | *err = REG_NOERROR; | ||
1488 | #endif | ||
1489 | if (BE (nodes->nelem == 0, 0)) | ||
1490 | { | ||
1491 | *err = REG_NOERROR; | ||
1492 | return NULL; | ||
1493 | } | ||
1494 | hash = calc_state_hash (nodes, 0); | ||
1495 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1496 | |||
1497 | for (i = 0 ; i < spot->num ; i++) | ||
1498 | { | ||
1499 | re_dfastate_t *state = spot->array[i]; | ||
1500 | if (hash != state->hash) | ||
1501 | continue; | ||
1502 | if (re_node_set_compare (&state->nodes, nodes)) | ||
1503 | return state; | ||
1504 | } | ||
1505 | |||
1506 | /* There are no appropriate state in the dfa, create the new one. */ | ||
1507 | new_state = create_ci_newstate (dfa, nodes, hash); | ||
1508 | if (BE (new_state == NULL, 0)) | ||
1509 | *err = REG_ESPACE; | ||
1510 | |||
1511 | return new_state; | ||
1512 | } | ||
1513 | |||
1514 | /* Search for the state whose node_set is equivalent to NODES and | ||
1515 | whose context is equivalent to CONTEXT. | ||
1516 | Return the pointer to the state, if we found it in the DFA. | ||
1517 | Otherwise create the new one and return it. In case of an error | ||
1518 | return NULL and set the error code in ERR. | ||
1519 | Note: - We assume NULL as the invalid state, then it is possible that | ||
1520 | return value is NULL and ERR is REG_NOERROR. | ||
1521 | - We never return non-NULL value in case of any errors, it is for | ||
1522 | optimization. */ | ||
1523 | |||
1524 | static re_dfastate_t * | ||
1525 | internal_function | ||
1526 | re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, | ||
1527 | const re_node_set *nodes, unsigned int context) | ||
1528 | { | ||
1529 | re_hashval_t hash; | ||
1530 | re_dfastate_t *new_state; | ||
1531 | struct re_state_table_entry *spot; | ||
1532 | Idx i; | ||
1533 | #ifdef lint | ||
1534 | /* Suppress bogus uninitialized-variable warnings. */ | ||
1535 | *err = REG_NOERROR; | ||
1536 | #endif | ||
1537 | if (nodes->nelem == 0) | ||
1538 | { | ||
1539 | *err = REG_NOERROR; | ||
1540 | return NULL; | ||
1541 | } | ||
1542 | hash = calc_state_hash (nodes, context); | ||
1543 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1544 | |||
1545 | for (i = 0 ; i < spot->num ; i++) | ||
1546 | { | ||
1547 | re_dfastate_t *state = spot->array[i]; | ||
1548 | if (state->hash == hash | ||
1549 | && state->context == context | ||
1550 | && re_node_set_compare (state->entrance_nodes, nodes)) | ||
1551 | return state; | ||
1552 | } | ||
1553 | /* There are no appropriate state in `dfa', create the new one. */ | ||
1554 | new_state = create_cd_newstate (dfa, nodes, context, hash); | ||
1555 | if (BE (new_state == NULL, 0)) | ||
1556 | *err = REG_ESPACE; | ||
1557 | |||
1558 | return new_state; | ||
1559 | } | ||
1560 | |||
1561 | /* Finish initialization of the new state NEWSTATE, and using its hash value | ||
1562 | HASH put in the appropriate bucket of DFA's state table. Return value | ||
1563 | indicates the error code if failed. */ | ||
1564 | |||
1565 | static reg_errcode_t | ||
1566 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, | ||
1567 | re_hashval_t hash) | ||
1568 | { | ||
1569 | struct re_state_table_entry *spot; | ||
1570 | reg_errcode_t err; | ||
1571 | Idx i; | ||
1572 | |||
1573 | newstate->hash = hash; | ||
1574 | err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); | ||
1575 | if (BE (err != REG_NOERROR, 0)) | ||
1576 | return REG_ESPACE; | ||
1577 | for (i = 0; i < newstate->nodes.nelem; i++) | ||
1578 | { | ||
1579 | Idx elem = newstate->nodes.elems[i]; | ||
1580 | if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) | ||
1581 | if (BE (! re_node_set_insert_last (&newstate->non_eps_nodes, elem), 0)) | ||
1582 | return REG_ESPACE; | ||
1583 | } | ||
1584 | |||
1585 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1586 | if (BE (spot->alloc <= spot->num, 0)) | ||
1587 | { | ||
1588 | Idx new_alloc = 2 * spot->num + 2; | ||
1589 | re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, | ||
1590 | new_alloc); | ||
1591 | if (BE (new_array == NULL, 0)) | ||
1592 | return REG_ESPACE; | ||
1593 | spot->array = new_array; | ||
1594 | spot->alloc = new_alloc; | ||
1595 | } | ||
1596 | spot->array[spot->num++] = newstate; | ||
1597 | return REG_NOERROR; | ||
1598 | } | ||
1599 | |||
1600 | static void | ||
1601 | free_state (re_dfastate_t *state) | ||
1602 | { | ||
1603 | re_node_set_free (&state->non_eps_nodes); | ||
1604 | re_node_set_free (&state->inveclosure); | ||
1605 | if (state->entrance_nodes != &state->nodes) | ||
1606 | { | ||
1607 | re_node_set_free (state->entrance_nodes); | ||
1608 | re_free (state->entrance_nodes); | ||
1609 | } | ||
1610 | re_node_set_free (&state->nodes); | ||
1611 | re_free (state->word_trtable); | ||
1612 | re_free (state->trtable); | ||
1613 | re_free (state); | ||
1614 | } | ||
1615 | |||
1616 | /* Create the new state which is independ of contexts. | ||
1617 | Return the new state if succeeded, otherwise return NULL. */ | ||
1618 | |||
1619 | static re_dfastate_t * | ||
1620 | internal_function | ||
1621 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | ||
1622 | re_hashval_t hash) | ||
1623 | { | ||
1624 | Idx i; | ||
1625 | reg_errcode_t err; | ||
1626 | re_dfastate_t *newstate; | ||
1627 | |||
1628 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); | ||
1629 | if (BE (newstate == NULL, 0)) | ||
1630 | return NULL; | ||
1631 | err = re_node_set_init_copy (&newstate->nodes, nodes); | ||
1632 | if (BE (err != REG_NOERROR, 0)) | ||
1633 | { | ||
1634 | re_free (newstate); | ||
1635 | return NULL; | ||
1636 | } | ||
1637 | |||
1638 | newstate->entrance_nodes = &newstate->nodes; | ||
1639 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1640 | { | ||
1641 | re_token_t *node = dfa->nodes + nodes->elems[i]; | ||
1642 | re_token_type_t type = node->type; | ||
1643 | if (type == CHARACTER && !node->constraint) | ||
1644 | continue; | ||
1645 | #ifdef RE_ENABLE_I18N | ||
1646 | newstate->accept_mb |= node->accept_mb; | ||
1647 | #endif /* RE_ENABLE_I18N */ | ||
1648 | |||
1649 | /* If the state has the halt node, the state is a halt state. */ | ||
1650 | if (type == END_OF_RE) | ||
1651 | newstate->halt = 1; | ||
1652 | else if (type == OP_BACK_REF) | ||
1653 | newstate->has_backref = 1; | ||
1654 | else if (type == ANCHOR || node->constraint) | ||
1655 | newstate->has_constraint = 1; | ||
1656 | } | ||
1657 | err = register_state (dfa, newstate, hash); | ||
1658 | if (BE (err != REG_NOERROR, 0)) | ||
1659 | { | ||
1660 | free_state (newstate); | ||
1661 | newstate = NULL; | ||
1662 | } | ||
1663 | return newstate; | ||
1664 | } | ||
1665 | |||
1666 | /* Create the new state which is depend on the context CONTEXT. | ||
1667 | Return the new state if succeeded, otherwise return NULL. */ | ||
1668 | |||
1669 | static re_dfastate_t * | ||
1670 | internal_function | ||
1671 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | ||
1672 | unsigned int context, re_hashval_t hash) | ||
1673 | { | ||
1674 | Idx i, nctx_nodes = 0; | ||
1675 | reg_errcode_t err; | ||
1676 | re_dfastate_t *newstate; | ||
1677 | |||
1678 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); | ||
1679 | if (BE (newstate == NULL, 0)) | ||
1680 | return NULL; | ||
1681 | err = re_node_set_init_copy (&newstate->nodes, nodes); | ||
1682 | if (BE (err != REG_NOERROR, 0)) | ||
1683 | { | ||
1684 | re_free (newstate); | ||
1685 | return NULL; | ||
1686 | } | ||
1687 | |||
1688 | newstate->context = context; | ||
1689 | newstate->entrance_nodes = &newstate->nodes; | ||
1690 | |||
1691 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1692 | { | ||
1693 | unsigned int constraint = 0; | ||
1694 | re_token_t *node = dfa->nodes + nodes->elems[i]; | ||
1695 | re_token_type_t type = node->type; | ||
1696 | if (node->constraint) | ||
1697 | constraint = node->constraint; | ||
1698 | |||
1699 | if (type == CHARACTER && !constraint) | ||
1700 | continue; | ||
1701 | #ifdef RE_ENABLE_I18N | ||
1702 | newstate->accept_mb |= node->accept_mb; | ||
1703 | #endif /* RE_ENABLE_I18N */ | ||
1704 | |||
1705 | /* If the state has the halt node, the state is a halt state. */ | ||
1706 | if (type == END_OF_RE) | ||
1707 | newstate->halt = 1; | ||
1708 | else if (type == OP_BACK_REF) | ||
1709 | newstate->has_backref = 1; | ||
1710 | else if (type == ANCHOR) | ||
1711 | constraint = node->opr.ctx_type; | ||
1712 | |||
1713 | if (constraint) | ||
1714 | { | ||
1715 | if (newstate->entrance_nodes == &newstate->nodes) | ||
1716 | { | ||
1717 | newstate->entrance_nodes = re_malloc (re_node_set, 1); | ||
1718 | if (BE (newstate->entrance_nodes == NULL, 0)) | ||
1719 | { | ||
1720 | free_state (newstate); | ||
1721 | return NULL; | ||
1722 | } | ||
1723 | re_node_set_init_copy (newstate->entrance_nodes, nodes); | ||
1724 | nctx_nodes = 0; | ||
1725 | newstate->has_constraint = 1; | ||
1726 | } | ||
1727 | |||
1728 | if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) | ||
1729 | { | ||
1730 | re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); | ||
1731 | ++nctx_nodes; | ||
1732 | } | ||
1733 | } | ||
1734 | } | ||
1735 | err = register_state (dfa, newstate, hash); | ||
1736 | if (BE (err != REG_NOERROR, 0)) | ||
1737 | { | ||
1738 | free_state (newstate); | ||
1739 | newstate = NULL; | ||
1740 | } | ||
1741 | return newstate; | ||
1742 | } | ||