diff options
author | Ton Voon <ton.voon@opsera.com> | 2010-06-17 10:16:43 +0100 |
---|---|---|
committer | tonvoon <ton.voon@opsera.com> | 2010-06-23 13:30:34 +0000 |
commit | 18f6835edaf7d640a2c9e476cb1babdbdadbfd9b (patch) | |
tree | ae11f40e48dc34658445c99012726f32bfb45c56 /gl/sha1.c | |
parent | f61412478ceb7c821793c8356b936f64066508bf (diff) | |
download | monitoring-plugins-18f6835edaf7d640a2c9e476cb1babdbdadbfd9b.tar.gz |
Added state retention APIs. Implemented for check_snmp with --rate option.
See http://nagiosplugin.org/c-api-private for more details on the API.
Also updated check_snmp -l option to change the perfdata label.
Diffstat (limited to 'gl/sha1.c')
-rw-r--r-- | gl/sha1.c | 428 |
1 files changed, 428 insertions, 0 deletions
diff --git a/gl/sha1.c b/gl/sha1.c new file mode 100644 index 00000000..7251ca80 --- /dev/null +++ b/gl/sha1.c | |||
@@ -0,0 +1,428 @@ | |||
1 | /* sha1.c - Functions to compute SHA1 message digest of files or | ||
2 | memory blocks according to the NIST specification FIPS-180-1. | ||
3 | |||
4 | Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008, 2009, 2010 Free | ||
5 | Software Foundation, Inc. | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify it | ||
8 | under the terms of the GNU General Public License as published by the | ||
9 | Free Software Foundation; either version 3, or (at your option) any | ||
10 | later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License | ||
18 | along with this program; if not, write to the Free Software Foundation, | ||
19 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
20 | |||
21 | /* Written by Scott G. Miller | ||
22 | Credits: | ||
23 | Robert Klep <robert@ilse.nl> -- Expansion function fix | ||
24 | */ | ||
25 | |||
26 | #include <config.h> | ||
27 | |||
28 | #include "sha1.h" | ||
29 | |||
30 | #include <stddef.h> | ||
31 | #include <stdlib.h> | ||
32 | #include <string.h> | ||
33 | |||
34 | #if USE_UNLOCKED_IO | ||
35 | # include "unlocked-io.h" | ||
36 | #endif | ||
37 | |||
38 | #ifdef WORDS_BIGENDIAN | ||
39 | # define SWAP(n) (n) | ||
40 | #else | ||
41 | # define SWAP(n) \ | ||
42 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | ||
43 | #endif | ||
44 | |||
45 | #define BLOCKSIZE 32768 | ||
46 | #if BLOCKSIZE % 64 != 0 | ||
47 | # error "invalid BLOCKSIZE" | ||
48 | #endif | ||
49 | |||
50 | /* This array contains the bytes used to pad the buffer to the next | ||
51 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | ||
52 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | ||
53 | |||
54 | |||
55 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and | ||
56 | initialize it to the start constants of the SHA1 algorithm. This | ||
57 | must be called before using hash in the call to sha1_hash. */ | ||
58 | void | ||
59 | sha1_init_ctx (struct sha1_ctx *ctx) | ||
60 | { | ||
61 | ctx->A = 0x67452301; | ||
62 | ctx->B = 0xefcdab89; | ||
63 | ctx->C = 0x98badcfe; | ||
64 | ctx->D = 0x10325476; | ||
65 | ctx->E = 0xc3d2e1f0; | ||
66 | |||
67 | ctx->total[0] = ctx->total[1] = 0; | ||
68 | ctx->buflen = 0; | ||
69 | } | ||
70 | |||
71 | /* Copy the 4 byte value from v into the memory location pointed to by *cp, | ||
72 | If your architecture allows unaligned access this is equivalent to | ||
73 | * (uint32_t *) cp = v */ | ||
74 | static inline void | ||
75 | set_uint32 (char *cp, uint32_t v) | ||
76 | { | ||
77 | memcpy (cp, &v, sizeof v); | ||
78 | } | ||
79 | |||
80 | /* Put result from CTX in first 20 bytes following RESBUF. The result | ||
81 | must be in little endian byte order. */ | ||
82 | void * | ||
83 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) | ||
84 | { | ||
85 | char *r = resbuf; | ||
86 | set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A)); | ||
87 | set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B)); | ||
88 | set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C)); | ||
89 | set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D)); | ||
90 | set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E)); | ||
91 | |||
92 | return resbuf; | ||
93 | } | ||
94 | |||
95 | /* Process the remaining bytes in the internal buffer and the usual | ||
96 | prolog according to the standard and write the result to RESBUF. */ | ||
97 | void * | ||
98 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) | ||
99 | { | ||
100 | /* Take yet unprocessed bytes into account. */ | ||
101 | uint32_t bytes = ctx->buflen; | ||
102 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | ||
103 | |||
104 | /* Now count remaining bytes. */ | ||
105 | ctx->total[0] += bytes; | ||
106 | if (ctx->total[0] < bytes) | ||
107 | ++ctx->total[1]; | ||
108 | |||
109 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | ||
110 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); | ||
111 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); | ||
112 | |||
113 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | ||
114 | |||
115 | /* Process last bytes. */ | ||
116 | sha1_process_block (ctx->buffer, size * 4, ctx); | ||
117 | |||
118 | return sha1_read_ctx (ctx, resbuf); | ||
119 | } | ||
120 | |||
121 | /* Compute SHA1 message digest for bytes read from STREAM. The | ||
122 | resulting message digest number will be written into the 16 bytes | ||
123 | beginning at RESBLOCK. */ | ||
124 | int | ||
125 | sha1_stream (FILE *stream, void *resblock) | ||
126 | { | ||
127 | struct sha1_ctx ctx; | ||
128 | size_t sum; | ||
129 | |||
130 | char *buffer = malloc (BLOCKSIZE + 72); | ||
131 | if (!buffer) | ||
132 | return 1; | ||
133 | |||
134 | /* Initialize the computation context. */ | ||
135 | sha1_init_ctx (&ctx); | ||
136 | |||
137 | /* Iterate over full file contents. */ | ||
138 | while (1) | ||
139 | { | ||
140 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the | ||
141 | computation function processes the whole buffer so that with the | ||
142 | next round of the loop another block can be read. */ | ||
143 | size_t n; | ||
144 | sum = 0; | ||
145 | |||
146 | /* Read block. Take care for partial reads. */ | ||
147 | while (1) | ||
148 | { | ||
149 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | ||
150 | |||
151 | sum += n; | ||
152 | |||
153 | if (sum == BLOCKSIZE) | ||
154 | break; | ||
155 | |||
156 | if (n == 0) | ||
157 | { | ||
158 | /* Check for the error flag IFF N == 0, so that we don't | ||
159 | exit the loop after a partial read due to e.g., EAGAIN | ||
160 | or EWOULDBLOCK. */ | ||
161 | if (ferror (stream)) | ||
162 | { | ||
163 | free (buffer); | ||
164 | return 1; | ||
165 | } | ||
166 | goto process_partial_block; | ||
167 | } | ||
168 | |||
169 | /* We've read at least one byte, so ignore errors. But always | ||
170 | check for EOF, since feof may be true even though N > 0. | ||
171 | Otherwise, we could end up calling fread after EOF. */ | ||
172 | if (feof (stream)) | ||
173 | goto process_partial_block; | ||
174 | } | ||
175 | |||
176 | /* Process buffer with BLOCKSIZE bytes. Note that | ||
177 | BLOCKSIZE % 64 == 0 | ||
178 | */ | ||
179 | sha1_process_block (buffer, BLOCKSIZE, &ctx); | ||
180 | } | ||
181 | |||
182 | process_partial_block:; | ||
183 | |||
184 | /* Process any remaining bytes. */ | ||
185 | if (sum > 0) | ||
186 | sha1_process_bytes (buffer, sum, &ctx); | ||
187 | |||
188 | /* Construct result in desired memory. */ | ||
189 | sha1_finish_ctx (&ctx, resblock); | ||
190 | free (buffer); | ||
191 | return 0; | ||
192 | } | ||
193 | |||
194 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The | ||
195 | result is always in little endian byte order, so that a byte-wise | ||
196 | output yields to the wanted ASCII representation of the message | ||
197 | digest. */ | ||
198 | void * | ||
199 | sha1_buffer (const char *buffer, size_t len, void *resblock) | ||
200 | { | ||
201 | struct sha1_ctx ctx; | ||
202 | |||
203 | /* Initialize the computation context. */ | ||
204 | sha1_init_ctx (&ctx); | ||
205 | |||
206 | /* Process whole buffer but last len % 64 bytes. */ | ||
207 | sha1_process_bytes (buffer, len, &ctx); | ||
208 | |||
209 | /* Put result in desired memory area. */ | ||
210 | return sha1_finish_ctx (&ctx, resblock); | ||
211 | } | ||
212 | |||
213 | void | ||
214 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
215 | { | ||
216 | /* When we already have some bits in our internal buffer concatenate | ||
217 | both inputs first. */ | ||
218 | if (ctx->buflen != 0) | ||
219 | { | ||
220 | size_t left_over = ctx->buflen; | ||
221 | size_t add = 128 - left_over > len ? len : 128 - left_over; | ||
222 | |||
223 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | ||
224 | ctx->buflen += add; | ||
225 | |||
226 | if (ctx->buflen > 64) | ||
227 | { | ||
228 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | ||
229 | |||
230 | ctx->buflen &= 63; | ||
231 | /* The regions in the following copy operation cannot overlap. */ | ||
232 | memcpy (ctx->buffer, | ||
233 | &((char *) ctx->buffer)[(left_over + add) & ~63], | ||
234 | ctx->buflen); | ||
235 | } | ||
236 | |||
237 | buffer = (const char *) buffer + add; | ||
238 | len -= add; | ||
239 | } | ||
240 | |||
241 | /* Process available complete blocks. */ | ||
242 | if (len >= 64) | ||
243 | { | ||
244 | #if !_STRING_ARCH_unaligned | ||
245 | # define alignof(type) offsetof (struct { char c; type x; }, x) | ||
246 | # define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0) | ||
247 | if (UNALIGNED_P (buffer)) | ||
248 | while (len > 64) | ||
249 | { | ||
250 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | ||
251 | buffer = (const char *) buffer + 64; | ||
252 | len -= 64; | ||
253 | } | ||
254 | else | ||
255 | #endif | ||
256 | { | ||
257 | sha1_process_block (buffer, len & ~63, ctx); | ||
258 | buffer = (const char *) buffer + (len & ~63); | ||
259 | len &= 63; | ||
260 | } | ||
261 | } | ||
262 | |||
263 | /* Move remaining bytes in internal buffer. */ | ||
264 | if (len > 0) | ||
265 | { | ||
266 | size_t left_over = ctx->buflen; | ||
267 | |||
268 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | ||
269 | left_over += len; | ||
270 | if (left_over >= 64) | ||
271 | { | ||
272 | sha1_process_block (ctx->buffer, 64, ctx); | ||
273 | left_over -= 64; | ||
274 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | ||
275 | } | ||
276 | ctx->buflen = left_over; | ||
277 | } | ||
278 | } | ||
279 | |||
280 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ | ||
281 | |||
282 | /* SHA1 round constants */ | ||
283 | #define K1 0x5a827999 | ||
284 | #define K2 0x6ed9eba1 | ||
285 | #define K3 0x8f1bbcdc | ||
286 | #define K4 0xca62c1d6 | ||
287 | |||
288 | /* Round functions. Note that F2 is the same as F4. */ | ||
289 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) | ||
290 | #define F2(B,C,D) (B ^ C ^ D) | ||
291 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) | ||
292 | #define F4(B,C,D) (B ^ C ^ D) | ||
293 | |||
294 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | ||
295 | It is assumed that LEN % 64 == 0. | ||
296 | Most of this code comes from GnuPG's cipher/sha1.c. */ | ||
297 | |||
298 | void | ||
299 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
300 | { | ||
301 | const uint32_t *words = buffer; | ||
302 | size_t nwords = len / sizeof (uint32_t); | ||
303 | const uint32_t *endp = words + nwords; | ||
304 | uint32_t x[16]; | ||
305 | uint32_t a = ctx->A; | ||
306 | uint32_t b = ctx->B; | ||
307 | uint32_t c = ctx->C; | ||
308 | uint32_t d = ctx->D; | ||
309 | uint32_t e = ctx->E; | ||
310 | |||
311 | /* First increment the byte count. RFC 1321 specifies the possible | ||
312 | length of the file up to 2^64 bits. Here we only compute the | ||
313 | number of bytes. Do a double word increment. */ | ||
314 | ctx->total[0] += len; | ||
315 | if (ctx->total[0] < len) | ||
316 | ++ctx->total[1]; | ||
317 | |||
318 | #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) | ||
319 | |||
320 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ | ||
321 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ | ||
322 | , (x[I&0x0f] = rol(tm, 1)) ) | ||
323 | |||
324 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ | ||
325 | + F( B, C, D ) \ | ||
326 | + K \ | ||
327 | + M; \ | ||
328 | B = rol( B, 30 ); \ | ||
329 | } while(0) | ||
330 | |||
331 | while (words < endp) | ||
332 | { | ||
333 | uint32_t tm; | ||
334 | int t; | ||
335 | for (t = 0; t < 16; t++) | ||
336 | { | ||
337 | x[t] = SWAP (*words); | ||
338 | words++; | ||
339 | } | ||
340 | |||
341 | R( a, b, c, d, e, F1, K1, x[ 0] ); | ||
342 | R( e, a, b, c, d, F1, K1, x[ 1] ); | ||
343 | R( d, e, a, b, c, F1, K1, x[ 2] ); | ||
344 | R( c, d, e, a, b, F1, K1, x[ 3] ); | ||
345 | R( b, c, d, e, a, F1, K1, x[ 4] ); | ||
346 | R( a, b, c, d, e, F1, K1, x[ 5] ); | ||
347 | R( e, a, b, c, d, F1, K1, x[ 6] ); | ||
348 | R( d, e, a, b, c, F1, K1, x[ 7] ); | ||
349 | R( c, d, e, a, b, F1, K1, x[ 8] ); | ||
350 | R( b, c, d, e, a, F1, K1, x[ 9] ); | ||
351 | R( a, b, c, d, e, F1, K1, x[10] ); | ||
352 | R( e, a, b, c, d, F1, K1, x[11] ); | ||
353 | R( d, e, a, b, c, F1, K1, x[12] ); | ||
354 | R( c, d, e, a, b, F1, K1, x[13] ); | ||
355 | R( b, c, d, e, a, F1, K1, x[14] ); | ||
356 | R( a, b, c, d, e, F1, K1, x[15] ); | ||
357 | R( e, a, b, c, d, F1, K1, M(16) ); | ||
358 | R( d, e, a, b, c, F1, K1, M(17) ); | ||
359 | R( c, d, e, a, b, F1, K1, M(18) ); | ||
360 | R( b, c, d, e, a, F1, K1, M(19) ); | ||
361 | R( a, b, c, d, e, F2, K2, M(20) ); | ||
362 | R( e, a, b, c, d, F2, K2, M(21) ); | ||
363 | R( d, e, a, b, c, F2, K2, M(22) ); | ||
364 | R( c, d, e, a, b, F2, K2, M(23) ); | ||
365 | R( b, c, d, e, a, F2, K2, M(24) ); | ||
366 | R( a, b, c, d, e, F2, K2, M(25) ); | ||
367 | R( e, a, b, c, d, F2, K2, M(26) ); | ||
368 | R( d, e, a, b, c, F2, K2, M(27) ); | ||
369 | R( c, d, e, a, b, F2, K2, M(28) ); | ||
370 | R( b, c, d, e, a, F2, K2, M(29) ); | ||
371 | R( a, b, c, d, e, F2, K2, M(30) ); | ||
372 | R( e, a, b, c, d, F2, K2, M(31) ); | ||
373 | R( d, e, a, b, c, F2, K2, M(32) ); | ||
374 | R( c, d, e, a, b, F2, K2, M(33) ); | ||
375 | R( b, c, d, e, a, F2, K2, M(34) ); | ||
376 | R( a, b, c, d, e, F2, K2, M(35) ); | ||
377 | R( e, a, b, c, d, F2, K2, M(36) ); | ||
378 | R( d, e, a, b, c, F2, K2, M(37) ); | ||
379 | R( c, d, e, a, b, F2, K2, M(38) ); | ||
380 | R( b, c, d, e, a, F2, K2, M(39) ); | ||
381 | R( a, b, c, d, e, F3, K3, M(40) ); | ||
382 | R( e, a, b, c, d, F3, K3, M(41) ); | ||
383 | R( d, e, a, b, c, F3, K3, M(42) ); | ||
384 | R( c, d, e, a, b, F3, K3, M(43) ); | ||
385 | R( b, c, d, e, a, F3, K3, M(44) ); | ||
386 | R( a, b, c, d, e, F3, K3, M(45) ); | ||
387 | R( e, a, b, c, d, F3, K3, M(46) ); | ||
388 | R( d, e, a, b, c, F3, K3, M(47) ); | ||
389 | R( c, d, e, a, b, F3, K3, M(48) ); | ||
390 | R( b, c, d, e, a, F3, K3, M(49) ); | ||
391 | R( a, b, c, d, e, F3, K3, M(50) ); | ||
392 | R( e, a, b, c, d, F3, K3, M(51) ); | ||
393 | R( d, e, a, b, c, F3, K3, M(52) ); | ||
394 | R( c, d, e, a, b, F3, K3, M(53) ); | ||
395 | R( b, c, d, e, a, F3, K3, M(54) ); | ||
396 | R( a, b, c, d, e, F3, K3, M(55) ); | ||
397 | R( e, a, b, c, d, F3, K3, M(56) ); | ||
398 | R( d, e, a, b, c, F3, K3, M(57) ); | ||
399 | R( c, d, e, a, b, F3, K3, M(58) ); | ||
400 | R( b, c, d, e, a, F3, K3, M(59) ); | ||
401 | R( a, b, c, d, e, F4, K4, M(60) ); | ||
402 | R( e, a, b, c, d, F4, K4, M(61) ); | ||
403 | R( d, e, a, b, c, F4, K4, M(62) ); | ||
404 | R( c, d, e, a, b, F4, K4, M(63) ); | ||
405 | R( b, c, d, e, a, F4, K4, M(64) ); | ||
406 | R( a, b, c, d, e, F4, K4, M(65) ); | ||
407 | R( e, a, b, c, d, F4, K4, M(66) ); | ||
408 | R( d, e, a, b, c, F4, K4, M(67) ); | ||
409 | R( c, d, e, a, b, F4, K4, M(68) ); | ||
410 | R( b, c, d, e, a, F4, K4, M(69) ); | ||
411 | R( a, b, c, d, e, F4, K4, M(70) ); | ||
412 | R( e, a, b, c, d, F4, K4, M(71) ); | ||
413 | R( d, e, a, b, c, F4, K4, M(72) ); | ||
414 | R( c, d, e, a, b, F4, K4, M(73) ); | ||
415 | R( b, c, d, e, a, F4, K4, M(74) ); | ||
416 | R( a, b, c, d, e, F4, K4, M(75) ); | ||
417 | R( e, a, b, c, d, F4, K4, M(76) ); | ||
418 | R( d, e, a, b, c, F4, K4, M(77) ); | ||
419 | R( c, d, e, a, b, F4, K4, M(78) ); | ||
420 | R( b, c, d, e, a, F4, K4, M(79) ); | ||
421 | |||
422 | a = ctx->A += a; | ||
423 | b = ctx->B += b; | ||
424 | c = ctx->C += c; | ||
425 | d = ctx->D += d; | ||
426 | e = ctx->E += e; | ||
427 | } | ||
428 | } | ||