summaryrefslogtreecommitdiffstats
path: root/gl/sha1.c
diff options
context:
space:
mode:
authorTon Voon <ton.voon@opsera.com>2010-06-17 10:16:43 +0100
committertonvoon <ton.voon@opsera.com>2010-06-23 13:30:34 +0000
commit18f6835edaf7d640a2c9e476cb1babdbdadbfd9b (patch)
treeae11f40e48dc34658445c99012726f32bfb45c56 /gl/sha1.c
parentf61412478ceb7c821793c8356b936f64066508bf (diff)
downloadmonitoring-plugins-18f6835edaf7d640a2c9e476cb1babdbdadbfd9b.tar.gz
Added state retention APIs. Implemented for check_snmp with --rate option.
See http://nagiosplugin.org/c-api-private for more details on the API. Also updated check_snmp -l option to change the perfdata label.
Diffstat (limited to 'gl/sha1.c')
-rw-r--r--gl/sha1.c428
1 files changed, 428 insertions, 0 deletions
diff --git a/gl/sha1.c b/gl/sha1.c
new file mode 100644
index 00000000..7251ca80
--- /dev/null
+++ b/gl/sha1.c
@@ -0,0 +1,428 @@
1/* sha1.c - Functions to compute SHA1 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-1.
3
4 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008, 2009, 2010 Free
5 Software Foundation, Inc.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
20
21/* Written by Scott G. Miller
22 Credits:
23 Robert Klep <robert@ilse.nl> -- Expansion function fix
24*/
25
26#include <config.h>
27
28#include "sha1.h"
29
30#include <stddef.h>
31#include <stdlib.h>
32#include <string.h>
33
34#if USE_UNLOCKED_IO
35# include "unlocked-io.h"
36#endif
37
38#ifdef WORDS_BIGENDIAN
39# define SWAP(n) (n)
40#else
41# define SWAP(n) \
42 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
43#endif
44
45#define BLOCKSIZE 32768
46#if BLOCKSIZE % 64 != 0
47# error "invalid BLOCKSIZE"
48#endif
49
50/* This array contains the bytes used to pad the buffer to the next
51 64-byte boundary. (RFC 1321, 3.1: Step 1) */
52static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
53
54
55/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
56 initialize it to the start constants of the SHA1 algorithm. This
57 must be called before using hash in the call to sha1_hash. */
58void
59sha1_init_ctx (struct sha1_ctx *ctx)
60{
61 ctx->A = 0x67452301;
62 ctx->B = 0xefcdab89;
63 ctx->C = 0x98badcfe;
64 ctx->D = 0x10325476;
65 ctx->E = 0xc3d2e1f0;
66
67 ctx->total[0] = ctx->total[1] = 0;
68 ctx->buflen = 0;
69}
70
71/* Copy the 4 byte value from v into the memory location pointed to by *cp,
72 If your architecture allows unaligned access this is equivalent to
73 * (uint32_t *) cp = v */
74static inline void
75set_uint32 (char *cp, uint32_t v)
76{
77 memcpy (cp, &v, sizeof v);
78}
79
80/* Put result from CTX in first 20 bytes following RESBUF. The result
81 must be in little endian byte order. */
82void *
83sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
84{
85 char *r = resbuf;
86 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
87 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
88 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
89 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
90 set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E));
91
92 return resbuf;
93}
94
95/* Process the remaining bytes in the internal buffer and the usual
96 prolog according to the standard and write the result to RESBUF. */
97void *
98sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
99{
100 /* Take yet unprocessed bytes into account. */
101 uint32_t bytes = ctx->buflen;
102 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
103
104 /* Now count remaining bytes. */
105 ctx->total[0] += bytes;
106 if (ctx->total[0] < bytes)
107 ++ctx->total[1];
108
109 /* Put the 64-bit file length in *bits* at the end of the buffer. */
110 ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
111 ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
112
113 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
114
115 /* Process last bytes. */
116 sha1_process_block (ctx->buffer, size * 4, ctx);
117
118 return sha1_read_ctx (ctx, resbuf);
119}
120
121/* Compute SHA1 message digest for bytes read from STREAM. The
122 resulting message digest number will be written into the 16 bytes
123 beginning at RESBLOCK. */
124int
125sha1_stream (FILE *stream, void *resblock)
126{
127 struct sha1_ctx ctx;
128 size_t sum;
129
130 char *buffer = malloc (BLOCKSIZE + 72);
131 if (!buffer)
132 return 1;
133
134 /* Initialize the computation context. */
135 sha1_init_ctx (&ctx);
136
137 /* Iterate over full file contents. */
138 while (1)
139 {
140 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
141 computation function processes the whole buffer so that with the
142 next round of the loop another block can be read. */
143 size_t n;
144 sum = 0;
145
146 /* Read block. Take care for partial reads. */
147 while (1)
148 {
149 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
150
151 sum += n;
152
153 if (sum == BLOCKSIZE)
154 break;
155
156 if (n == 0)
157 {
158 /* Check for the error flag IFF N == 0, so that we don't
159 exit the loop after a partial read due to e.g., EAGAIN
160 or EWOULDBLOCK. */
161 if (ferror (stream))
162 {
163 free (buffer);
164 return 1;
165 }
166 goto process_partial_block;
167 }
168
169 /* We've read at least one byte, so ignore errors. But always
170 check for EOF, since feof may be true even though N > 0.
171 Otherwise, we could end up calling fread after EOF. */
172 if (feof (stream))
173 goto process_partial_block;
174 }
175
176 /* Process buffer with BLOCKSIZE bytes. Note that
177 BLOCKSIZE % 64 == 0
178 */
179 sha1_process_block (buffer, BLOCKSIZE, &ctx);
180 }
181
182 process_partial_block:;
183
184 /* Process any remaining bytes. */
185 if (sum > 0)
186 sha1_process_bytes (buffer, sum, &ctx);
187
188 /* Construct result in desired memory. */
189 sha1_finish_ctx (&ctx, resblock);
190 free (buffer);
191 return 0;
192}
193
194/* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
195 result is always in little endian byte order, so that a byte-wise
196 output yields to the wanted ASCII representation of the message
197 digest. */
198void *
199sha1_buffer (const char *buffer, size_t len, void *resblock)
200{
201 struct sha1_ctx ctx;
202
203 /* Initialize the computation context. */
204 sha1_init_ctx (&ctx);
205
206 /* Process whole buffer but last len % 64 bytes. */
207 sha1_process_bytes (buffer, len, &ctx);
208
209 /* Put result in desired memory area. */
210 return sha1_finish_ctx (&ctx, resblock);
211}
212
213void
214sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
215{
216 /* When we already have some bits in our internal buffer concatenate
217 both inputs first. */
218 if (ctx->buflen != 0)
219 {
220 size_t left_over = ctx->buflen;
221 size_t add = 128 - left_over > len ? len : 128 - left_over;
222
223 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
224 ctx->buflen += add;
225
226 if (ctx->buflen > 64)
227 {
228 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
229
230 ctx->buflen &= 63;
231 /* The regions in the following copy operation cannot overlap. */
232 memcpy (ctx->buffer,
233 &((char *) ctx->buffer)[(left_over + add) & ~63],
234 ctx->buflen);
235 }
236
237 buffer = (const char *) buffer + add;
238 len -= add;
239 }
240
241 /* Process available complete blocks. */
242 if (len >= 64)
243 {
244#if !_STRING_ARCH_unaligned
245# define alignof(type) offsetof (struct { char c; type x; }, x)
246# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
247 if (UNALIGNED_P (buffer))
248 while (len > 64)
249 {
250 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
251 buffer = (const char *) buffer + 64;
252 len -= 64;
253 }
254 else
255#endif
256 {
257 sha1_process_block (buffer, len & ~63, ctx);
258 buffer = (const char *) buffer + (len & ~63);
259 len &= 63;
260 }
261 }
262
263 /* Move remaining bytes in internal buffer. */
264 if (len > 0)
265 {
266 size_t left_over = ctx->buflen;
267
268 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
269 left_over += len;
270 if (left_over >= 64)
271 {
272 sha1_process_block (ctx->buffer, 64, ctx);
273 left_over -= 64;
274 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
275 }
276 ctx->buflen = left_over;
277 }
278}
279
280/* --- Code below is the primary difference between md5.c and sha1.c --- */
281
282/* SHA1 round constants */
283#define K1 0x5a827999
284#define K2 0x6ed9eba1
285#define K3 0x8f1bbcdc
286#define K4 0xca62c1d6
287
288/* Round functions. Note that F2 is the same as F4. */
289#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
290#define F2(B,C,D) (B ^ C ^ D)
291#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
292#define F4(B,C,D) (B ^ C ^ D)
293
294/* Process LEN bytes of BUFFER, accumulating context into CTX.
295 It is assumed that LEN % 64 == 0.
296 Most of this code comes from GnuPG's cipher/sha1.c. */
297
298void
299sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
300{
301 const uint32_t *words = buffer;
302 size_t nwords = len / sizeof (uint32_t);
303 const uint32_t *endp = words + nwords;
304 uint32_t x[16];
305 uint32_t a = ctx->A;
306 uint32_t b = ctx->B;
307 uint32_t c = ctx->C;
308 uint32_t d = ctx->D;
309 uint32_t e = ctx->E;
310
311 /* First increment the byte count. RFC 1321 specifies the possible
312 length of the file up to 2^64 bits. Here we only compute the
313 number of bytes. Do a double word increment. */
314 ctx->total[0] += len;
315 if (ctx->total[0] < len)
316 ++ctx->total[1];
317
318#define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
319
320#define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
321 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
322 , (x[I&0x0f] = rol(tm, 1)) )
323
324#define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
325 + F( B, C, D ) \
326 + K \
327 + M; \
328 B = rol( B, 30 ); \
329 } while(0)
330
331 while (words < endp)
332 {
333 uint32_t tm;
334 int t;
335 for (t = 0; t < 16; t++)
336 {
337 x[t] = SWAP (*words);
338 words++;
339 }
340
341 R( a, b, c, d, e, F1, K1, x[ 0] );
342 R( e, a, b, c, d, F1, K1, x[ 1] );
343 R( d, e, a, b, c, F1, K1, x[ 2] );
344 R( c, d, e, a, b, F1, K1, x[ 3] );
345 R( b, c, d, e, a, F1, K1, x[ 4] );
346 R( a, b, c, d, e, F1, K1, x[ 5] );
347 R( e, a, b, c, d, F1, K1, x[ 6] );
348 R( d, e, a, b, c, F1, K1, x[ 7] );
349 R( c, d, e, a, b, F1, K1, x[ 8] );
350 R( b, c, d, e, a, F1, K1, x[ 9] );
351 R( a, b, c, d, e, F1, K1, x[10] );
352 R( e, a, b, c, d, F1, K1, x[11] );
353 R( d, e, a, b, c, F1, K1, x[12] );
354 R( c, d, e, a, b, F1, K1, x[13] );
355 R( b, c, d, e, a, F1, K1, x[14] );
356 R( a, b, c, d, e, F1, K1, x[15] );
357 R( e, a, b, c, d, F1, K1, M(16) );
358 R( d, e, a, b, c, F1, K1, M(17) );
359 R( c, d, e, a, b, F1, K1, M(18) );
360 R( b, c, d, e, a, F1, K1, M(19) );
361 R( a, b, c, d, e, F2, K2, M(20) );
362 R( e, a, b, c, d, F2, K2, M(21) );
363 R( d, e, a, b, c, F2, K2, M(22) );
364 R( c, d, e, a, b, F2, K2, M(23) );
365 R( b, c, d, e, a, F2, K2, M(24) );
366 R( a, b, c, d, e, F2, K2, M(25) );
367 R( e, a, b, c, d, F2, K2, M(26) );
368 R( d, e, a, b, c, F2, K2, M(27) );
369 R( c, d, e, a, b, F2, K2, M(28) );
370 R( b, c, d, e, a, F2, K2, M(29) );
371 R( a, b, c, d, e, F2, K2, M(30) );
372 R( e, a, b, c, d, F2, K2, M(31) );
373 R( d, e, a, b, c, F2, K2, M(32) );
374 R( c, d, e, a, b, F2, K2, M(33) );
375 R( b, c, d, e, a, F2, K2, M(34) );
376 R( a, b, c, d, e, F2, K2, M(35) );
377 R( e, a, b, c, d, F2, K2, M(36) );
378 R( d, e, a, b, c, F2, K2, M(37) );
379 R( c, d, e, a, b, F2, K2, M(38) );
380 R( b, c, d, e, a, F2, K2, M(39) );
381 R( a, b, c, d, e, F3, K3, M(40) );
382 R( e, a, b, c, d, F3, K3, M(41) );
383 R( d, e, a, b, c, F3, K3, M(42) );
384 R( c, d, e, a, b, F3, K3, M(43) );
385 R( b, c, d, e, a, F3, K3, M(44) );
386 R( a, b, c, d, e, F3, K3, M(45) );
387 R( e, a, b, c, d, F3, K3, M(46) );
388 R( d, e, a, b, c, F3, K3, M(47) );
389 R( c, d, e, a, b, F3, K3, M(48) );
390 R( b, c, d, e, a, F3, K3, M(49) );
391 R( a, b, c, d, e, F3, K3, M(50) );
392 R( e, a, b, c, d, F3, K3, M(51) );
393 R( d, e, a, b, c, F3, K3, M(52) );
394 R( c, d, e, a, b, F3, K3, M(53) );
395 R( b, c, d, e, a, F3, K3, M(54) );
396 R( a, b, c, d, e, F3, K3, M(55) );
397 R( e, a, b, c, d, F3, K3, M(56) );
398 R( d, e, a, b, c, F3, K3, M(57) );
399 R( c, d, e, a, b, F3, K3, M(58) );
400 R( b, c, d, e, a, F3, K3, M(59) );
401 R( a, b, c, d, e, F4, K4, M(60) );
402 R( e, a, b, c, d, F4, K4, M(61) );
403 R( d, e, a, b, c, F4, K4, M(62) );
404 R( c, d, e, a, b, F4, K4, M(63) );
405 R( b, c, d, e, a, F4, K4, M(64) );
406 R( a, b, c, d, e, F4, K4, M(65) );
407 R( e, a, b, c, d, F4, K4, M(66) );
408 R( d, e, a, b, c, F4, K4, M(67) );
409 R( c, d, e, a, b, F4, K4, M(68) );
410 R( b, c, d, e, a, F4, K4, M(69) );
411 R( a, b, c, d, e, F4, K4, M(70) );
412 R( e, a, b, c, d, F4, K4, M(71) );
413 R( d, e, a, b, c, F4, K4, M(72) );
414 R( c, d, e, a, b, F4, K4, M(73) );
415 R( b, c, d, e, a, F4, K4, M(74) );
416 R( a, b, c, d, e, F4, K4, M(75) );
417 R( e, a, b, c, d, F4, K4, M(76) );
418 R( d, e, a, b, c, F4, K4, M(77) );
419 R( c, d, e, a, b, F4, K4, M(78) );
420 R( b, c, d, e, a, F4, K4, M(79) );
421
422 a = ctx->A += a;
423 b = ctx->B += b;
424 c = ctx->C += c;
425 d = ctx->D += d;
426 e = ctx->E += e;
427 }
428}