diff options
author | Andreas Baumann <mail@andreasbaumann.cc> | 2023-02-11 06:20:24 (GMT) |
---|---|---|
committer | Andreas Baumann <mail@andreasbaumann.cc> | 2023-02-11 06:20:24 (GMT) |
commit | f867d7b44080fa9716deeff4476275f9a489879f (patch) | |
tree | bc964662fc3300dc626fb6d833d8ed5c8f46eca7 /gl/sha256.c | |
parent | 9734c439cba0a02b087e50789e94ec9b07754608 (diff) | |
parent | c07206f2ccc2356aa74bc6813a94c2190017d44e (diff) | |
download | monitoring-plugins-f867d7b44080fa9716deeff4476275f9a489879f.tar.gz |
Merge branch 'master' into curlfixes
Diffstat (limited to 'gl/sha256.c')
-rw-r--r-- | gl/sha256.c | 432 |
1 files changed, 432 insertions, 0 deletions
diff --git a/gl/sha256.c b/gl/sha256.c new file mode 100644 index 0000000..e5fea02 --- /dev/null +++ b/gl/sha256.c | |||
@@ -0,0 +1,432 @@ | |||
1 | /* sha256.c - Functions to compute SHA256 and SHA224 message digest of files or | ||
2 | memory blocks according to the NIST specification FIPS-180-2. | ||
3 | |||
4 | Copyright (C) 2005-2006, 2008-2023 Free Software Foundation, Inc. | ||
5 | |||
6 | This file is free software: you can redistribute it and/or modify | ||
7 | it under the terms of the GNU Lesser General Public License as | ||
8 | published by the Free Software Foundation; either version 2.1 of the | ||
9 | License, or (at your option) any later version. | ||
10 | |||
11 | This file is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU Lesser General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU Lesser General Public License | ||
17 | along with this program. If not, see <https://www.gnu.org/licenses/>. */ | ||
18 | |||
19 | /* Written by David Madore, considerably copypasting from | ||
20 | Scott G. Miller's sha1.c | ||
21 | */ | ||
22 | |||
23 | #include <config.h> | ||
24 | |||
25 | /* Specification. */ | ||
26 | #if HAVE_OPENSSL_SHA256 | ||
27 | # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE | ||
28 | #endif | ||
29 | #include "sha256.h" | ||
30 | |||
31 | #include <stdint.h> | ||
32 | #include <string.h> | ||
33 | |||
34 | #include <byteswap.h> | ||
35 | #ifdef WORDS_BIGENDIAN | ||
36 | # define SWAP(n) (n) | ||
37 | #else | ||
38 | # define SWAP(n) bswap_32 (n) | ||
39 | #endif | ||
40 | |||
41 | #if ! HAVE_OPENSSL_SHA256 | ||
42 | |||
43 | /* This array contains the bytes used to pad the buffer to the next | ||
44 | 64-byte boundary. */ | ||
45 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | ||
46 | |||
47 | |||
48 | /* | ||
49 | Takes a pointer to a 256 bit block of data (eight 32 bit ints) and | ||
50 | initializes it to the start constants of the SHA256 algorithm. This | ||
51 | must be called before using hash in the call to sha256_hash | ||
52 | */ | ||
53 | void | ||
54 | sha256_init_ctx (struct sha256_ctx *ctx) | ||
55 | { | ||
56 | ctx->state[0] = 0x6a09e667UL; | ||
57 | ctx->state[1] = 0xbb67ae85UL; | ||
58 | ctx->state[2] = 0x3c6ef372UL; | ||
59 | ctx->state[3] = 0xa54ff53aUL; | ||
60 | ctx->state[4] = 0x510e527fUL; | ||
61 | ctx->state[5] = 0x9b05688cUL; | ||
62 | ctx->state[6] = 0x1f83d9abUL; | ||
63 | ctx->state[7] = 0x5be0cd19UL; | ||
64 | |||
65 | ctx->total[0] = ctx->total[1] = 0; | ||
66 | ctx->buflen = 0; | ||
67 | } | ||
68 | |||
69 | void | ||
70 | sha224_init_ctx (struct sha256_ctx *ctx) | ||
71 | { | ||
72 | ctx->state[0] = 0xc1059ed8UL; | ||
73 | ctx->state[1] = 0x367cd507UL; | ||
74 | ctx->state[2] = 0x3070dd17UL; | ||
75 | ctx->state[3] = 0xf70e5939UL; | ||
76 | ctx->state[4] = 0xffc00b31UL; | ||
77 | ctx->state[5] = 0x68581511UL; | ||
78 | ctx->state[6] = 0x64f98fa7UL; | ||
79 | ctx->state[7] = 0xbefa4fa4UL; | ||
80 | |||
81 | ctx->total[0] = ctx->total[1] = 0; | ||
82 | ctx->buflen = 0; | ||
83 | } | ||
84 | |||
85 | /* Copy the value from v into the memory location pointed to by *CP, | ||
86 | If your architecture allows unaligned access, this is equivalent to | ||
87 | * (__typeof__ (v) *) cp = v */ | ||
88 | static void | ||
89 | set_uint32 (char *cp, uint32_t v) | ||
90 | { | ||
91 | memcpy (cp, &v, sizeof v); | ||
92 | } | ||
93 | |||
94 | /* Put result from CTX in first 32 bytes following RESBUF. | ||
95 | The result must be in little endian byte order. */ | ||
96 | void * | ||
97 | sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf) | ||
98 | { | ||
99 | int i; | ||
100 | char *r = resbuf; | ||
101 | |||
102 | for (i = 0; i < 8; i++) | ||
103 | set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); | ||
104 | |||
105 | return resbuf; | ||
106 | } | ||
107 | |||
108 | void * | ||
109 | sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf) | ||
110 | { | ||
111 | int i; | ||
112 | char *r = resbuf; | ||
113 | |||
114 | for (i = 0; i < 7; i++) | ||
115 | set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i])); | ||
116 | |||
117 | return resbuf; | ||
118 | } | ||
119 | |||
120 | /* Process the remaining bytes in the internal buffer and the usual | ||
121 | prolog according to the standard and write the result to RESBUF. */ | ||
122 | static void | ||
123 | sha256_conclude_ctx (struct sha256_ctx *ctx) | ||
124 | { | ||
125 | /* Take yet unprocessed bytes into account. */ | ||
126 | size_t bytes = ctx->buflen; | ||
127 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | ||
128 | |||
129 | /* Now count remaining bytes. */ | ||
130 | ctx->total[0] += bytes; | ||
131 | if (ctx->total[0] < bytes) | ||
132 | ++ctx->total[1]; | ||
133 | |||
134 | /* Put the 64-bit file length in *bits* at the end of the buffer. | ||
135 | Use set_uint32 rather than a simple assignment, to avoid risk of | ||
136 | unaligned access. */ | ||
137 | set_uint32 ((char *) &ctx->buffer[size - 2], | ||
138 | SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29))); | ||
139 | set_uint32 ((char *) &ctx->buffer[size - 1], | ||
140 | SWAP (ctx->total[0] << 3)); | ||
141 | |||
142 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | ||
143 | |||
144 | /* Process last bytes. */ | ||
145 | sha256_process_block (ctx->buffer, size * 4, ctx); | ||
146 | } | ||
147 | |||
148 | void * | ||
149 | sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf) | ||
150 | { | ||
151 | sha256_conclude_ctx (ctx); | ||
152 | return sha256_read_ctx (ctx, resbuf); | ||
153 | } | ||
154 | |||
155 | void * | ||
156 | sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf) | ||
157 | { | ||
158 | sha256_conclude_ctx (ctx); | ||
159 | return sha224_read_ctx (ctx, resbuf); | ||
160 | } | ||
161 | |||
162 | /* Compute SHA256 message digest for LEN bytes beginning at BUFFER. The | ||
163 | result is always in little endian byte order, so that a byte-wise | ||
164 | output yields to the wanted ASCII representation of the message | ||
165 | digest. */ | ||
166 | void * | ||
167 | sha256_buffer (const char *buffer, size_t len, void *resblock) | ||
168 | { | ||
169 | struct sha256_ctx ctx; | ||
170 | |||
171 | /* Initialize the computation context. */ | ||
172 | sha256_init_ctx (&ctx); | ||
173 | |||
174 | /* Process whole buffer but last len % 64 bytes. */ | ||
175 | sha256_process_bytes (buffer, len, &ctx); | ||
176 | |||
177 | /* Put result in desired memory area. */ | ||
178 | return sha256_finish_ctx (&ctx, resblock); | ||
179 | } | ||
180 | |||
181 | void * | ||
182 | sha224_buffer (const char *buffer, size_t len, void *resblock) | ||
183 | { | ||
184 | struct sha256_ctx ctx; | ||
185 | |||
186 | /* Initialize the computation context. */ | ||
187 | sha224_init_ctx (&ctx); | ||
188 | |||
189 | /* Process whole buffer but last len % 64 bytes. */ | ||
190 | sha256_process_bytes (buffer, len, &ctx); | ||
191 | |||
192 | /* Put result in desired memory area. */ | ||
193 | return sha224_finish_ctx (&ctx, resblock); | ||
194 | } | ||
195 | |||
196 | void | ||
197 | sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx) | ||
198 | { | ||
199 | /* When we already have some bits in our internal buffer concatenate | ||
200 | both inputs first. */ | ||
201 | if (ctx->buflen != 0) | ||
202 | { | ||
203 | size_t left_over = ctx->buflen; | ||
204 | size_t add = 128 - left_over > len ? len : 128 - left_over; | ||
205 | |||
206 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | ||
207 | ctx->buflen += add; | ||
208 | |||
209 | if (ctx->buflen > 64) | ||
210 | { | ||
211 | sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | ||
212 | |||
213 | ctx->buflen &= 63; | ||
214 | /* The regions in the following copy operation cannot overlap, | ||
215 | because ctx->buflen < 64 ≤ (left_over + add) & ~63. */ | ||
216 | memcpy (ctx->buffer, | ||
217 | &((char *) ctx->buffer)[(left_over + add) & ~63], | ||
218 | ctx->buflen); | ||
219 | } | ||
220 | |||
221 | buffer = (const char *) buffer + add; | ||
222 | len -= add; | ||
223 | } | ||
224 | |||
225 | /* Process available complete blocks. */ | ||
226 | if (len >= 64) | ||
227 | { | ||
228 | #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned) | ||
229 | # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0) | ||
230 | if (UNALIGNED_P (buffer)) | ||
231 | while (len > 64) | ||
232 | { | ||
233 | sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | ||
234 | buffer = (const char *) buffer + 64; | ||
235 | len -= 64; | ||
236 | } | ||
237 | else | ||
238 | #endif | ||
239 | { | ||
240 | sha256_process_block (buffer, len & ~63, ctx); | ||
241 | buffer = (const char *) buffer + (len & ~63); | ||
242 | len &= 63; | ||
243 | } | ||
244 | } | ||
245 | |||
246 | /* Move remaining bytes in internal buffer. */ | ||
247 | if (len > 0) | ||
248 | { | ||
249 | size_t left_over = ctx->buflen; | ||
250 | |||
251 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | ||
252 | left_over += len; | ||
253 | if (left_over >= 64) | ||
254 | { | ||
255 | sha256_process_block (ctx->buffer, 64, ctx); | ||
256 | left_over -= 64; | ||
257 | /* The regions in the following copy operation cannot overlap, | ||
258 | because left_over ≤ 64. */ | ||
259 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | ||
260 | } | ||
261 | ctx->buflen = left_over; | ||
262 | } | ||
263 | } | ||
264 | |||
265 | /* --- Code below is the primary difference between sha1.c and sha256.c --- */ | ||
266 | |||
267 | /* SHA256 round constants */ | ||
268 | #define K(I) sha256_round_constants[I] | ||
269 | static const uint32_t sha256_round_constants[64] = { | ||
270 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, | ||
271 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, | ||
272 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, | ||
273 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, | ||
274 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, | ||
275 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, | ||
276 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, | ||
277 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, | ||
278 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, | ||
279 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, | ||
280 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, | ||
281 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, | ||
282 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, | ||
283 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, | ||
284 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, | ||
285 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL, | ||
286 | }; | ||
287 | |||
288 | /* Round functions. */ | ||
289 | #define F2(A,B,C) ( ( A & B ) | ( C & ( A | B ) ) ) | ||
290 | #define F1(E,F,G) ( G ^ ( E & ( F ^ G ) ) ) | ||
291 | |||
292 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | ||
293 | It is assumed that LEN % 64 == 0. | ||
294 | Most of this code comes from GnuPG's cipher/sha1.c. */ | ||
295 | |||
296 | void | ||
297 | sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx) | ||
298 | { | ||
299 | const uint32_t *words = buffer; | ||
300 | size_t nwords = len / sizeof (uint32_t); | ||
301 | const uint32_t *endp = words + nwords; | ||
302 | uint32_t x[16]; | ||
303 | uint32_t a = ctx->state[0]; | ||
304 | uint32_t b = ctx->state[1]; | ||
305 | uint32_t c = ctx->state[2]; | ||
306 | uint32_t d = ctx->state[3]; | ||
307 | uint32_t e = ctx->state[4]; | ||
308 | uint32_t f = ctx->state[5]; | ||
309 | uint32_t g = ctx->state[6]; | ||
310 | uint32_t h = ctx->state[7]; | ||
311 | uint32_t lolen = len; | ||
312 | |||
313 | /* First increment the byte count. FIPS PUB 180-2 specifies the possible | ||
314 | length of the file up to 2^64 bits. Here we only compute the | ||
315 | number of bytes. Do a double word increment. */ | ||
316 | ctx->total[0] += lolen; | ||
317 | ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen); | ||
318 | |||
319 | #define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n)))) | ||
320 | #define S0(x) (rol(x,25)^rol(x,14)^(x>>3)) | ||
321 | #define S1(x) (rol(x,15)^rol(x,13)^(x>>10)) | ||
322 | #define SS0(x) (rol(x,30)^rol(x,19)^rol(x,10)) | ||
323 | #define SS1(x) (rol(x,26)^rol(x,21)^rol(x,7)) | ||
324 | |||
325 | #define M(I) ( tm = S1(x[(I-2)&0x0f]) + x[(I-7)&0x0f] \ | ||
326 | + S0(x[(I-15)&0x0f]) + x[I&0x0f] \ | ||
327 | , x[I&0x0f] = tm ) | ||
328 | |||
329 | #define R(A,B,C,D,E,F,G,H,K,M) do { t0 = SS0(A) + F2(A,B,C); \ | ||
330 | t1 = H + SS1(E) \ | ||
331 | + F1(E,F,G) \ | ||
332 | + K \ | ||
333 | + M; \ | ||
334 | D += t1; H = t0 + t1; \ | ||
335 | } while(0) | ||
336 | |||
337 | while (words < endp) | ||
338 | { | ||
339 | uint32_t tm; | ||
340 | uint32_t t0, t1; | ||
341 | int t; | ||
342 | /* FIXME: see sha1.c for a better implementation. */ | ||
343 | for (t = 0; t < 16; t++) | ||
344 | { | ||
345 | x[t] = SWAP (*words); | ||
346 | words++; | ||
347 | } | ||
348 | |||
349 | R( a, b, c, d, e, f, g, h, K( 0), x[ 0] ); | ||
350 | R( h, a, b, c, d, e, f, g, K( 1), x[ 1] ); | ||
351 | R( g, h, a, b, c, d, e, f, K( 2), x[ 2] ); | ||
352 | R( f, g, h, a, b, c, d, e, K( 3), x[ 3] ); | ||
353 | R( e, f, g, h, a, b, c, d, K( 4), x[ 4] ); | ||
354 | R( d, e, f, g, h, a, b, c, K( 5), x[ 5] ); | ||
355 | R( c, d, e, f, g, h, a, b, K( 6), x[ 6] ); | ||
356 | R( b, c, d, e, f, g, h, a, K( 7), x[ 7] ); | ||
357 | R( a, b, c, d, e, f, g, h, K( 8), x[ 8] ); | ||
358 | R( h, a, b, c, d, e, f, g, K( 9), x[ 9] ); | ||
359 | R( g, h, a, b, c, d, e, f, K(10), x[10] ); | ||
360 | R( f, g, h, a, b, c, d, e, K(11), x[11] ); | ||
361 | R( e, f, g, h, a, b, c, d, K(12), x[12] ); | ||
362 | R( d, e, f, g, h, a, b, c, K(13), x[13] ); | ||
363 | R( c, d, e, f, g, h, a, b, K(14), x[14] ); | ||
364 | R( b, c, d, e, f, g, h, a, K(15), x[15] ); | ||
365 | R( a, b, c, d, e, f, g, h, K(16), M(16) ); | ||
366 | R( h, a, b, c, d, e, f, g, K(17), M(17) ); | ||
367 | R( g, h, a, b, c, d, e, f, K(18), M(18) ); | ||
368 | R( f, g, h, a, b, c, d, e, K(19), M(19) ); | ||
369 | R( e, f, g, h, a, b, c, d, K(20), M(20) ); | ||
370 | R( d, e, f, g, h, a, b, c, K(21), M(21) ); | ||
371 | R( c, d, e, f, g, h, a, b, K(22), M(22) ); | ||
372 | R( b, c, d, e, f, g, h, a, K(23), M(23) ); | ||
373 | R( a, b, c, d, e, f, g, h, K(24), M(24) ); | ||
374 | R( h, a, b, c, d, e, f, g, K(25), M(25) ); | ||
375 | R( g, h, a, b, c, d, e, f, K(26), M(26) ); | ||
376 | R( f, g, h, a, b, c, d, e, K(27), M(27) ); | ||
377 | R( e, f, g, h, a, b, c, d, K(28), M(28) ); | ||
378 | R( d, e, f, g, h, a, b, c, K(29), M(29) ); | ||
379 | R( c, d, e, f, g, h, a, b, K(30), M(30) ); | ||
380 | R( b, c, d, e, f, g, h, a, K(31), M(31) ); | ||
381 | R( a, b, c, d, e, f, g, h, K(32), M(32) ); | ||
382 | R( h, a, b, c, d, e, f, g, K(33), M(33) ); | ||
383 | R( g, h, a, b, c, d, e, f, K(34), M(34) ); | ||
384 | R( f, g, h, a, b, c, d, e, K(35), M(35) ); | ||
385 | R( e, f, g, h, a, b, c, d, K(36), M(36) ); | ||
386 | R( d, e, f, g, h, a, b, c, K(37), M(37) ); | ||
387 | R( c, d, e, f, g, h, a, b, K(38), M(38) ); | ||
388 | R( b, c, d, e, f, g, h, a, K(39), M(39) ); | ||
389 | R( a, b, c, d, e, f, g, h, K(40), M(40) ); | ||
390 | R( h, a, b, c, d, e, f, g, K(41), M(41) ); | ||
391 | R( g, h, a, b, c, d, e, f, K(42), M(42) ); | ||
392 | R( f, g, h, a, b, c, d, e, K(43), M(43) ); | ||
393 | R( e, f, g, h, a, b, c, d, K(44), M(44) ); | ||
394 | R( d, e, f, g, h, a, b, c, K(45), M(45) ); | ||
395 | R( c, d, e, f, g, h, a, b, K(46), M(46) ); | ||
396 | R( b, c, d, e, f, g, h, a, K(47), M(47) ); | ||
397 | R( a, b, c, d, e, f, g, h, K(48), M(48) ); | ||
398 | R( h, a, b, c, d, e, f, g, K(49), M(49) ); | ||
399 | R( g, h, a, b, c, d, e, f, K(50), M(50) ); | ||
400 | R( f, g, h, a, b, c, d, e, K(51), M(51) ); | ||
401 | R( e, f, g, h, a, b, c, d, K(52), M(52) ); | ||
402 | R( d, e, f, g, h, a, b, c, K(53), M(53) ); | ||
403 | R( c, d, e, f, g, h, a, b, K(54), M(54) ); | ||
404 | R( b, c, d, e, f, g, h, a, K(55), M(55) ); | ||
405 | R( a, b, c, d, e, f, g, h, K(56), M(56) ); | ||
406 | R( h, a, b, c, d, e, f, g, K(57), M(57) ); | ||
407 | R( g, h, a, b, c, d, e, f, K(58), M(58) ); | ||
408 | R( f, g, h, a, b, c, d, e, K(59), M(59) ); | ||
409 | R( e, f, g, h, a, b, c, d, K(60), M(60) ); | ||
410 | R( d, e, f, g, h, a, b, c, K(61), M(61) ); | ||
411 | R( c, d, e, f, g, h, a, b, K(62), M(62) ); | ||
412 | R( b, c, d, e, f, g, h, a, K(63), M(63) ); | ||
413 | |||
414 | a = ctx->state[0] += a; | ||
415 | b = ctx->state[1] += b; | ||
416 | c = ctx->state[2] += c; | ||
417 | d = ctx->state[3] += d; | ||
418 | e = ctx->state[4] += e; | ||
419 | f = ctx->state[5] += f; | ||
420 | g = ctx->state[6] += g; | ||
421 | h = ctx->state[7] += h; | ||
422 | } | ||
423 | } | ||
424 | |||
425 | #endif | ||
426 | |||
427 | /* | ||
428 | * Hey Emacs! | ||
429 | * Local Variables: | ||
430 | * coding: utf-8 | ||
431 | * End: | ||
432 | */ | ||