diff options
author | Ton Voon <tonvoon@users.sourceforge.net> | 2006-05-25 12:33:24 (GMT) |
---|---|---|
committer | Ton Voon <tonvoon@users.sourceforge.net> | 2006-05-25 12:33:24 (GMT) |
commit | 5fd2550d4c96318b2de4a4a44e15e3c50c268e79 (patch) | |
tree | b712838611281a444a9b603949352bc4003de657 /lib/regexec.c | |
parent | 80e155c9cf826d977393ee130a07be599401335e (diff) | |
download | monitoring-plugins-5fd2550d4c96318b2de4a4a44e15e3c50c268e79.tar.gz |
Use coreutils' regexp libraries, so regexp always available now
git-svn-id: https://nagiosplug.svn.sourceforge.net/svnroot/nagiosplug/nagiosplug/trunk@1403 f882894a-f735-0410-b71e-b25c423dba1c
Diffstat (limited to 'lib/regexec.c')
-rw-r--r-- | lib/regexec.c | 4333 |
1 files changed, 4333 insertions, 0 deletions
diff --git a/lib/regexec.c b/lib/regexec.c new file mode 100644 index 0000000..a85077c --- /dev/null +++ b/lib/regexec.c | |||
@@ -0,0 +1,4333 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, | ||
21 | Idx n) internal_function; | ||
22 | static void match_ctx_clean (re_match_context_t *mctx) internal_function; | ||
23 | static void match_ctx_free (re_match_context_t *cache) internal_function; | ||
24 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node, | ||
25 | Idx str_idx, Idx from, Idx to) | ||
26 | internal_function; | ||
27 | static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) | ||
28 | internal_function; | ||
29 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node, | ||
30 | Idx str_idx) internal_function; | ||
31 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, | ||
32 | Idx node, Idx str_idx) | ||
33 | internal_function; | ||
34 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | ||
35 | re_dfastate_t **limited_sts, Idx last_node, | ||
36 | Idx last_str_idx) | ||
37 | internal_function; | ||
38 | static reg_errcode_t re_search_internal (const regex_t *preg, | ||
39 | const char *string, Idx length, | ||
40 | Idx start, Idx last_start, Idx stop, | ||
41 | size_t nmatch, regmatch_t pmatch[], | ||
42 | int eflags) internal_function; | ||
43 | static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp, | ||
44 | const char *string1, Idx length1, | ||
45 | const char *string2, Idx length2, | ||
46 | Idx start, regoff_t range, | ||
47 | struct re_registers *regs, | ||
48 | Idx stop, bool ret_len) internal_function; | ||
49 | static regoff_t re_search_stub (struct re_pattern_buffer *bufp, | ||
50 | const char *string, Idx length, Idx start, | ||
51 | regoff_t range, Idx stop, | ||
52 | struct re_registers *regs, | ||
53 | bool ret_len) internal_function; | ||
54 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, | ||
55 | Idx nregs, int regs_allocated) internal_function; | ||
56 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx) | ||
57 | internal_function; | ||
58 | static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match, | ||
59 | Idx *p_match_first) | ||
60 | internal_function; | ||
61 | static Idx check_halt_state_context (const re_match_context_t *mctx, | ||
62 | const re_dfastate_t *state, Idx idx) | ||
63 | internal_function; | ||
64 | static void update_regs (re_dfa_t *dfa, regmatch_t *pmatch, | ||
65 | regmatch_t *prev_idx_match, Idx cur_node, | ||
66 | Idx cur_idx, Idx nmatch) internal_function; | ||
67 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, | ||
68 | Idx str_idx, Idx dest_node, Idx nregs, | ||
69 | regmatch_t *regs, | ||
70 | re_node_set *eps_via_nodes) internal_function; | ||
71 | static reg_errcode_t set_regs (const regex_t *preg, | ||
72 | const re_match_context_t *mctx, | ||
73 | size_t nmatch, regmatch_t *pmatch, | ||
74 | bool fl_backtrack) internal_function; | ||
75 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) internal_function; | ||
76 | |||
77 | #ifdef RE_ENABLE_I18N | ||
78 | static int sift_states_iter_mb (const re_match_context_t *mctx, | ||
79 | re_sift_context_t *sctx, | ||
80 | Idx node_idx, Idx str_idx, Idx max_str_idx) internal_function; | ||
81 | #endif /* RE_ENABLE_I18N */ | ||
82 | static reg_errcode_t sift_states_backward (re_match_context_t *mctx, | ||
83 | re_sift_context_t *sctx) internal_function; | ||
84 | static reg_errcode_t build_sifted_states (re_match_context_t *mctx, | ||
85 | re_sift_context_t *sctx, Idx str_idx, | ||
86 | re_node_set *cur_dest) internal_function; | ||
87 | static reg_errcode_t update_cur_sifted_state (re_match_context_t *mctx, | ||
88 | re_sift_context_t *sctx, | ||
89 | Idx str_idx, | ||
90 | re_node_set *dest_nodes) internal_function; | ||
91 | static reg_errcode_t add_epsilon_src_nodes (re_dfa_t *dfa, | ||
92 | re_node_set *dest_nodes, | ||
93 | const re_node_set *candidates) internal_function; | ||
94 | static bool check_dst_limits (const re_match_context_t *mctx, | ||
95 | const re_node_set *limits, | ||
96 | Idx dst_node, Idx dst_idx, Idx src_node, | ||
97 | Idx src_idx) internal_function; | ||
98 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, | ||
99 | int boundaries, Idx subexp_idx, | ||
100 | Idx from_node, Idx bkref_idx) internal_function; | ||
101 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, | ||
102 | Idx limit, Idx subexp_idx, | ||
103 | Idx node, Idx str_idx, | ||
104 | Idx bkref_idx) internal_function; | ||
105 | static reg_errcode_t check_subexp_limits (re_dfa_t *dfa, | ||
106 | re_node_set *dest_nodes, | ||
107 | const re_node_set *candidates, | ||
108 | re_node_set *limits, | ||
109 | struct re_backref_cache_entry *bkref_ents, | ||
110 | Idx str_idx) internal_function; | ||
111 | static reg_errcode_t sift_states_bkref (re_match_context_t *mctx, | ||
112 | re_sift_context_t *sctx, | ||
113 | Idx str_idx, const re_node_set *candidates) internal_function; | ||
114 | static reg_errcode_t merge_state_array (re_dfa_t *dfa, re_dfastate_t **dst, | ||
115 | re_dfastate_t **src, Idx num) internal_function; | ||
116 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, | ||
117 | re_match_context_t *mctx) internal_function; | ||
118 | static re_dfastate_t *transit_state (reg_errcode_t *err, | ||
119 | re_match_context_t *mctx, | ||
120 | re_dfastate_t *state) internal_function; | ||
121 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, | ||
122 | re_match_context_t *mctx, | ||
123 | re_dfastate_t *next_state) internal_function; | ||
124 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, | ||
125 | re_node_set *cur_nodes, | ||
126 | Idx str_idx) internal_function; | ||
127 | #if 0 | ||
128 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, | ||
129 | re_match_context_t *mctx, | ||
130 | re_dfastate_t *pstate) internal_function; | ||
131 | #endif | ||
132 | #ifdef RE_ENABLE_I18N | ||
133 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, | ||
134 | re_dfastate_t *pstate) internal_function; | ||
135 | #endif /* RE_ENABLE_I18N */ | ||
136 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, | ||
137 | const re_node_set *nodes) internal_function; | ||
138 | static reg_errcode_t get_subexp (re_match_context_t *mctx, | ||
139 | Idx bkref_node, Idx bkref_str_idx) internal_function; | ||
140 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, | ||
141 | const re_sub_match_top_t *sub_top, | ||
142 | re_sub_match_last_t *sub_last, | ||
143 | Idx bkref_node, Idx bkref_str) internal_function; | ||
144 | static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | ||
145 | Idx subexp_idx, int type) internal_function; | ||
146 | static reg_errcode_t check_arrival (re_match_context_t *mctx, | ||
147 | state_array_t *path, Idx top_node, | ||
148 | Idx top_str, Idx last_node, Idx last_str, | ||
149 | int type) internal_function; | ||
150 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, | ||
151 | Idx str_idx, | ||
152 | re_node_set *cur_nodes, | ||
153 | re_node_set *next_nodes) internal_function; | ||
154 | static reg_errcode_t check_arrival_expand_ecl (re_dfa_t *dfa, | ||
155 | re_node_set *cur_nodes, | ||
156 | Idx ex_subexp, int type) internal_function; | ||
157 | static reg_errcode_t check_arrival_expand_ecl_sub (re_dfa_t *dfa, | ||
158 | re_node_set *dst_nodes, | ||
159 | Idx target, Idx ex_subexp, | ||
160 | int type) internal_function; | ||
161 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, | ||
162 | re_node_set *cur_nodes, Idx cur_str, | ||
163 | Idx subexp_num, int type) internal_function; | ||
164 | static bool build_trtable (re_dfa_t *dfa, | ||
165 | re_dfastate_t *state) internal_function; | ||
166 | #ifdef RE_ENABLE_I18N | ||
167 | static int check_node_accept_bytes (re_dfa_t *dfa, Idx node_idx, | ||
168 | const re_string_t *input, Idx idx) internal_function; | ||
169 | # ifdef _LIBC | ||
170 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, | ||
171 | size_t name_len) internal_function; | ||
172 | # endif /* _LIBC */ | ||
173 | #endif /* RE_ENABLE_I18N */ | ||
174 | static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa, | ||
175 | const re_dfastate_t *state, | ||
176 | re_node_set *states_node, | ||
177 | bitset *states_ch) internal_function; | ||
178 | static bool check_node_accept (const re_match_context_t *mctx, | ||
179 | const re_token_t *node, Idx idx) | ||
180 | internal_function; | ||
181 | static reg_errcode_t extend_buffers (re_match_context_t *mctx) internal_function; | ||
182 | |||
183 | /* Entry point for POSIX code. */ | ||
184 | |||
185 | /* regexec searches for a given pattern, specified by PREG, in the | ||
186 | string STRING. | ||
187 | |||
188 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | ||
189 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | ||
190 | least NMATCH elements, and we set them to the offsets of the | ||
191 | corresponding matched substrings. | ||
192 | |||
193 | EFLAGS specifies `execution flags' which affect matching: if | ||
194 | REG_NOTBOL is set, then ^ does not match at the beginning of the | ||
195 | string; if REG_NOTEOL is set, then $ does not match at the end. | ||
196 | |||
197 | We return 0 if we find a match and REG_NOMATCH if not. */ | ||
198 | |||
199 | int | ||
200 | regexec (const regex_t *__restrict preg, const char *__restrict string, | ||
201 | size_t nmatch, regmatch_t pmatch[], int eflags) | ||
202 | { | ||
203 | reg_errcode_t err; | ||
204 | Idx start, length; | ||
205 | #ifdef _LIBC | ||
206 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
207 | #endif | ||
208 | |||
209 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) | ||
210 | return REG_BADPAT; | ||
211 | |||
212 | if (eflags & REG_STARTEND) | ||
213 | { | ||
214 | start = pmatch[0].rm_so; | ||
215 | length = pmatch[0].rm_eo; | ||
216 | } | ||
217 | else | ||
218 | { | ||
219 | start = 0; | ||
220 | length = strlen (string); | ||
221 | } | ||
222 | |||
223 | __libc_lock_lock (dfa->lock); | ||
224 | if (preg->re_no_sub) | ||
225 | err = re_search_internal (preg, string, length, start, length, | ||
226 | length, 0, NULL, eflags); | ||
227 | else | ||
228 | err = re_search_internal (preg, string, length, start, length, | ||
229 | length, nmatch, pmatch, eflags); | ||
230 | __libc_lock_unlock (dfa->lock); | ||
231 | return err != REG_NOERROR; | ||
232 | } | ||
233 | |||
234 | #ifdef _LIBC | ||
235 | # include <shlib-compat.h> | ||
236 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); | ||
237 | |||
238 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) | ||
239 | __typeof__ (__regexec) __compat_regexec; | ||
240 | |||
241 | int | ||
242 | attribute_compat_text_section | ||
243 | __compat_regexec (const regex_t *__restrict preg, | ||
244 | const char *__restrict string, size_t nmatch, | ||
245 | regmatch_t pmatch[], int eflags) | ||
246 | { | ||
247 | return regexec (preg, string, nmatch, pmatch, | ||
248 | eflags & (REG_NOTBOL | REG_NOTEOL)); | ||
249 | } | ||
250 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); | ||
251 | # endif | ||
252 | #endif | ||
253 | |||
254 | /* Entry points for GNU code. */ | ||
255 | |||
256 | /* re_match, re_search, re_match_2, re_search_2 | ||
257 | |||
258 | The former two functions operate on STRING with length LENGTH, | ||
259 | while the later two operate on concatenation of STRING1 and STRING2 | ||
260 | with lengths LENGTH1 and LENGTH2, respectively. | ||
261 | |||
262 | re_match() matches the compiled pattern in BUFP against the string, | ||
263 | starting at index START. | ||
264 | |||
265 | re_search() first tries matching at index START, then it tries to match | ||
266 | starting from index START + 1, and so on. The last start position tried | ||
267 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same | ||
268 | way as re_match().) | ||
269 | |||
270 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding | ||
271 | the first STOP characters of the concatenation of the strings should be | ||
272 | concerned. | ||
273 | |||
274 | If REGS is not NULL, and BUFP->re_no_sub is not set, the offsets of the match | ||
275 | and all groups is stroed in REGS. (For the "_2" variants, the offsets are | ||
276 | computed relative to the concatenation, not relative to the individual | ||
277 | strings.) | ||
278 | |||
279 | On success, re_match* functions return the length of the match, re_search* | ||
280 | return the position of the start of the match. Return value -1 means no | ||
281 | match was found and -2 indicates an internal error. */ | ||
282 | |||
283 | regoff_t | ||
284 | re_match (struct re_pattern_buffer *bufp, const char *string, | ||
285 | Idx length, Idx start, struct re_registers *regs) | ||
286 | { | ||
287 | return re_search_stub (bufp, string, length, start, 0, length, regs, true); | ||
288 | } | ||
289 | #ifdef _LIBC | ||
290 | weak_alias (__re_match, re_match) | ||
291 | #endif | ||
292 | |||
293 | regoff_t | ||
294 | re_search (struct re_pattern_buffer *bufp, const char *string, | ||
295 | Idx length, Idx start, regoff_t range, struct re_registers *regs) | ||
296 | { | ||
297 | return re_search_stub (bufp, string, length, start, range, length, regs, | ||
298 | false); | ||
299 | } | ||
300 | #ifdef _LIBC | ||
301 | weak_alias (__re_search, re_search) | ||
302 | #endif | ||
303 | |||
304 | regoff_t | ||
305 | re_match_2 (struct re_pattern_buffer *bufp, | ||
306 | const char *string1, Idx length1, | ||
307 | const char *string2, Idx length2, | ||
308 | Idx start, struct re_registers *regs, Idx stop) | ||
309 | { | ||
310 | return re_search_2_stub (bufp, string1, length1, string2, length2, | ||
311 | start, 0, regs, stop, true); | ||
312 | } | ||
313 | #ifdef _LIBC | ||
314 | weak_alias (__re_match_2, re_match_2) | ||
315 | #endif | ||
316 | |||
317 | regoff_t | ||
318 | re_search_2 (struct re_pattern_buffer *bufp, | ||
319 | const char *string1, Idx length1, | ||
320 | const char *string2, Idx length2, | ||
321 | Idx start, regoff_t range, struct re_registers *regs, Idx stop) | ||
322 | { | ||
323 | return re_search_2_stub (bufp, string1, length1, string2, length2, | ||
324 | start, range, regs, stop, false); | ||
325 | } | ||
326 | #ifdef _LIBC | ||
327 | weak_alias (__re_search_2, re_search_2) | ||
328 | #endif | ||
329 | |||
330 | static regoff_t | ||
331 | internal_function | ||
332 | re_search_2_stub (struct re_pattern_buffer *bufp, | ||
333 | const char *string1, Idx length1, | ||
334 | const char *string2, Idx length2, | ||
335 | Idx start, regoff_t range, struct re_registers *regs, | ||
336 | Idx stop, bool ret_len) | ||
337 | { | ||
338 | const char *str; | ||
339 | regoff_t rval; | ||
340 | Idx len = length1 + length2; | ||
341 | char *s = NULL; | ||
342 | |||
343 | if (BE (length1 < 0 || length2 < 0 || stop < 0 || len < length1, 0)) | ||
344 | return -2; | ||
345 | |||
346 | /* Concatenate the strings. */ | ||
347 | if (length2 > 0) | ||
348 | if (length1 > 0) | ||
349 | { | ||
350 | s = re_malloc (char, len); | ||
351 | |||
352 | if (BE (s == NULL, 0)) | ||
353 | return -2; | ||
354 | memcpy (s, string1, length1); | ||
355 | memcpy (s + length1, string2, length2); | ||
356 | str = s; | ||
357 | } | ||
358 | else | ||
359 | str = string2; | ||
360 | else | ||
361 | str = string1; | ||
362 | |||
363 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, | ||
364 | ret_len); | ||
365 | re_free (s); | ||
366 | return rval; | ||
367 | } | ||
368 | |||
369 | /* The parameters have the same meaning as those of re_search. | ||
370 | Additional parameters: | ||
371 | If RET_LEN is true the length of the match is returned (re_match style); | ||
372 | otherwise the position of the match is returned. */ | ||
373 | |||
374 | static regoff_t | ||
375 | internal_function | ||
376 | re_search_stub (struct re_pattern_buffer *bufp, | ||
377 | const char *string, Idx length, | ||
378 | Idx start, regoff_t range, Idx stop, struct re_registers *regs, | ||
379 | bool ret_len) | ||
380 | { | ||
381 | reg_errcode_t result; | ||
382 | regmatch_t *pmatch; | ||
383 | Idx nregs; | ||
384 | regoff_t rval; | ||
385 | int eflags = 0; | ||
386 | #ifdef _LIBC | ||
387 | re_dfa_t *dfa = (re_dfa_t *) bufp->re_buffer; | ||
388 | #endif | ||
389 | Idx last_start = start + range; | ||
390 | |||
391 | /* Check for out-of-range. */ | ||
392 | if (BE (start < 0 || start > length, 0)) | ||
393 | return -1; | ||
394 | if (sizeof start < sizeof range) | ||
395 | { | ||
396 | regoff_t length_offset = length; | ||
397 | regoff_t start_offset = start; | ||
398 | if (BE (length_offset - start_offset < range, 0)) | ||
399 | last_start = length; | ||
400 | else if (BE (range < - start_offset, 0)) | ||
401 | last_start = 0; | ||
402 | } | ||
403 | else | ||
404 | { | ||
405 | if (BE ((last_start < start) != (range < 0), 0)) | ||
406 | { | ||
407 | /* Overflow occurred when computing last_start; substitute | ||
408 | the extreme value. */ | ||
409 | last_start = range < 0 ? 0 : length; | ||
410 | } | ||
411 | else | ||
412 | { | ||
413 | if (BE (length < last_start, 0)) | ||
414 | last_start = length; | ||
415 | else if (BE (last_start < 0, 0)) | ||
416 | last_start = 0; | ||
417 | } | ||
418 | } | ||
419 | |||
420 | __libc_lock_lock (dfa->lock); | ||
421 | |||
422 | eflags |= (bufp->re_not_bol) ? REG_NOTBOL : 0; | ||
423 | eflags |= (bufp->re_not_eol) ? REG_NOTEOL : 0; | ||
424 | |||
425 | /* Compile fastmap if we haven't yet. */ | ||
426 | if (start < last_start && bufp->re_fastmap != NULL | ||
427 | && !bufp->re_fastmap_accurate) | ||
428 | re_compile_fastmap (bufp); | ||
429 | |||
430 | if (BE (bufp->re_no_sub, 0)) | ||
431 | regs = NULL; | ||
432 | |||
433 | /* We need at least 1 register. */ | ||
434 | if (regs == NULL) | ||
435 | nregs = 1; | ||
436 | else if (BE (bufp->re_regs_allocated == REG_FIXED | ||
437 | && regs->rm_num_regs <= bufp->re_nsub, 0)) | ||
438 | { | ||
439 | nregs = regs->rm_num_regs; | ||
440 | if (BE (nregs < 1, 0)) | ||
441 | { | ||
442 | /* Nothing can be copied to regs. */ | ||
443 | regs = NULL; | ||
444 | nregs = 1; | ||
445 | } | ||
446 | } | ||
447 | else | ||
448 | nregs = bufp->re_nsub + 1; | ||
449 | pmatch = re_xmalloc (regmatch_t, nregs); | ||
450 | if (BE (pmatch == NULL, 0)) | ||
451 | { | ||
452 | rval = -2; | ||
453 | goto out; | ||
454 | } | ||
455 | |||
456 | result = re_search_internal (bufp, string, length, start, last_start, stop, | ||
457 | nregs, pmatch, eflags); | ||
458 | |||
459 | rval = 0; | ||
460 | |||
461 | /* I hope we needn't fill ther regs with -1's when no match was found. */ | ||
462 | if (result != REG_NOERROR) | ||
463 | rval = -1; | ||
464 | else if (regs != NULL) | ||
465 | { | ||
466 | /* If caller wants register contents data back, copy them. */ | ||
467 | bufp->re_regs_allocated = re_copy_regs (regs, pmatch, nregs, | ||
468 | bufp->re_regs_allocated); | ||
469 | if (BE (bufp->re_regs_allocated == REG_UNALLOCATED, 0)) | ||
470 | rval = -2; | ||
471 | } | ||
472 | |||
473 | if (BE (rval == 0, 1)) | ||
474 | { | ||
475 | if (ret_len) | ||
476 | { | ||
477 | assert (pmatch[0].rm_so == start); | ||
478 | rval = pmatch[0].rm_eo - start; | ||
479 | } | ||
480 | else | ||
481 | rval = pmatch[0].rm_so; | ||
482 | } | ||
483 | re_free (pmatch); | ||
484 | out: | ||
485 | __libc_lock_unlock (dfa->lock); | ||
486 | return rval; | ||
487 | } | ||
488 | |||
489 | static unsigned | ||
490 | internal_function | ||
491 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs, | ||
492 | int regs_allocated) | ||
493 | { | ||
494 | int rval = REG_REALLOCATE; | ||
495 | Idx i; | ||
496 | Idx need_regs = nregs + 1; | ||
497 | /* We need one extra element beyond `rm_num_regs' for the `-1' marker GNU code | ||
498 | uses. */ | ||
499 | |||
500 | /* Have the register data arrays been allocated? */ | ||
501 | if (regs_allocated == REG_UNALLOCATED) | ||
502 | { /* No. So allocate them with malloc. */ | ||
503 | regs->rm_start = re_xmalloc (regoff_t, need_regs); | ||
504 | regs->rm_end = re_malloc (regoff_t, need_regs); | ||
505 | if (BE (regs->rm_start == NULL, 0) || BE (regs->rm_end == NULL, 0)) | ||
506 | return REG_UNALLOCATED; | ||
507 | regs->rm_num_regs = need_regs; | ||
508 | } | ||
509 | else if (regs_allocated == REG_REALLOCATE) | ||
510 | { /* Yes. If we need more elements than were already | ||
511 | allocated, reallocate them. If we need fewer, just | ||
512 | leave it alone. */ | ||
513 | if (BE (need_regs > regs->rm_num_regs, 0)) | ||
514 | { | ||
515 | regoff_t *new_start = | ||
516 | re_xrealloc (regs->rm_start, regoff_t, need_regs); | ||
517 | regoff_t *new_end = re_realloc (regs->rm_end, regoff_t, need_regs); | ||
518 | if (BE (new_start == NULL, 0) || BE (new_end == NULL, 0)) | ||
519 | return REG_UNALLOCATED; | ||
520 | regs->rm_start = new_start; | ||
521 | regs->rm_end = new_end; | ||
522 | regs->rm_num_regs = need_regs; | ||
523 | } | ||
524 | } | ||
525 | else | ||
526 | { | ||
527 | assert (regs_allocated == REG_FIXED); | ||
528 | /* This function may not be called with REG_FIXED and nregs too big. */ | ||
529 | assert (regs->rm_num_regs >= nregs); | ||
530 | rval = REG_FIXED; | ||
531 | } | ||
532 | |||
533 | /* Copy the regs. */ | ||
534 | for (i = 0; i < nregs; ++i) | ||
535 | { | ||
536 | regs->rm_start[i] = pmatch[i].rm_so; | ||
537 | regs->rm_end[i] = pmatch[i].rm_eo; | ||
538 | } | ||
539 | for ( ; i < regs->rm_num_regs; ++i) | ||
540 | regs->rm_start[i] = regs->rm_end[i] = -1; | ||
541 | |||
542 | return rval; | ||
543 | } | ||
544 | |||
545 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
546 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | ||
547 | this memory for recording register information. STARTS and ENDS | ||
548 | must be allocated using the malloc library routine, and must each | ||
549 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | ||
550 | |||
551 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
552 | register data. | ||
553 | |||
554 | Unless this function is called, the first search or match using | ||
555 | PATTERN_BUFFER will allocate its own register data, without | ||
556 | freeing the old data. */ | ||
557 | |||
558 | void | ||
559 | re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, | ||
560 | __re_size_t num_regs, regoff_t *starts, regoff_t *ends) | ||
561 | { | ||
562 | if (num_regs) | ||
563 | { | ||
564 | bufp->re_regs_allocated = REG_REALLOCATE; | ||
565 | regs->rm_num_regs = num_regs; | ||
566 | regs->rm_start = starts; | ||
567 | regs->rm_end = ends; | ||
568 | } | ||
569 | else | ||
570 | { | ||
571 | bufp->re_regs_allocated = REG_UNALLOCATED; | ||
572 | regs->rm_num_regs = 0; | ||
573 | regs->rm_start = regs->rm_end = NULL; | ||
574 | } | ||
575 | } | ||
576 | #ifdef _LIBC | ||
577 | weak_alias (__re_set_registers, re_set_registers) | ||
578 | #endif | ||
579 | |||
580 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
581 | them unless specifically requested. */ | ||
582 | |||
583 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
584 | int | ||
585 | # ifdef _LIBC | ||
586 | weak_function | ||
587 | # endif | ||
588 | re_exec (const char *s) | ||
589 | { | ||
590 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); | ||
591 | } | ||
592 | #endif /* _REGEX_RE_COMP */ | ||
593 | |||
594 | /* Internal entry point. */ | ||
595 | |||
596 | /* Searches for a compiled pattern PREG in the string STRING, whose | ||
597 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same | ||
598 | meaning as with regexec. LAST_START is START + RANGE, where | ||
599 | START and RANGE have the same meaning as with re_search. | ||
600 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, | ||
601 | otherwise return the error code. | ||
602 | Note: We assume front end functions already check ranges. | ||
603 | (0 <= LAST_START && LAST_START <= LENGTH) */ | ||
604 | |||
605 | static reg_errcode_t | ||
606 | internal_function | ||
607 | re_search_internal (const regex_t *preg, | ||
608 | const char *string, Idx length, | ||
609 | Idx start, Idx last_start, Idx stop, | ||
610 | size_t nmatch, regmatch_t pmatch[], | ||
611 | int eflags) | ||
612 | { | ||
613 | reg_errcode_t err; | ||
614 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
615 | Idx left_lim, right_lim; | ||
616 | int incr; | ||
617 | bool fl_longest_match; | ||
618 | int match_kind; | ||
619 | Idx match_first, match_last = REG_MISSING; | ||
620 | Idx extra_nmatch; | ||
621 | bool sb; | ||
622 | int ch; | ||
623 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) | ||
624 | re_match_context_t mctx = { .dfa = dfa }; | ||
625 | #else | ||
626 | re_match_context_t mctx; | ||
627 | #endif | ||
628 | char *fastmap = ((preg->re_fastmap != NULL && preg->re_fastmap_accurate | ||
629 | && start != last_start && !preg->re_can_be_null) | ||
630 | ? preg->re_fastmap : NULL); | ||
631 | unsigned REG_TRANSLATE_TYPE t = | ||
632 | (unsigned REG_TRANSLATE_TYPE) preg->re_translate; | ||
633 | |||
634 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) | ||
635 | memset (&mctx, '\0', sizeof (re_match_context_t)); | ||
636 | mctx.dfa = dfa; | ||
637 | #endif | ||
638 | |||
639 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; | ||
640 | nmatch -= extra_nmatch; | ||
641 | |||
642 | /* Check if the DFA haven't been compiled. */ | ||
643 | if (BE (preg->re_used == 0 || dfa->init_state == NULL | ||
644 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL | ||
645 | || dfa->init_state_begbuf == NULL, 0)) | ||
646 | return REG_NOMATCH; | ||
647 | |||
648 | #ifdef DEBUG | ||
649 | /* We assume front-end functions already check them. */ | ||
650 | assert (0 <= last_start && last_start <= length); | ||
651 | #endif | ||
652 | |||
653 | /* If initial states with non-begbuf contexts have no elements, | ||
654 | the regex must be anchored. If preg->re_newline_anchor is set, | ||
655 | we'll never use init_state_nl, so do not check it. */ | ||
656 | if (dfa->init_state->nodes.nelem == 0 | ||
657 | && dfa->init_state_word->nodes.nelem == 0 | ||
658 | && (dfa->init_state_nl->nodes.nelem == 0 | ||
659 | || !preg->re_newline_anchor)) | ||
660 | { | ||
661 | if (start != 0 && last_start != 0) | ||
662 | return REG_NOMATCH; | ||
663 | start = last_start = 0; | ||
664 | } | ||
665 | |||
666 | /* We must check the longest matching, if nmatch > 0. */ | ||
667 | fl_longest_match = (nmatch != 0 || dfa->nbackref); | ||
668 | |||
669 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, | ||
670 | preg->re_translate, | ||
671 | preg->re_syntax & REG_IGNORE_CASE, dfa); | ||
672 | if (BE (err != REG_NOERROR, 0)) | ||
673 | goto free_return; | ||
674 | mctx.input.stop = stop; | ||
675 | mctx.input.raw_stop = stop; | ||
676 | mctx.input.newline_anchor = preg->re_newline_anchor; | ||
677 | |||
678 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); | ||
679 | if (BE (err != REG_NOERROR, 0)) | ||
680 | goto free_return; | ||
681 | |||
682 | /* We will log all the DFA states through which the dfa pass, | ||
683 | if nmatch > 1, or this dfa has "multibyte node", which is a | ||
684 | back-reference or a node which can accept multibyte character or | ||
685 | multi character collating element. */ | ||
686 | if (nmatch > 1 || dfa->has_mb_node) | ||
687 | { | ||
688 | mctx.state_log = re_xmalloc (re_dfastate_t *, mctx.input.bufs_len + 1); | ||
689 | if (BE (mctx.state_log == NULL, 0)) | ||
690 | { | ||
691 | err = REG_ESPACE; | ||
692 | goto free_return; | ||
693 | } | ||
694 | } | ||
695 | else | ||
696 | mctx.state_log = NULL; | ||
697 | |||
698 | match_first = start; | ||
699 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | ||
700 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; | ||
701 | |||
702 | /* Check incrementally whether of not the input string match. */ | ||
703 | incr = (last_start < start) ? -1 : 1; | ||
704 | left_lim = (last_start < start) ? last_start : start; | ||
705 | right_lim = (last_start < start) ? start : last_start; | ||
706 | sb = dfa->mb_cur_max == 1; | ||
707 | match_kind = | ||
708 | (fastmap | ||
709 | ? ((sb || !(preg->re_syntax & REG_IGNORE_CASE || t) ? 4 : 0) | ||
710 | | (start <= last_start ? 2 : 0) | ||
711 | | (t != NULL ? 1 : 0)) | ||
712 | : 8); | ||
713 | |||
714 | for (;; match_first += incr) | ||
715 | { | ||
716 | err = REG_NOMATCH; | ||
717 | if (match_first < left_lim || right_lim < match_first) | ||
718 | goto free_return; | ||
719 | |||
720 | /* Advance as rapidly as possible through the string, until we | ||
721 | find a plausible place to start matching. This may be done | ||
722 | with varying efficiency, so there are various possibilities: | ||
723 | only the most common of them are specialized, in order to | ||
724 | save on code size. We use a switch statement for speed. */ | ||
725 | switch (match_kind) | ||
726 | { | ||
727 | case 8: | ||
728 | /* No fastmap. */ | ||
729 | break; | ||
730 | |||
731 | case 7: | ||
732 | /* Fastmap with single-byte translation, match forward. */ | ||
733 | while (BE (match_first < right_lim, 1) | ||
734 | && !fastmap[t[(unsigned char) string[match_first]]]) | ||
735 | ++match_first; | ||
736 | goto forward_match_found_start_or_reached_end; | ||
737 | |||
738 | case 6: | ||
739 | /* Fastmap without translation, match forward. */ | ||
740 | while (BE (match_first < right_lim, 1) | ||
741 | && !fastmap[(unsigned char) string[match_first]]) | ||
742 | ++match_first; | ||
743 | |||
744 | forward_match_found_start_or_reached_end: | ||
745 | if (BE (match_first == right_lim, 0)) | ||
746 | { | ||
747 | ch = match_first >= length | ||
748 | ? 0 : (unsigned char) string[match_first]; | ||
749 | if (!fastmap[t ? t[ch] : ch]) | ||
750 | goto free_return; | ||
751 | } | ||
752 | break; | ||
753 | |||
754 | case 4: | ||
755 | case 5: | ||
756 | /* Fastmap without multi-byte translation, match backwards. */ | ||
757 | while (match_first >= left_lim) | ||
758 | { | ||
759 | ch = match_first >= length | ||
760 | ? 0 : (unsigned char) string[match_first]; | ||
761 | if (fastmap[t ? t[ch] : ch]) | ||
762 | break; | ||
763 | --match_first; | ||
764 | } | ||
765 | if (match_first < left_lim) | ||
766 | goto free_return; | ||
767 | break; | ||
768 | |||
769 | default: | ||
770 | /* In this case, we can't determine easily the current byte, | ||
771 | since it might be a component byte of a multibyte | ||
772 | character. Then we use the constructed buffer instead. */ | ||
773 | for (;;) | ||
774 | { | ||
775 | /* If MATCH_FIRST is out of the valid range, reconstruct the | ||
776 | buffers. */ | ||
777 | __re_size_t offset = match_first - mctx.input.raw_mbs_idx; | ||
778 | if (BE (offset >= (__re_size_t) mctx.input.valid_raw_len, 0)) | ||
779 | { | ||
780 | err = re_string_reconstruct (&mctx.input, match_first, | ||
781 | eflags); | ||
782 | if (BE (err != REG_NOERROR, 0)) | ||
783 | goto free_return; | ||
784 | |||
785 | offset = match_first - mctx.input.raw_mbs_idx; | ||
786 | } | ||
787 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. | ||
788 | Note that MATCH_FIRST must not be smaller than 0. */ | ||
789 | ch = (match_first >= length | ||
790 | ? 0 : re_string_byte_at (&mctx.input, offset)); | ||
791 | if (fastmap[ch]) | ||
792 | break; | ||
793 | match_first += incr; | ||
794 | if (match_first < left_lim || match_first > right_lim) | ||
795 | { | ||
796 | err = REG_NOMATCH; | ||
797 | goto free_return; | ||
798 | } | ||
799 | } | ||
800 | break; | ||
801 | } | ||
802 | |||
803 | /* Reconstruct the buffers so that the matcher can assume that | ||
804 | the matching starts from the beginning of the buffer. */ | ||
805 | err = re_string_reconstruct (&mctx.input, match_first, eflags); | ||
806 | if (BE (err != REG_NOERROR, 0)) | ||
807 | goto free_return; | ||
808 | |||
809 | #ifdef RE_ENABLE_I18N | ||
810 | /* Don't consider this char as a possible match start if it part, | ||
811 | yet isn't the head, of a multibyte character. */ | ||
812 | if (!sb && !re_string_first_byte (&mctx.input, 0)) | ||
813 | continue; | ||
814 | #endif | ||
815 | |||
816 | /* It seems to be appropriate one, then use the matcher. */ | ||
817 | /* We assume that the matching starts from 0. */ | ||
818 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; | ||
819 | match_last = check_matching (&mctx, fl_longest_match, | ||
820 | start <= last_start ? &match_first : NULL); | ||
821 | if (match_last != REG_MISSING) | ||
822 | { | ||
823 | if (BE (match_last == REG_ERROR, 0)) | ||
824 | { | ||
825 | err = REG_ESPACE; | ||
826 | goto free_return; | ||
827 | } | ||
828 | else | ||
829 | { | ||
830 | mctx.match_last = match_last; | ||
831 | if ((!preg->re_no_sub && nmatch > 1) || dfa->nbackref) | ||
832 | { | ||
833 | re_dfastate_t *pstate = mctx.state_log[match_last]; | ||
834 | mctx.last_node = check_halt_state_context (&mctx, pstate, | ||
835 | match_last); | ||
836 | } | ||
837 | if ((!preg->re_no_sub && nmatch > 1 && dfa->has_plural_match) | ||
838 | || dfa->nbackref) | ||
839 | { | ||
840 | err = prune_impossible_nodes (&mctx); | ||
841 | if (err == REG_NOERROR) | ||
842 | break; | ||
843 | if (BE (err != REG_NOMATCH, 0)) | ||
844 | goto free_return; | ||
845 | match_last = REG_MISSING; | ||
846 | } | ||
847 | else | ||
848 | break; /* We found a match. */ | ||
849 | } | ||
850 | } | ||
851 | |||
852 | match_ctx_clean (&mctx); | ||
853 | } | ||
854 | |||
855 | #ifdef DEBUG | ||
856 | assert (match_last != REG_MISSING); | ||
857 | assert (err == REG_NOERROR); | ||
858 | #endif | ||
859 | |||
860 | /* Set pmatch[] if we need. */ | ||
861 | if (nmatch > 0) | ||
862 | { | ||
863 | Idx reg_idx; | ||
864 | |||
865 | /* Initialize registers. */ | ||
866 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) | ||
867 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; | ||
868 | |||
869 | /* Set the points where matching start/end. */ | ||
870 | pmatch[0].rm_so = 0; | ||
871 | pmatch[0].rm_eo = mctx.match_last; | ||
872 | /* FIXME: This function should fail if mctx.match_last exceeds | ||
873 | the maximum possible regoff_t value. We need a new error | ||
874 | code REG_OVERFLOW. */ | ||
875 | |||
876 | if (!preg->re_no_sub && nmatch > 1) | ||
877 | { | ||
878 | err = set_regs (preg, &mctx, nmatch, pmatch, | ||
879 | dfa->has_plural_match && dfa->nbackref > 0); | ||
880 | if (BE (err != REG_NOERROR, 0)) | ||
881 | goto free_return; | ||
882 | } | ||
883 | |||
884 | /* At last, add the offset to the each registers, since we slided | ||
885 | the buffers so that we could assume that the matching starts | ||
886 | from 0. */ | ||
887 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | ||
888 | if (pmatch[reg_idx].rm_so != -1) | ||
889 | { | ||
890 | #ifdef RE_ENABLE_I18N | ||
891 | if (BE (mctx.input.offsets_needed != 0, 0)) | ||
892 | { | ||
893 | pmatch[reg_idx].rm_so = | ||
894 | (pmatch[reg_idx].rm_so == mctx.input.valid_len | ||
895 | ? mctx.input.valid_raw_len | ||
896 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); | ||
897 | pmatch[reg_idx].rm_eo = | ||
898 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len | ||
899 | ? mctx.input.valid_raw_len | ||
900 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); | ||
901 | } | ||
902 | #else | ||
903 | assert (mctx.input.offsets_needed == 0); | ||
904 | #endif | ||
905 | pmatch[reg_idx].rm_so += match_first; | ||
906 | pmatch[reg_idx].rm_eo += match_first; | ||
907 | } | ||
908 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) | ||
909 | { | ||
910 | pmatch[nmatch + reg_idx].rm_so = -1; | ||
911 | pmatch[nmatch + reg_idx].rm_eo = -1; | ||
912 | } | ||
913 | |||
914 | if (dfa->subexp_map) | ||
915 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) | ||
916 | if (dfa->subexp_map[reg_idx] != reg_idx) | ||
917 | { | ||
918 | pmatch[reg_idx + 1].rm_so | ||
919 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; | ||
920 | pmatch[reg_idx + 1].rm_eo | ||
921 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; | ||
922 | } | ||
923 | } | ||
924 | |||
925 | free_return: | ||
926 | re_free (mctx.state_log); | ||
927 | if (dfa->nbackref) | ||
928 | match_ctx_free (&mctx); | ||
929 | re_string_destruct (&mctx.input); | ||
930 | return err; | ||
931 | } | ||
932 | |||
933 | static reg_errcode_t | ||
934 | internal_function | ||
935 | prune_impossible_nodes (re_match_context_t *mctx) | ||
936 | { | ||
937 | re_dfa_t *const dfa = mctx->dfa; | ||
938 | Idx halt_node, match_last; | ||
939 | reg_errcode_t ret; | ||
940 | re_dfastate_t **sifted_states; | ||
941 | re_dfastate_t **lim_states = NULL; | ||
942 | re_sift_context_t sctx; | ||
943 | #ifdef DEBUG | ||
944 | assert (mctx->state_log != NULL); | ||
945 | #endif | ||
946 | match_last = mctx->match_last; | ||
947 | halt_node = mctx->last_node; | ||
948 | sifted_states = re_xmalloc (re_dfastate_t *, match_last + 1); | ||
949 | if (BE (sifted_states == NULL, 0)) | ||
950 | { | ||
951 | ret = REG_ESPACE; | ||
952 | goto free_return; | ||
953 | } | ||
954 | if (dfa->nbackref) | ||
955 | { | ||
956 | lim_states = re_xmalloc (re_dfastate_t *, match_last + 1); | ||
957 | if (BE (lim_states == NULL, 0)) | ||
958 | { | ||
959 | ret = REG_ESPACE; | ||
960 | goto free_return; | ||
961 | } | ||
962 | while (1) | ||
963 | { | ||
964 | memset (lim_states, '\0', | ||
965 | sizeof (re_dfastate_t *) * (match_last + 1)); | ||
966 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, | ||
967 | match_last); | ||
968 | ret = sift_states_backward (mctx, &sctx); | ||
969 | re_node_set_free (&sctx.limits); | ||
970 | if (BE (ret != REG_NOERROR, 0)) | ||
971 | goto free_return; | ||
972 | if (sifted_states[0] != NULL || lim_states[0] != NULL) | ||
973 | break; | ||
974 | do | ||
975 | { | ||
976 | --match_last; | ||
977 | if (! REG_VALID_INDEX (match_last)) | ||
978 | { | ||
979 | ret = REG_NOMATCH; | ||
980 | goto free_return; | ||
981 | } | ||
982 | } while (mctx->state_log[match_last] == NULL | ||
983 | || !mctx->state_log[match_last]->halt); | ||
984 | halt_node = check_halt_state_context (mctx, | ||
985 | mctx->state_log[match_last], | ||
986 | match_last); | ||
987 | } | ||
988 | ret = merge_state_array (dfa, sifted_states, lim_states, | ||
989 | match_last + 1); | ||
990 | re_free (lim_states); | ||
991 | lim_states = NULL; | ||
992 | if (BE (ret != REG_NOERROR, 0)) | ||
993 | goto free_return; | ||
994 | } | ||
995 | else | ||
996 | { | ||
997 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); | ||
998 | ret = sift_states_backward (mctx, &sctx); | ||
999 | re_node_set_free (&sctx.limits); | ||
1000 | if (BE (ret != REG_NOERROR, 0)) | ||
1001 | goto free_return; | ||
1002 | } | ||
1003 | re_free (mctx->state_log); | ||
1004 | mctx->state_log = sifted_states; | ||
1005 | sifted_states = NULL; | ||
1006 | mctx->last_node = halt_node; | ||
1007 | mctx->match_last = match_last; | ||
1008 | ret = REG_NOERROR; | ||
1009 | free_return: | ||
1010 | re_free (sifted_states); | ||
1011 | re_free (lim_states); | ||
1012 | return ret; | ||
1013 | } | ||
1014 | |||
1015 | /* Acquire an initial state and return it. | ||
1016 | We must select appropriate initial state depending on the context, | ||
1017 | since initial states may have constraints like "\<", "^", etc.. */ | ||
1018 | |||
1019 | static inline re_dfastate_t * | ||
1020 | __attribute ((always_inline)) internal_function | ||
1021 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, | ||
1022 | Idx idx) | ||
1023 | { | ||
1024 | re_dfa_t *const dfa = mctx->dfa; | ||
1025 | if (dfa->init_state->has_constraint) | ||
1026 | { | ||
1027 | unsigned int context; | ||
1028 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); | ||
1029 | if (IS_WORD_CONTEXT (context)) | ||
1030 | return dfa->init_state_word; | ||
1031 | else if (IS_ORDINARY_CONTEXT (context)) | ||
1032 | return dfa->init_state; | ||
1033 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) | ||
1034 | return dfa->init_state_begbuf; | ||
1035 | else if (IS_NEWLINE_CONTEXT (context)) | ||
1036 | return dfa->init_state_nl; | ||
1037 | else if (IS_BEGBUF_CONTEXT (context)) | ||
1038 | { | ||
1039 | /* It is relatively rare case, then calculate on demand. */ | ||
1040 | return re_acquire_state_context (err, dfa, | ||
1041 | dfa->init_state->entrance_nodes, | ||
1042 | context); | ||
1043 | } | ||
1044 | else | ||
1045 | /* Must not happen? */ | ||
1046 | return dfa->init_state; | ||
1047 | } | ||
1048 | else | ||
1049 | return dfa->init_state; | ||
1050 | } | ||
1051 | |||
1052 | /* Check whether the regular expression match input string INPUT or not, | ||
1053 | and return the index where the matching end. Return REG_MISSING if | ||
1054 | there is no match, and return REG_ERROR in case of an error. | ||
1055 | FL_LONGEST_MATCH means we want the POSIX longest matching. | ||
1056 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the | ||
1057 | next place where we may want to try matching. | ||
1058 | Note that the matcher assume that the maching starts from the current | ||
1059 | index of the buffer. */ | ||
1060 | |||
1061 | static Idx | ||
1062 | internal_function | ||
1063 | check_matching (re_match_context_t *mctx, bool fl_longest_match, | ||
1064 | Idx *p_match_first) | ||
1065 | { | ||
1066 | re_dfa_t *const dfa = mctx->dfa; | ||
1067 | reg_errcode_t err; | ||
1068 | Idx match = 0; | ||
1069 | Idx match_last = REG_MISSING; | ||
1070 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
1071 | re_dfastate_t *cur_state; | ||
1072 | bool at_init_state = p_match_first != NULL; | ||
1073 | Idx next_start_idx = cur_str_idx; | ||
1074 | |||
1075 | err = REG_NOERROR; | ||
1076 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); | ||
1077 | /* An initial state must not be NULL (invalid). */ | ||
1078 | if (BE (cur_state == NULL, 0)) | ||
1079 | { | ||
1080 | assert (err == REG_ESPACE); | ||
1081 | return REG_ERROR; | ||
1082 | } | ||
1083 | |||
1084 | if (mctx->state_log != NULL) | ||
1085 | { | ||
1086 | mctx->state_log[cur_str_idx] = cur_state; | ||
1087 | |||
1088 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them | ||
1089 | later. E.g. Processing back references. */ | ||
1090 | if (BE (dfa->nbackref, 0)) | ||
1091 | { | ||
1092 | at_init_state = false; | ||
1093 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); | ||
1094 | if (BE (err != REG_NOERROR, 0)) | ||
1095 | return err; | ||
1096 | |||
1097 | if (cur_state->has_backref) | ||
1098 | { | ||
1099 | err = transit_state_bkref (mctx, &cur_state->nodes); | ||
1100 | if (BE (err != REG_NOERROR, 0)) | ||
1101 | return err; | ||
1102 | } | ||
1103 | } | ||
1104 | } | ||
1105 | |||
1106 | /* If the RE accepts NULL string. */ | ||
1107 | if (BE (cur_state->halt, 0)) | ||
1108 | { | ||
1109 | if (!cur_state->has_constraint | ||
1110 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) | ||
1111 | { | ||
1112 | if (!fl_longest_match) | ||
1113 | return cur_str_idx; | ||
1114 | else | ||
1115 | { | ||
1116 | match_last = cur_str_idx; | ||
1117 | match = 1; | ||
1118 | } | ||
1119 | } | ||
1120 | } | ||
1121 | |||
1122 | while (!re_string_eoi (&mctx->input)) | ||
1123 | { | ||
1124 | re_dfastate_t *old_state = cur_state; | ||
1125 | Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1; | ||
1126 | |||
1127 | if (BE (next_char_idx >= mctx->input.bufs_len, 0) | ||
1128 | || (BE (next_char_idx >= mctx->input.valid_len, 0) | ||
1129 | && mctx->input.valid_len < mctx->input.len)) | ||
1130 | { | ||
1131 | err = extend_buffers (mctx); | ||
1132 | if (BE (err != REG_NOERROR, 0)) | ||
1133 | { | ||
1134 | assert (err == REG_ESPACE); | ||
1135 | return REG_ERROR; | ||
1136 | } | ||
1137 | } | ||
1138 | |||
1139 | cur_state = transit_state (&err, mctx, cur_state); | ||
1140 | if (mctx->state_log != NULL) | ||
1141 | cur_state = merge_state_with_log (&err, mctx, cur_state); | ||
1142 | |||
1143 | if (cur_state == NULL) | ||
1144 | { | ||
1145 | /* Reached the invalid state or an error. Try to recover a valid | ||
1146 | state using the state log, if available and if we have not | ||
1147 | already found a valid (even if not the longest) match. */ | ||
1148 | if (BE (err != REG_NOERROR, 0)) | ||
1149 | return REG_ERROR; | ||
1150 | |||
1151 | if (mctx->state_log == NULL | ||
1152 | || (match && !fl_longest_match) | ||
1153 | || (cur_state = find_recover_state (&err, mctx)) == NULL) | ||
1154 | break; | ||
1155 | } | ||
1156 | |||
1157 | if (BE (at_init_state, 0)) | ||
1158 | { | ||
1159 | if (old_state == cur_state) | ||
1160 | next_start_idx = next_char_idx; | ||
1161 | else | ||
1162 | at_init_state = false; | ||
1163 | } | ||
1164 | |||
1165 | if (cur_state->halt) | ||
1166 | { | ||
1167 | /* Reached a halt state. | ||
1168 | Check the halt state can satisfy the current context. */ | ||
1169 | if (!cur_state->has_constraint | ||
1170 | || check_halt_state_context (mctx, cur_state, | ||
1171 | re_string_cur_idx (&mctx->input))) | ||
1172 | { | ||
1173 | /* We found an appropriate halt state. */ | ||
1174 | match_last = re_string_cur_idx (&mctx->input); | ||
1175 | match = 1; | ||
1176 | |||
1177 | /* We found a match, do not modify match_first below. */ | ||
1178 | p_match_first = NULL; | ||
1179 | if (!fl_longest_match) | ||
1180 | break; | ||
1181 | } | ||
1182 | } | ||
1183 | } | ||
1184 | |||
1185 | if (p_match_first) | ||
1186 | *p_match_first += next_start_idx; | ||
1187 | |||
1188 | return match_last; | ||
1189 | } | ||
1190 | |||
1191 | /* Check NODE match the current context. */ | ||
1192 | |||
1193 | static bool | ||
1194 | internal_function | ||
1195 | check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context) | ||
1196 | { | ||
1197 | re_token_type_t type = dfa->nodes[node].type; | ||
1198 | unsigned int constraint = dfa->nodes[node].constraint; | ||
1199 | if (type != END_OF_RE) | ||
1200 | return false; | ||
1201 | if (!constraint) | ||
1202 | return true; | ||
1203 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) | ||
1204 | return false; | ||
1205 | return true; | ||
1206 | } | ||
1207 | |||
1208 | /* Check the halt state STATE match the current context. | ||
1209 | Return 0 if not match, if the node, STATE has, is a halt node and | ||
1210 | match the context, return the node. */ | ||
1211 | |||
1212 | static Idx | ||
1213 | internal_function | ||
1214 | check_halt_state_context (const re_match_context_t *mctx, | ||
1215 | const re_dfastate_t *state, Idx idx) | ||
1216 | { | ||
1217 | Idx i; | ||
1218 | unsigned int context; | ||
1219 | #ifdef DEBUG | ||
1220 | assert (state->halt); | ||
1221 | #endif | ||
1222 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); | ||
1223 | for (i = 0; i < state->nodes.nelem; ++i) | ||
1224 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) | ||
1225 | return state->nodes.elems[i]; | ||
1226 | return 0; | ||
1227 | } | ||
1228 | |||
1229 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA | ||
1230 | corresponding to the DFA). | ||
1231 | Return the destination node, and update EPS_VIA_NODES; | ||
1232 | return REG_MISSING in case of errors. */ | ||
1233 | |||
1234 | static Idx | ||
1235 | internal_function | ||
1236 | proceed_next_node (const re_match_context_t *mctx, | ||
1237 | Idx nregs, regmatch_t *regs, Idx *pidx, Idx node, | ||
1238 | re_node_set *eps_via_nodes, struct re_fail_stack_t *fs) | ||
1239 | { | ||
1240 | re_dfa_t *const dfa = mctx->dfa; | ||
1241 | Idx i; | ||
1242 | bool ok; | ||
1243 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) | ||
1244 | { | ||
1245 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; | ||
1246 | re_node_set *edests = &dfa->edests[node]; | ||
1247 | Idx dest_node; | ||
1248 | ok = re_node_set_insert (eps_via_nodes, node); | ||
1249 | if (BE (! ok, 0)) | ||
1250 | return REG_ERROR; | ||
1251 | /* Pick up a valid destination, or return REG_MISSING if none | ||
1252 | is found. */ | ||
1253 | for (dest_node = REG_MISSING, i = 0; i < edests->nelem; ++i) | ||
1254 | { | ||
1255 | Idx candidate = edests->elems[i]; | ||
1256 | if (!re_node_set_contains (cur_nodes, candidate)) | ||
1257 | continue; | ||
1258 | if (dest_node == REG_MISSING) | ||
1259 | dest_node = candidate; | ||
1260 | |||
1261 | else | ||
1262 | { | ||
1263 | /* In order to avoid infinite loop like "(a*)*", return the second | ||
1264 | epsilon-transition if the first was already considered. */ | ||
1265 | if (re_node_set_contains (eps_via_nodes, dest_node)) | ||
1266 | return candidate; | ||
1267 | |||
1268 | /* Otherwise, push the second epsilon-transition on the fail stack. */ | ||
1269 | else if (fs != NULL | ||
1270 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, | ||
1271 | eps_via_nodes)) | ||
1272 | return REG_ERROR; | ||
1273 | |||
1274 | /* We know we are going to exit. */ | ||
1275 | break; | ||
1276 | } | ||
1277 | } | ||
1278 | return dest_node; | ||
1279 | } | ||
1280 | else | ||
1281 | { | ||
1282 | Idx naccepted = 0; | ||
1283 | re_token_type_t type = dfa->nodes[node].type; | ||
1284 | |||
1285 | #ifdef RE_ENABLE_I18N | ||
1286 | if (dfa->nodes[node].accept_mb) | ||
1287 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); | ||
1288 | else | ||
1289 | #endif /* RE_ENABLE_I18N */ | ||
1290 | if (type == OP_BACK_REF) | ||
1291 | { | ||
1292 | Idx subexp_idx = dfa->nodes[node].opr.idx + 1; | ||
1293 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; | ||
1294 | if (fs != NULL) | ||
1295 | { | ||
1296 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) | ||
1297 | return REG_MISSING; | ||
1298 | else if (naccepted) | ||
1299 | { | ||
1300 | char *buf = (char *) re_string_get_buffer (&mctx->input); | ||
1301 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, | ||
1302 | naccepted) != 0) | ||
1303 | return REG_MISSING; | ||
1304 | } | ||
1305 | } | ||
1306 | |||
1307 | if (naccepted == 0) | ||
1308 | { | ||
1309 | Idx dest_node; | ||
1310 | ok = re_node_set_insert (eps_via_nodes, node); | ||
1311 | if (BE (! ok, 0)) | ||
1312 | return REG_ERROR; | ||
1313 | dest_node = dfa->edests[node].elems[0]; | ||
1314 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, | ||
1315 | dest_node)) | ||
1316 | return dest_node; | ||
1317 | } | ||
1318 | } | ||
1319 | |||
1320 | if (naccepted != 0 | ||
1321 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) | ||
1322 | { | ||
1323 | Idx dest_node = dfa->nexts[node]; | ||
1324 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; | ||
1325 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL | ||
1326 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, | ||
1327 | dest_node))) | ||
1328 | return REG_MISSING; | ||
1329 | re_node_set_empty (eps_via_nodes); | ||
1330 | return dest_node; | ||
1331 | } | ||
1332 | } | ||
1333 | return REG_MISSING; | ||
1334 | } | ||
1335 | |||
1336 | static reg_errcode_t | ||
1337 | internal_function | ||
1338 | push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node, | ||
1339 | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | ||
1340 | { | ||
1341 | reg_errcode_t err; | ||
1342 | Idx num = fs->num++; | ||
1343 | if (fs->num == fs->alloc) | ||
1344 | { | ||
1345 | struct re_fail_stack_ent_t *new_array = | ||
1346 | re_x2realloc (fs->stack, struct re_fail_stack_ent_t, &fs->alloc); | ||
1347 | if (new_array == NULL) | ||
1348 | return REG_ESPACE; | ||
1349 | fs->stack = new_array; | ||
1350 | } | ||
1351 | fs->stack[num].idx = str_idx; | ||
1352 | fs->stack[num].node = dest_node; | ||
1353 | fs->stack[num].regs = re_xmalloc (regmatch_t, nregs); | ||
1354 | if (fs->stack[num].regs == NULL) | ||
1355 | return REG_ESPACE; | ||
1356 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); | ||
1357 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); | ||
1358 | return err; | ||
1359 | } | ||
1360 | |||
1361 | static Idx | ||
1362 | internal_function | ||
1363 | pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, | ||
1364 | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | ||
1365 | { | ||
1366 | Idx num = --fs->num; | ||
1367 | assert (REG_VALID_INDEX (num)); | ||
1368 | *pidx = fs->stack[num].idx; | ||
1369 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); | ||
1370 | re_node_set_free (eps_via_nodes); | ||
1371 | re_free (fs->stack[num].regs); | ||
1372 | *eps_via_nodes = fs->stack[num].eps_via_nodes; | ||
1373 | return fs->stack[num].node; | ||
1374 | } | ||
1375 | |||
1376 | /* Set the positions where the subexpressions are starts/ends to registers | ||
1377 | PMATCH. | ||
1378 | Note: We assume that pmatch[0] is already set, and | ||
1379 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ | ||
1380 | |||
1381 | static reg_errcode_t | ||
1382 | internal_function | ||
1383 | set_regs (const regex_t *preg, const re_match_context_t *mctx, | ||
1384 | size_t nmatch, regmatch_t *pmatch, bool fl_backtrack) | ||
1385 | { | ||
1386 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
1387 | Idx idx, cur_node; | ||
1388 | re_node_set eps_via_nodes; | ||
1389 | struct re_fail_stack_t *fs; | ||
1390 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; | ||
1391 | regmatch_t *prev_idx_match; | ||
1392 | bool prev_idx_match_malloced = false; | ||
1393 | |||
1394 | #ifdef DEBUG | ||
1395 | assert (nmatch > 1); | ||
1396 | assert (mctx->state_log != NULL); | ||
1397 | #endif | ||
1398 | if (fl_backtrack) | ||
1399 | { | ||
1400 | fs = &fs_body; | ||
1401 | fs->stack = re_xmalloc (struct re_fail_stack_ent_t, fs->alloc); | ||
1402 | if (fs->stack == NULL) | ||
1403 | return REG_ESPACE; | ||
1404 | } | ||
1405 | else | ||
1406 | fs = NULL; | ||
1407 | |||
1408 | cur_node = dfa->init_node; | ||
1409 | re_node_set_init_empty (&eps_via_nodes); | ||
1410 | |||
1411 | if (re_alloc_oversized (nmatch, sizeof (regmatch_t))) | ||
1412 | { | ||
1413 | free_fail_stack_return (fs); | ||
1414 | return REG_ESPACE; | ||
1415 | } | ||
1416 | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) | ||
1417 | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); | ||
1418 | else | ||
1419 | { | ||
1420 | prev_idx_match = re_malloc (regmatch_t, nmatch); | ||
1421 | if (prev_idx_match == NULL) | ||
1422 | { | ||
1423 | free_fail_stack_return (fs); | ||
1424 | return REG_ESPACE; | ||
1425 | } | ||
1426 | prev_idx_match_malloced = true; | ||
1427 | } | ||
1428 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | ||
1429 | |||
1430 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) | ||
1431 | { | ||
1432 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); | ||
1433 | |||
1434 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) | ||
1435 | { | ||
1436 | Idx reg_idx; | ||
1437 | if (fs) | ||
1438 | { | ||
1439 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | ||
1440 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) | ||
1441 | break; | ||
1442 | if (reg_idx == nmatch) | ||
1443 | { | ||
1444 | re_node_set_free (&eps_via_nodes); | ||
1445 | if (prev_idx_match_malloced) | ||
1446 | re_free (prev_idx_match); | ||
1447 | return free_fail_stack_return (fs); | ||
1448 | } | ||
1449 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | ||
1450 | &eps_via_nodes); | ||
1451 | } | ||
1452 | else | ||
1453 | { | ||
1454 | re_node_set_free (&eps_via_nodes); | ||
1455 | if (prev_idx_match_malloced) | ||
1456 | re_free (prev_idx_match); | ||
1457 | return REG_NOERROR; | ||
1458 | } | ||
1459 | } | ||
1460 | |||
1461 | /* Proceed to next node. */ | ||
1462 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, | ||
1463 | &eps_via_nodes, fs); | ||
1464 | |||
1465 | if (BE (! REG_VALID_INDEX (cur_node), 0)) | ||
1466 | { | ||
1467 | if (BE (cur_node == REG_ERROR, 0)) | ||
1468 | { | ||
1469 | re_node_set_free (&eps_via_nodes); | ||
1470 | if (prev_idx_match_malloced) | ||
1471 | re_free (prev_idx_match); | ||
1472 | free_fail_stack_return (fs); | ||
1473 | return REG_ESPACE; | ||
1474 | } | ||
1475 | if (fs) | ||
1476 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | ||
1477 | &eps_via_nodes); | ||
1478 | else | ||
1479 | { | ||
1480 | re_node_set_free (&eps_via_nodes); | ||
1481 | if (prev_idx_match_malloced) | ||
1482 | re_free (prev_idx_match); | ||
1483 | return REG_NOMATCH; | ||
1484 | } | ||
1485 | } | ||
1486 | } | ||
1487 | re_node_set_free (&eps_via_nodes); | ||
1488 | if (prev_idx_match_malloced) | ||
1489 | re_free (prev_idx_match); | ||
1490 | return free_fail_stack_return (fs); | ||
1491 | } | ||
1492 | |||
1493 | static reg_errcode_t | ||
1494 | internal_function | ||
1495 | free_fail_stack_return (struct re_fail_stack_t *fs) | ||
1496 | { | ||
1497 | if (fs) | ||
1498 | { | ||
1499 | Idx fs_idx; | ||
1500 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) | ||
1501 | { | ||
1502 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); | ||
1503 | re_free (fs->stack[fs_idx].regs); | ||
1504 | } | ||
1505 | re_free (fs->stack); | ||
1506 | } | ||
1507 | return REG_NOERROR; | ||
1508 | } | ||
1509 | |||
1510 | static void | ||
1511 | internal_function | ||
1512 | update_regs (re_dfa_t *dfa, regmatch_t *pmatch, regmatch_t *prev_idx_match, | ||
1513 | Idx cur_node, Idx cur_idx, Idx nmatch) | ||
1514 | { | ||
1515 | int type = dfa->nodes[cur_node].type; | ||
1516 | if (type == OP_OPEN_SUBEXP) | ||
1517 | { | ||
1518 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; | ||
1519 | |||
1520 | /* We are at the first node of this sub expression. */ | ||
1521 | if (reg_num < nmatch) | ||
1522 | { | ||
1523 | pmatch[reg_num].rm_so = cur_idx; | ||
1524 | pmatch[reg_num].rm_eo = -1; | ||
1525 | } | ||
1526 | } | ||
1527 | else if (type == OP_CLOSE_SUBEXP) | ||
1528 | { | ||
1529 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; | ||
1530 | if (reg_num < nmatch) | ||
1531 | { | ||
1532 | /* We are at the last node of this sub expression. */ | ||
1533 | if (pmatch[reg_num].rm_so < cur_idx) | ||
1534 | { | ||
1535 | pmatch[reg_num].rm_eo = cur_idx; | ||
1536 | /* This is a non-empty match or we are not inside an optional | ||
1537 | subexpression. Accept this right away. */ | ||
1538 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | ||
1539 | } | ||
1540 | else | ||
1541 | { | ||
1542 | if (dfa->nodes[cur_node].opt_subexp | ||
1543 | && prev_idx_match[reg_num].rm_so != -1) | ||
1544 | /* We transited through an empty match for an optional | ||
1545 | subexpression, like (a?)*, and this is not the subexp's | ||
1546 | first match. Copy back the old content of the registers | ||
1547 | so that matches of an inner subexpression are undone as | ||
1548 | well, like in ((a?))*. */ | ||
1549 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); | ||
1550 | else | ||
1551 | /* We completed a subexpression, but it may be part of | ||
1552 | an optional one, so do not update PREV_IDX_MATCH. */ | ||
1553 | pmatch[reg_num].rm_eo = cur_idx; | ||
1554 | } | ||
1555 | } | ||
1556 | } | ||
1557 | } | ||
1558 | |||
1559 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 | ||
1560 | and sift the nodes in each states according to the following rules. | ||
1561 | Updated state_log will be wrote to STATE_LOG. | ||
1562 | |||
1563 | Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... | ||
1564 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): | ||
1565 | If `a' isn't the LAST_NODE and `a' can't epsilon transit to | ||
1566 | the LAST_NODE, we throw away the node `a'. | ||
1567 | 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts | ||
1568 | string `s' and transit to `b': | ||
1569 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw | ||
1570 | away the node `a'. | ||
1571 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is | ||
1572 | thrown away, we throw away the node `a'. | ||
1573 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': | ||
1574 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the | ||
1575 | node `a'. | ||
1576 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, | ||
1577 | we throw away the node `a'. */ | ||
1578 | |||
1579 | #define STATE_NODE_CONTAINS(state,node) \ | ||
1580 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) | ||
1581 | |||
1582 | static reg_errcode_t | ||
1583 | internal_function | ||
1584 | sift_states_backward (re_match_context_t *mctx, re_sift_context_t *sctx) | ||
1585 | { | ||
1586 | reg_errcode_t err; | ||
1587 | int null_cnt = 0; | ||
1588 | Idx str_idx = sctx->last_str_idx; | ||
1589 | re_node_set cur_dest; | ||
1590 | |||
1591 | #ifdef DEBUG | ||
1592 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); | ||
1593 | #endif | ||
1594 | |||
1595 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon | ||
1596 | transit to the last_node and the last_node itself. */ | ||
1597 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); | ||
1598 | if (BE (err != REG_NOERROR, 0)) | ||
1599 | return err; | ||
1600 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | ||
1601 | if (BE (err != REG_NOERROR, 0)) | ||
1602 | goto free_return; | ||
1603 | |||
1604 | /* Then check each states in the state_log. */ | ||
1605 | while (str_idx > 0) | ||
1606 | { | ||
1607 | /* Update counters. */ | ||
1608 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; | ||
1609 | if (null_cnt > mctx->max_mb_elem_len) | ||
1610 | { | ||
1611 | memset (sctx->sifted_states, '\0', | ||
1612 | sizeof (re_dfastate_t *) * str_idx); | ||
1613 | re_node_set_free (&cur_dest); | ||
1614 | return REG_NOERROR; | ||
1615 | } | ||
1616 | re_node_set_empty (&cur_dest); | ||
1617 | --str_idx; | ||
1618 | |||
1619 | if (mctx->state_log[str_idx]) | ||
1620 | { | ||
1621 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); | ||
1622 | if (BE (err != REG_NOERROR, 0)) | ||
1623 | goto free_return; | ||
1624 | } | ||
1625 | |||
1626 | /* Add all the nodes which satisfy the following conditions: | ||
1627 | - It can epsilon transit to a node in CUR_DEST. | ||
1628 | - It is in CUR_SRC. | ||
1629 | And update state_log. */ | ||
1630 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | ||
1631 | if (BE (err != REG_NOERROR, 0)) | ||
1632 | goto free_return; | ||
1633 | } | ||
1634 | err = REG_NOERROR; | ||
1635 | free_return: | ||
1636 | re_node_set_free (&cur_dest); | ||
1637 | return err; | ||
1638 | } | ||
1639 | |||
1640 | static reg_errcode_t | ||
1641 | internal_function | ||
1642 | build_sifted_states (re_match_context_t *mctx, re_sift_context_t *sctx, | ||
1643 | Idx str_idx, re_node_set *cur_dest) | ||
1644 | { | ||
1645 | re_dfa_t *const dfa = mctx->dfa; | ||
1646 | re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; | ||
1647 | Idx i; | ||
1648 | |||
1649 | /* Then build the next sifted state. | ||
1650 | We build the next sifted state on `cur_dest', and update | ||
1651 | `sifted_states[str_idx]' with `cur_dest'. | ||
1652 | Note: | ||
1653 | `cur_dest' is the sifted state from `state_log[str_idx + 1]'. | ||
1654 | `cur_src' points the node_set of the old `state_log[str_idx]' | ||
1655 | (with the epsilon nodes pre-filtered out). */ | ||
1656 | for (i = 0; i < cur_src->nelem; i++) | ||
1657 | { | ||
1658 | Idx prev_node = cur_src->elems[i]; | ||
1659 | int naccepted = 0; | ||
1660 | bool ok; | ||
1661 | |||
1662 | #ifdef DEBUG | ||
1663 | re_token_type_t type = dfa->nodes[prev_node].type; | ||
1664 | assert (!IS_EPSILON_NODE (type)); | ||
1665 | #endif | ||
1666 | #ifdef RE_ENABLE_I18N | ||
1667 | /* If the node may accept `multi byte'. */ | ||
1668 | if (dfa->nodes[prev_node].accept_mb) | ||
1669 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, | ||
1670 | str_idx, sctx->last_str_idx); | ||
1671 | #endif /* RE_ENABLE_I18N */ | ||
1672 | |||
1673 | /* We don't check backreferences here. | ||
1674 | See update_cur_sifted_state(). */ | ||
1675 | if (!naccepted | ||
1676 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) | ||
1677 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], | ||
1678 | dfa->nexts[prev_node])) | ||
1679 | naccepted = 1; | ||
1680 | |||
1681 | if (naccepted == 0) | ||
1682 | continue; | ||
1683 | |||
1684 | if (sctx->limits.nelem) | ||
1685 | { | ||
1686 | Idx to_idx = str_idx + naccepted; | ||
1687 | if (check_dst_limits (mctx, &sctx->limits, | ||
1688 | dfa->nexts[prev_node], to_idx, | ||
1689 | prev_node, str_idx)) | ||
1690 | continue; | ||
1691 | } | ||
1692 | ok = re_node_set_insert (cur_dest, prev_node); | ||
1693 | if (BE (! ok, 0)) | ||
1694 | return REG_ESPACE; | ||
1695 | } | ||
1696 | |||
1697 | return REG_NOERROR; | ||
1698 | } | ||
1699 | |||
1700 | /* Helper functions. */ | ||
1701 | |||
1702 | static reg_errcode_t | ||
1703 | internal_function | ||
1704 | clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx) | ||
1705 | { | ||
1706 | Idx top = mctx->state_log_top; | ||
1707 | |||
1708 | if (next_state_log_idx >= mctx->input.bufs_len | ||
1709 | || (next_state_log_idx >= mctx->input.valid_len | ||
1710 | && mctx->input.valid_len < mctx->input.len)) | ||
1711 | { | ||
1712 | reg_errcode_t err; | ||
1713 | err = extend_buffers (mctx); | ||
1714 | if (BE (err != REG_NOERROR, 0)) | ||
1715 | return err; | ||
1716 | } | ||
1717 | |||
1718 | if (top < next_state_log_idx) | ||
1719 | { | ||
1720 | memset (mctx->state_log + top + 1, '\0', | ||
1721 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); | ||
1722 | mctx->state_log_top = next_state_log_idx; | ||
1723 | } | ||
1724 | return REG_NOERROR; | ||
1725 | } | ||
1726 | |||
1727 | static reg_errcode_t | ||
1728 | internal_function | ||
1729 | merge_state_array (re_dfa_t *dfa, re_dfastate_t **dst, re_dfastate_t **src, | ||
1730 | Idx num) | ||
1731 | { | ||
1732 | Idx st_idx; | ||
1733 | reg_errcode_t err; | ||
1734 | for (st_idx = 0; st_idx < num; ++st_idx) | ||
1735 | { | ||
1736 | if (dst[st_idx] == NULL) | ||
1737 | dst[st_idx] = src[st_idx]; | ||
1738 | else if (src[st_idx] != NULL) | ||
1739 | { | ||
1740 | re_node_set merged_set; | ||
1741 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, | ||
1742 | &src[st_idx]->nodes); | ||
1743 | if (BE (err != REG_NOERROR, 0)) | ||
1744 | return err; | ||
1745 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); | ||
1746 | re_node_set_free (&merged_set); | ||
1747 | if (BE (err != REG_NOERROR, 0)) | ||
1748 | return err; | ||
1749 | } | ||
1750 | } | ||
1751 | return REG_NOERROR; | ||
1752 | } | ||
1753 | |||
1754 | static reg_errcode_t | ||
1755 | internal_function | ||
1756 | update_cur_sifted_state (re_match_context_t *mctx, re_sift_context_t *sctx, | ||
1757 | Idx str_idx, re_node_set *dest_nodes) | ||
1758 | { | ||
1759 | re_dfa_t *const dfa = mctx->dfa; | ||
1760 | reg_errcode_t err; | ||
1761 | const re_node_set *candidates; | ||
1762 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL | ||
1763 | : &mctx->state_log[str_idx]->nodes); | ||
1764 | |||
1765 | if (dest_nodes->nelem == 0) | ||
1766 | sctx->sifted_states[str_idx] = NULL; | ||
1767 | else | ||
1768 | { | ||
1769 | if (candidates) | ||
1770 | { | ||
1771 | /* At first, add the nodes which can epsilon transit to a node in | ||
1772 | DEST_NODE. */ | ||
1773 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); | ||
1774 | if (BE (err != REG_NOERROR, 0)) | ||
1775 | return err; | ||
1776 | |||
1777 | /* Then, check the limitations in the current sift_context. */ | ||
1778 | if (sctx->limits.nelem) | ||
1779 | { | ||
1780 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, | ||
1781 | mctx->bkref_ents, str_idx); | ||
1782 | if (BE (err != REG_NOERROR, 0)) | ||
1783 | return err; | ||
1784 | } | ||
1785 | } | ||
1786 | |||
1787 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); | ||
1788 | if (BE (err != REG_NOERROR, 0)) | ||
1789 | return err; | ||
1790 | } | ||
1791 | |||
1792 | if (candidates && mctx->state_log[str_idx]->has_backref) | ||
1793 | { | ||
1794 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); | ||
1795 | if (BE (err != REG_NOERROR, 0)) | ||
1796 | return err; | ||
1797 | } | ||
1798 | return REG_NOERROR; | ||
1799 | } | ||
1800 | |||
1801 | static reg_errcode_t | ||
1802 | internal_function | ||
1803 | add_epsilon_src_nodes (re_dfa_t *dfa, re_node_set *dest_nodes, | ||
1804 | const re_node_set *candidates) | ||
1805 | { | ||
1806 | reg_errcode_t err = REG_NOERROR; | ||
1807 | Idx i; | ||
1808 | |||
1809 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); | ||
1810 | if (BE (err != REG_NOERROR, 0)) | ||
1811 | return err; | ||
1812 | |||
1813 | if (!state->inveclosure.alloc) | ||
1814 | { | ||
1815 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); | ||
1816 | if (BE (err != REG_NOERROR, 0)) | ||
1817 | return REG_ESPACE; | ||
1818 | for (i = 0; i < dest_nodes->nelem; i++) | ||
1819 | re_node_set_merge (&state->inveclosure, | ||
1820 | dfa->inveclosures + dest_nodes->elems[i]); | ||
1821 | } | ||
1822 | return re_node_set_add_intersect (dest_nodes, candidates, | ||
1823 | &state->inveclosure); | ||
1824 | } | ||
1825 | |||
1826 | static reg_errcode_t | ||
1827 | internal_function | ||
1828 | sub_epsilon_src_nodes (re_dfa_t *dfa, Idx node, re_node_set *dest_nodes, | ||
1829 | const re_node_set *candidates) | ||
1830 | { | ||
1831 | Idx ecl_idx; | ||
1832 | reg_errcode_t err; | ||
1833 | re_node_set *inv_eclosure = dfa->inveclosures + node; | ||
1834 | re_node_set except_nodes; | ||
1835 | re_node_set_init_empty (&except_nodes); | ||
1836 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | ||
1837 | { | ||
1838 | Idx cur_node = inv_eclosure->elems[ecl_idx]; | ||
1839 | if (cur_node == node) | ||
1840 | continue; | ||
1841 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) | ||
1842 | { | ||
1843 | Idx edst1 = dfa->edests[cur_node].elems[0]; | ||
1844 | Idx edst2 = ((dfa->edests[cur_node].nelem > 1) | ||
1845 | ? dfa->edests[cur_node].elems[1] : REG_MISSING); | ||
1846 | if ((!re_node_set_contains (inv_eclosure, edst1) | ||
1847 | && re_node_set_contains (dest_nodes, edst1)) | ||
1848 | || (REG_VALID_NONZERO_INDEX (edst2) | ||
1849 | && !re_node_set_contains (inv_eclosure, edst2) | ||
1850 | && re_node_set_contains (dest_nodes, edst2))) | ||
1851 | { | ||
1852 | err = re_node_set_add_intersect (&except_nodes, candidates, | ||
1853 | dfa->inveclosures + cur_node); | ||
1854 | if (BE (err != REG_NOERROR, 0)) | ||
1855 | { | ||
1856 | re_node_set_free (&except_nodes); | ||
1857 | return err; | ||
1858 | } | ||
1859 | } | ||
1860 | } | ||
1861 | } | ||
1862 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | ||
1863 | { | ||
1864 | Idx cur_node = inv_eclosure->elems[ecl_idx]; | ||
1865 | if (!re_node_set_contains (&except_nodes, cur_node)) | ||
1866 | { | ||
1867 | Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1; | ||
1868 | re_node_set_remove_at (dest_nodes, idx); | ||
1869 | } | ||
1870 | } | ||
1871 | re_node_set_free (&except_nodes); | ||
1872 | return REG_NOERROR; | ||
1873 | } | ||
1874 | |||
1875 | static bool | ||
1876 | internal_function | ||
1877 | check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits, | ||
1878 | Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx) | ||
1879 | { | ||
1880 | re_dfa_t *const dfa = mctx->dfa; | ||
1881 | Idx lim_idx, src_pos, dst_pos; | ||
1882 | |||
1883 | Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); | ||
1884 | Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); | ||
1885 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | ||
1886 | { | ||
1887 | Idx subexp_idx; | ||
1888 | struct re_backref_cache_entry *ent; | ||
1889 | ent = mctx->bkref_ents + limits->elems[lim_idx]; | ||
1890 | subexp_idx = dfa->nodes[ent->node].opr.idx; | ||
1891 | |||
1892 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | ||
1893 | subexp_idx, dst_node, dst_idx, | ||
1894 | dst_bkref_idx); | ||
1895 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | ||
1896 | subexp_idx, src_node, src_idx, | ||
1897 | src_bkref_idx); | ||
1898 | |||
1899 | /* In case of: | ||
1900 | <src> <dst> ( <subexp> ) | ||
1901 | ( <subexp> ) <src> <dst> | ||
1902 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ | ||
1903 | if (src_pos == dst_pos) | ||
1904 | continue; /* This is unrelated limitation. */ | ||
1905 | else | ||
1906 | return true; | ||
1907 | } | ||
1908 | return false; | ||
1909 | } | ||
1910 | |||
1911 | static int | ||
1912 | internal_function | ||
1913 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, | ||
1914 | Idx subexp_idx, Idx from_node, Idx bkref_idx) | ||
1915 | { | ||
1916 | re_dfa_t *const dfa = mctx->dfa; | ||
1917 | re_node_set *eclosures = dfa->eclosures + from_node; | ||
1918 | Idx node_idx; | ||
1919 | |||
1920 | /* Else, we are on the boundary: examine the nodes on the epsilon | ||
1921 | closure. */ | ||
1922 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) | ||
1923 | { | ||
1924 | Idx node = eclosures->elems[node_idx]; | ||
1925 | switch (dfa->nodes[node].type) | ||
1926 | { | ||
1927 | case OP_BACK_REF: | ||
1928 | if (bkref_idx != REG_MISSING) | ||
1929 | { | ||
1930 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; | ||
1931 | do | ||
1932 | { | ||
1933 | Idx dst; | ||
1934 | int cpos; | ||
1935 | |||
1936 | if (ent->node != node) | ||
1937 | continue; | ||
1938 | |||
1939 | if (subexp_idx < BITSET_WORD_BITS | ||
1940 | && !(ent->eps_reachable_subexps_map | ||
1941 | & ((bitset_word) 1 << subexp_idx))) | ||
1942 | continue; | ||
1943 | |||
1944 | /* Recurse trying to reach the OP_OPEN_SUBEXP and | ||
1945 | OP_CLOSE_SUBEXP cases below. But, if the | ||
1946 | destination node is the same node as the source | ||
1947 | node, don't recurse because it would cause an | ||
1948 | infinite loop: a regex that exhibits this behavior | ||
1949 | is ()\1*\1* */ | ||
1950 | dst = dfa->edests[node].elems[0]; | ||
1951 | if (dst == from_node) | ||
1952 | { | ||
1953 | if (boundaries & 1) | ||
1954 | return -1; | ||
1955 | else /* if (boundaries & 2) */ | ||
1956 | return 0; | ||
1957 | } | ||
1958 | |||
1959 | cpos = | ||
1960 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | ||
1961 | dst, bkref_idx); | ||
1962 | if (cpos == -1 /* && (boundaries & 1) */) | ||
1963 | return -1; | ||
1964 | if (cpos == 0 && (boundaries & 2)) | ||
1965 | return 0; | ||
1966 | |||
1967 | if (subexp_idx < BITSET_WORD_BITS) | ||
1968 | ent->eps_reachable_subexps_map &= | ||
1969 | ~ ((bitset_word) 1 << subexp_idx); | ||
1970 | } | ||
1971 | while (ent++->more); | ||
1972 | } | ||
1973 | break; | ||
1974 | |||
1975 | case OP_OPEN_SUBEXP: | ||
1976 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) | ||
1977 | return -1; | ||
1978 | break; | ||
1979 | |||
1980 | case OP_CLOSE_SUBEXP: | ||
1981 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) | ||
1982 | return 0; | ||
1983 | break; | ||
1984 | |||
1985 | default: | ||
1986 | break; | ||
1987 | } | ||
1988 | } | ||
1989 | |||
1990 | return (boundaries & 2) ? 1 : 0; | ||
1991 | } | ||
1992 | |||
1993 | static int | ||
1994 | internal_function | ||
1995 | check_dst_limits_calc_pos (const re_match_context_t *mctx, | ||
1996 | Idx limit, Idx subexp_idx, | ||
1997 | Idx from_node, Idx str_idx, Idx bkref_idx) | ||
1998 | { | ||
1999 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; | ||
2000 | int boundaries; | ||
2001 | |||
2002 | /* If we are outside the range of the subexpression, return -1 or 1. */ | ||
2003 | if (str_idx < lim->subexp_from) | ||
2004 | return -1; | ||
2005 | |||
2006 | if (lim->subexp_to < str_idx) | ||
2007 | return 1; | ||
2008 | |||
2009 | /* If we are within the subexpression, return 0. */ | ||
2010 | boundaries = (str_idx == lim->subexp_from); | ||
2011 | boundaries |= (str_idx == lim->subexp_to) << 1; | ||
2012 | if (boundaries == 0) | ||
2013 | return 0; | ||
2014 | |||
2015 | /* Else, examine epsilon closure. */ | ||
2016 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | ||
2017 | from_node, bkref_idx); | ||
2018 | } | ||
2019 | |||
2020 | /* Check the limitations of sub expressions LIMITS, and remove the nodes | ||
2021 | which are against limitations from DEST_NODES. */ | ||
2022 | |||
2023 | static reg_errcode_t | ||
2024 | internal_function | ||
2025 | check_subexp_limits (re_dfa_t *dfa, re_node_set *dest_nodes, | ||
2026 | const re_node_set *candidates, re_node_set *limits, | ||
2027 | struct re_backref_cache_entry *bkref_ents, Idx str_idx) | ||
2028 | { | ||
2029 | reg_errcode_t err; | ||
2030 | Idx node_idx, lim_idx; | ||
2031 | |||
2032 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | ||
2033 | { | ||
2034 | Idx subexp_idx; | ||
2035 | struct re_backref_cache_entry *ent; | ||
2036 | ent = bkref_ents + limits->elems[lim_idx]; | ||
2037 | |||
2038 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) | ||
2039 | continue; /* This is unrelated limitation. */ | ||
2040 | |||
2041 | subexp_idx = dfa->nodes[ent->node].opr.idx; | ||
2042 | if (ent->subexp_to == str_idx) | ||
2043 | { | ||
2044 | Idx ops_node = REG_MISSING; | ||
2045 | Idx cls_node = REG_MISSING; | ||
2046 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2047 | { | ||
2048 | Idx node = dest_nodes->elems[node_idx]; | ||
2049 | re_token_type_t type = dfa->nodes[node].type; | ||
2050 | if (type == OP_OPEN_SUBEXP | ||
2051 | && subexp_idx == dfa->nodes[node].opr.idx) | ||
2052 | ops_node = node; | ||
2053 | else if (type == OP_CLOSE_SUBEXP | ||
2054 | && subexp_idx == dfa->nodes[node].opr.idx) | ||
2055 | cls_node = node; | ||
2056 | } | ||
2057 | |||
2058 | /* Check the limitation of the open subexpression. */ | ||
2059 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ | ||
2060 | if (REG_VALID_INDEX (ops_node)) | ||
2061 | { | ||
2062 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, | ||
2063 | candidates); | ||
2064 | if (BE (err != REG_NOERROR, 0)) | ||
2065 | return err; | ||
2066 | } | ||
2067 | |||
2068 | /* Check the limitation of the close subexpression. */ | ||
2069 | if (REG_VALID_INDEX (cls_node)) | ||
2070 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2071 | { | ||
2072 | Idx node = dest_nodes->elems[node_idx]; | ||
2073 | if (!re_node_set_contains (dfa->inveclosures + node, | ||
2074 | cls_node) | ||
2075 | && !re_node_set_contains (dfa->eclosures + node, | ||
2076 | cls_node)) | ||
2077 | { | ||
2078 | /* It is against this limitation. | ||
2079 | Remove it form the current sifted state. */ | ||
2080 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | ||
2081 | candidates); | ||
2082 | if (BE (err != REG_NOERROR, 0)) | ||
2083 | return err; | ||
2084 | --node_idx; | ||
2085 | } | ||
2086 | } | ||
2087 | } | ||
2088 | else /* (ent->subexp_to != str_idx) */ | ||
2089 | { | ||
2090 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2091 | { | ||
2092 | Idx node = dest_nodes->elems[node_idx]; | ||
2093 | re_token_type_t type = dfa->nodes[node].type; | ||
2094 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) | ||
2095 | { | ||
2096 | if (subexp_idx != dfa->nodes[node].opr.idx) | ||
2097 | continue; | ||
2098 | /* It is against this limitation. | ||
2099 | Remove it form the current sifted state. */ | ||
2100 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | ||
2101 | candidates); | ||
2102 | if (BE (err != REG_NOERROR, 0)) | ||
2103 | return err; | ||
2104 | } | ||
2105 | } | ||
2106 | } | ||
2107 | } | ||
2108 | return REG_NOERROR; | ||
2109 | } | ||
2110 | |||
2111 | static reg_errcode_t | ||
2112 | internal_function | ||
2113 | sift_states_bkref (re_match_context_t *mctx, re_sift_context_t *sctx, | ||
2114 | Idx str_idx, const re_node_set *candidates) | ||
2115 | { | ||
2116 | re_dfa_t *const dfa = mctx->dfa; | ||
2117 | reg_errcode_t err; | ||
2118 | Idx node_idx, node; | ||
2119 | re_sift_context_t local_sctx; | ||
2120 | Idx first_idx = search_cur_bkref_entry (mctx, str_idx); | ||
2121 | |||
2122 | if (first_idx == REG_MISSING) | ||
2123 | return REG_NOERROR; | ||
2124 | |||
2125 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ | ||
2126 | |||
2127 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) | ||
2128 | { | ||
2129 | Idx enabled_idx; | ||
2130 | re_token_type_t type; | ||
2131 | struct re_backref_cache_entry *entry; | ||
2132 | node = candidates->elems[node_idx]; | ||
2133 | type = dfa->nodes[node].type; | ||
2134 | /* Avoid infinite loop for the REs like "()\1+". */ | ||
2135 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) | ||
2136 | continue; | ||
2137 | if (type != OP_BACK_REF) | ||
2138 | continue; | ||
2139 | |||
2140 | entry = mctx->bkref_ents + first_idx; | ||
2141 | enabled_idx = first_idx; | ||
2142 | do | ||
2143 | { | ||
2144 | bool ok; | ||
2145 | Idx subexp_len, to_idx, dst_node; | ||
2146 | re_dfastate_t *cur_state; | ||
2147 | |||
2148 | if (entry->node != node) | ||
2149 | continue; | ||
2150 | subexp_len = entry->subexp_to - entry->subexp_from; | ||
2151 | to_idx = str_idx + subexp_len; | ||
2152 | dst_node = (subexp_len ? dfa->nexts[node] | ||
2153 | : dfa->edests[node].elems[0]); | ||
2154 | |||
2155 | if (to_idx > sctx->last_str_idx | ||
2156 | || sctx->sifted_states[to_idx] == NULL | ||
2157 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) | ||
2158 | || check_dst_limits (mctx, &sctx->limits, node, | ||
2159 | str_idx, dst_node, to_idx)) | ||
2160 | continue; | ||
2161 | |||
2162 | if (local_sctx.sifted_states == NULL) | ||
2163 | { | ||
2164 | local_sctx = *sctx; | ||
2165 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); | ||
2166 | if (BE (err != REG_NOERROR, 0)) | ||
2167 | goto free_return; | ||
2168 | } | ||
2169 | local_sctx.last_node = node; | ||
2170 | local_sctx.last_str_idx = str_idx; | ||
2171 | ok = re_node_set_insert (&local_sctx.limits, enabled_idx); | ||
2172 | if (BE (! ok, 0)) | ||
2173 | { | ||
2174 | err = REG_ESPACE; | ||
2175 | goto free_return; | ||
2176 | } | ||
2177 | cur_state = local_sctx.sifted_states[str_idx]; | ||
2178 | err = sift_states_backward (mctx, &local_sctx); | ||
2179 | if (BE (err != REG_NOERROR, 0)) | ||
2180 | goto free_return; | ||
2181 | if (sctx->limited_states != NULL) | ||
2182 | { | ||
2183 | err = merge_state_array (dfa, sctx->limited_states, | ||
2184 | local_sctx.sifted_states, | ||
2185 | str_idx + 1); | ||
2186 | if (BE (err != REG_NOERROR, 0)) | ||
2187 | goto free_return; | ||
2188 | } | ||
2189 | local_sctx.sifted_states[str_idx] = cur_state; | ||
2190 | re_node_set_remove (&local_sctx.limits, enabled_idx); | ||
2191 | |||
2192 | /* mctx->bkref_ents may have changed, reload the pointer. */ | ||
2193 | entry = mctx->bkref_ents + enabled_idx; | ||
2194 | } | ||
2195 | while (enabled_idx++, entry++->more); | ||
2196 | } | ||
2197 | err = REG_NOERROR; | ||
2198 | free_return: | ||
2199 | if (local_sctx.sifted_states != NULL) | ||
2200 | { | ||
2201 | re_node_set_free (&local_sctx.limits); | ||
2202 | } | ||
2203 | |||
2204 | return err; | ||
2205 | } | ||
2206 | |||
2207 | |||
2208 | #ifdef RE_ENABLE_I18N | ||
2209 | static int | ||
2210 | internal_function | ||
2211 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, | ||
2212 | Idx node_idx, Idx str_idx, Idx max_str_idx) | ||
2213 | { | ||
2214 | re_dfa_t *const dfa = mctx->dfa; | ||
2215 | int naccepted; | ||
2216 | /* Check the node can accept `multi byte'. */ | ||
2217 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); | ||
2218 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && | ||
2219 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], | ||
2220 | dfa->nexts[node_idx])) | ||
2221 | /* The node can't accept the `multi byte', or the | ||
2222 | destination was already thrown away, then the node | ||
2223 | could't accept the current input `multi byte'. */ | ||
2224 | naccepted = 0; | ||
2225 | /* Otherwise, it is sure that the node could accept | ||
2226 | `naccepted' bytes input. */ | ||
2227 | return naccepted; | ||
2228 | } | ||
2229 | #endif /* RE_ENABLE_I18N */ | ||
2230 | |||
2231 | |||
2232 | /* Functions for state transition. */ | ||
2233 | |||
2234 | /* Return the next state to which the current state STATE will transit by | ||
2235 | accepting the current input byte, and update STATE_LOG if necessary. | ||
2236 | If STATE can accept a multibyte char/collating element/back reference | ||
2237 | update the destination of STATE_LOG. */ | ||
2238 | |||
2239 | static re_dfastate_t * | ||
2240 | internal_function | ||
2241 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, | ||
2242 | re_dfastate_t *state) | ||
2243 | { | ||
2244 | re_dfastate_t **trtable; | ||
2245 | unsigned char ch; | ||
2246 | |||
2247 | #ifdef RE_ENABLE_I18N | ||
2248 | /* If the current state can accept multibyte. */ | ||
2249 | if (BE (state->accept_mb, 0)) | ||
2250 | { | ||
2251 | *err = transit_state_mb (mctx, state); | ||
2252 | if (BE (*err != REG_NOERROR, 0)) | ||
2253 | return NULL; | ||
2254 | } | ||
2255 | #endif /* RE_ENABLE_I18N */ | ||
2256 | |||
2257 | /* Then decide the next state with the single byte. */ | ||
2258 | #if 0 | ||
2259 | if (0) | ||
2260 | /* don't use transition table */ | ||
2261 | return transit_state_sb (err, mctx, state); | ||
2262 | #endif | ||
2263 | |||
2264 | /* Use transition table */ | ||
2265 | ch = re_string_fetch_byte (&mctx->input); | ||
2266 | for (;;) | ||
2267 | { | ||
2268 | trtable = state->trtable; | ||
2269 | if (BE (trtable != NULL, 1)) | ||
2270 | return trtable[ch]; | ||
2271 | |||
2272 | trtable = state->word_trtable; | ||
2273 | if (BE (trtable != NULL, 1)) | ||
2274 | { | ||
2275 | unsigned int context; | ||
2276 | context | ||
2277 | = re_string_context_at (&mctx->input, | ||
2278 | re_string_cur_idx (&mctx->input) - 1, | ||
2279 | mctx->eflags); | ||
2280 | if (IS_WORD_CONTEXT (context)) | ||
2281 | return trtable[ch + SBC_MAX]; | ||
2282 | else | ||
2283 | return trtable[ch]; | ||
2284 | } | ||
2285 | |||
2286 | if (!build_trtable (mctx->dfa, state)) | ||
2287 | { | ||
2288 | *err = REG_ESPACE; | ||
2289 | return NULL; | ||
2290 | } | ||
2291 | |||
2292 | /* Retry, we now have a transition table. */ | ||
2293 | } | ||
2294 | } | ||
2295 | |||
2296 | /* Update the state_log if we need */ | ||
2297 | re_dfastate_t * | ||
2298 | internal_function | ||
2299 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, | ||
2300 | re_dfastate_t *next_state) | ||
2301 | { | ||
2302 | re_dfa_t *const dfa = mctx->dfa; | ||
2303 | Idx cur_idx = re_string_cur_idx (&mctx->input); | ||
2304 | |||
2305 | if (cur_idx > mctx->state_log_top) | ||
2306 | { | ||
2307 | mctx->state_log[cur_idx] = next_state; | ||
2308 | mctx->state_log_top = cur_idx; | ||
2309 | } | ||
2310 | else if (mctx->state_log[cur_idx] == 0) | ||
2311 | { | ||
2312 | mctx->state_log[cur_idx] = next_state; | ||
2313 | } | ||
2314 | else | ||
2315 | { | ||
2316 | re_dfastate_t *pstate; | ||
2317 | unsigned int context; | ||
2318 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; | ||
2319 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is | ||
2320 | the destination of a multibyte char/collating element/ | ||
2321 | back reference. Then the next state is the union set of | ||
2322 | these destinations and the results of the transition table. */ | ||
2323 | pstate = mctx->state_log[cur_idx]; | ||
2324 | log_nodes = pstate->entrance_nodes; | ||
2325 | if (next_state != NULL) | ||
2326 | { | ||
2327 | table_nodes = next_state->entrance_nodes; | ||
2328 | *err = re_node_set_init_union (&next_nodes, table_nodes, | ||
2329 | log_nodes); | ||
2330 | if (BE (*err != REG_NOERROR, 0)) | ||
2331 | return NULL; | ||
2332 | } | ||
2333 | else | ||
2334 | next_nodes = *log_nodes; | ||
2335 | /* Note: We already add the nodes of the initial state, | ||
2336 | then we don't need to add them here. */ | ||
2337 | |||
2338 | context = re_string_context_at (&mctx->input, | ||
2339 | re_string_cur_idx (&mctx->input) - 1, | ||
2340 | mctx->eflags); | ||
2341 | next_state = mctx->state_log[cur_idx] | ||
2342 | = re_acquire_state_context (err, dfa, &next_nodes, context); | ||
2343 | /* We don't need to check errors here, since the return value of | ||
2344 | this function is next_state and ERR is already set. */ | ||
2345 | |||
2346 | if (table_nodes != NULL) | ||
2347 | re_node_set_free (&next_nodes); | ||
2348 | } | ||
2349 | |||
2350 | if (BE (dfa->nbackref, 0) && next_state != NULL) | ||
2351 | { | ||
2352 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them | ||
2353 | later. We must check them here, since the back references in the | ||
2354 | next state might use them. */ | ||
2355 | *err = check_subexp_matching_top (mctx, &next_state->nodes, | ||
2356 | cur_idx); | ||
2357 | if (BE (*err != REG_NOERROR, 0)) | ||
2358 | return NULL; | ||
2359 | |||
2360 | /* If the next state has back references. */ | ||
2361 | if (next_state->has_backref) | ||
2362 | { | ||
2363 | *err = transit_state_bkref (mctx, &next_state->nodes); | ||
2364 | if (BE (*err != REG_NOERROR, 0)) | ||
2365 | return NULL; | ||
2366 | next_state = mctx->state_log[cur_idx]; | ||
2367 | } | ||
2368 | } | ||
2369 | |||
2370 | return next_state; | ||
2371 | } | ||
2372 | |||
2373 | /* Skip bytes in the input that correspond to part of a | ||
2374 | multi-byte match, then look in the log for a state | ||
2375 | from which to restart matching. */ | ||
2376 | static re_dfastate_t * | ||
2377 | internal_function | ||
2378 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) | ||
2379 | { | ||
2380 | re_dfastate_t *cur_state = NULL; | ||
2381 | do | ||
2382 | { | ||
2383 | Idx max = mctx->state_log_top; | ||
2384 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2385 | |||
2386 | do | ||
2387 | { | ||
2388 | if (++cur_str_idx > max) | ||
2389 | return NULL; | ||
2390 | re_string_skip_bytes (&mctx->input, 1); | ||
2391 | } | ||
2392 | while (mctx->state_log[cur_str_idx] == NULL); | ||
2393 | |||
2394 | cur_state = merge_state_with_log (err, mctx, NULL); | ||
2395 | } | ||
2396 | while (*err == REG_NOERROR && cur_state == NULL); | ||
2397 | return cur_state; | ||
2398 | } | ||
2399 | |||
2400 | /* Helper functions for transit_state. */ | ||
2401 | |||
2402 | /* From the node set CUR_NODES, pick up the nodes whose types are | ||
2403 | OP_OPEN_SUBEXP and which have corresponding back references in the regular | ||
2404 | expression. And register them to use them later for evaluating the | ||
2405 | correspoding back references. */ | ||
2406 | |||
2407 | static reg_errcode_t | ||
2408 | internal_function | ||
2409 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, | ||
2410 | Idx str_idx) | ||
2411 | { | ||
2412 | re_dfa_t *const dfa = mctx->dfa; | ||
2413 | Idx node_idx; | ||
2414 | reg_errcode_t err; | ||
2415 | |||
2416 | /* TODO: This isn't efficient. | ||
2417 | Because there might be more than one nodes whose types are | ||
2418 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | ||
2419 | nodes. | ||
2420 | E.g. RE: (a){2} */ | ||
2421 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) | ||
2422 | { | ||
2423 | Idx node = cur_nodes->elems[node_idx]; | ||
2424 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP | ||
2425 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS | ||
2426 | && (dfa->used_bkref_map | ||
2427 | & ((bitset_word) 1 << dfa->nodes[node].opr.idx))) | ||
2428 | { | ||
2429 | err = match_ctx_add_subtop (mctx, node, str_idx); | ||
2430 | if (BE (err != REG_NOERROR, 0)) | ||
2431 | return err; | ||
2432 | } | ||
2433 | } | ||
2434 | return REG_NOERROR; | ||
2435 | } | ||
2436 | |||
2437 | #if 0 | ||
2438 | /* Return the next state to which the current state STATE will transit by | ||
2439 | accepting the current input byte. */ | ||
2440 | |||
2441 | static re_dfastate_t * | ||
2442 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, | ||
2443 | re_dfastate_t *state) | ||
2444 | { | ||
2445 | re_dfa_t *const dfa = mctx->dfa; | ||
2446 | re_node_set next_nodes; | ||
2447 | re_dfastate_t *next_state; | ||
2448 | Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2449 | unsigned int context; | ||
2450 | |||
2451 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); | ||
2452 | if (BE (*err != REG_NOERROR, 0)) | ||
2453 | return NULL; | ||
2454 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) | ||
2455 | { | ||
2456 | Idx cur_node = state->nodes.elems[node_cnt]; | ||
2457 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) | ||
2458 | { | ||
2459 | *err = re_node_set_merge (&next_nodes, | ||
2460 | dfa->eclosures + dfa->nexts[cur_node]); | ||
2461 | if (BE (*err != REG_NOERROR, 0)) | ||
2462 | { | ||
2463 | re_node_set_free (&next_nodes); | ||
2464 | return NULL; | ||
2465 | } | ||
2466 | } | ||
2467 | } | ||
2468 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); | ||
2469 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); | ||
2470 | /* We don't need to check errors here, since the return value of | ||
2471 | this function is next_state and ERR is already set. */ | ||
2472 | |||
2473 | re_node_set_free (&next_nodes); | ||
2474 | re_string_skip_bytes (&mctx->input, 1); | ||
2475 | return next_state; | ||
2476 | } | ||
2477 | #endif | ||
2478 | |||
2479 | #ifdef RE_ENABLE_I18N | ||
2480 | static reg_errcode_t | ||
2481 | internal_function | ||
2482 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) | ||
2483 | { | ||
2484 | re_dfa_t *const dfa = mctx->dfa; | ||
2485 | reg_errcode_t err; | ||
2486 | Idx i; | ||
2487 | |||
2488 | for (i = 0; i < pstate->nodes.nelem; ++i) | ||
2489 | { | ||
2490 | re_node_set dest_nodes, *new_nodes; | ||
2491 | Idx cur_node_idx = pstate->nodes.elems[i]; | ||
2492 | int naccepted; | ||
2493 | Idx dest_idx; | ||
2494 | unsigned int context; | ||
2495 | re_dfastate_t *dest_state; | ||
2496 | |||
2497 | if (!dfa->nodes[cur_node_idx].accept_mb) | ||
2498 | continue; | ||
2499 | |||
2500 | if (dfa->nodes[cur_node_idx].constraint) | ||
2501 | { | ||
2502 | context = re_string_context_at (&mctx->input, | ||
2503 | re_string_cur_idx (&mctx->input), | ||
2504 | mctx->eflags); | ||
2505 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, | ||
2506 | context)) | ||
2507 | continue; | ||
2508 | } | ||
2509 | |||
2510 | /* How many bytes the node can accept? */ | ||
2511 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, | ||
2512 | re_string_cur_idx (&mctx->input)); | ||
2513 | if (naccepted == 0) | ||
2514 | continue; | ||
2515 | |||
2516 | /* The node can accepts `naccepted' bytes. */ | ||
2517 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; | ||
2518 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted | ||
2519 | : mctx->max_mb_elem_len); | ||
2520 | err = clean_state_log_if_needed (mctx, dest_idx); | ||
2521 | if (BE (err != REG_NOERROR, 0)) | ||
2522 | return err; | ||
2523 | #ifdef DEBUG | ||
2524 | assert (dfa->nexts[cur_node_idx] != REG_MISSING); | ||
2525 | #endif | ||
2526 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; | ||
2527 | |||
2528 | dest_state = mctx->state_log[dest_idx]; | ||
2529 | if (dest_state == NULL) | ||
2530 | dest_nodes = *new_nodes; | ||
2531 | else | ||
2532 | { | ||
2533 | err = re_node_set_init_union (&dest_nodes, | ||
2534 | dest_state->entrance_nodes, new_nodes); | ||
2535 | if (BE (err != REG_NOERROR, 0)) | ||
2536 | return err; | ||
2537 | } | ||
2538 | context = re_string_context_at (&mctx->input, dest_idx - 1, mctx->eflags); | ||
2539 | mctx->state_log[dest_idx] | ||
2540 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | ||
2541 | if (dest_state != NULL) | ||
2542 | re_node_set_free (&dest_nodes); | ||
2543 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) | ||
2544 | return err; | ||
2545 | } | ||
2546 | return REG_NOERROR; | ||
2547 | } | ||
2548 | #endif /* RE_ENABLE_I18N */ | ||
2549 | |||
2550 | static reg_errcode_t | ||
2551 | internal_function | ||
2552 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) | ||
2553 | { | ||
2554 | re_dfa_t *const dfa = mctx->dfa; | ||
2555 | reg_errcode_t err; | ||
2556 | Idx i; | ||
2557 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2558 | |||
2559 | for (i = 0; i < nodes->nelem; ++i) | ||
2560 | { | ||
2561 | Idx dest_str_idx, prev_nelem, bkc_idx; | ||
2562 | Idx node_idx = nodes->elems[i]; | ||
2563 | unsigned int context; | ||
2564 | const re_token_t *node = dfa->nodes + node_idx; | ||
2565 | re_node_set *new_dest_nodes; | ||
2566 | |||
2567 | /* Check whether `node' is a backreference or not. */ | ||
2568 | if (node->type != OP_BACK_REF) | ||
2569 | continue; | ||
2570 | |||
2571 | if (node->constraint) | ||
2572 | { | ||
2573 | context = re_string_context_at (&mctx->input, cur_str_idx, | ||
2574 | mctx->eflags); | ||
2575 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | ||
2576 | continue; | ||
2577 | } | ||
2578 | |||
2579 | /* `node' is a backreference. | ||
2580 | Check the substring which the substring matched. */ | ||
2581 | bkc_idx = mctx->nbkref_ents; | ||
2582 | err = get_subexp (mctx, node_idx, cur_str_idx); | ||
2583 | if (BE (err != REG_NOERROR, 0)) | ||
2584 | goto free_return; | ||
2585 | |||
2586 | /* And add the epsilon closures (which is `new_dest_nodes') of | ||
2587 | the backreference to appropriate state_log. */ | ||
2588 | #ifdef DEBUG | ||
2589 | assert (dfa->nexts[node_idx] != REG_MISSING); | ||
2590 | #endif | ||
2591 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) | ||
2592 | { | ||
2593 | Idx subexp_len; | ||
2594 | re_dfastate_t *dest_state; | ||
2595 | struct re_backref_cache_entry *bkref_ent; | ||
2596 | bkref_ent = mctx->bkref_ents + bkc_idx; | ||
2597 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) | ||
2598 | continue; | ||
2599 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; | ||
2600 | new_dest_nodes = (subexp_len == 0 | ||
2601 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] | ||
2602 | : dfa->eclosures + dfa->nexts[node_idx]); | ||
2603 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to | ||
2604 | - bkref_ent->subexp_from); | ||
2605 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, | ||
2606 | mctx->eflags); | ||
2607 | dest_state = mctx->state_log[dest_str_idx]; | ||
2608 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 | ||
2609 | : mctx->state_log[cur_str_idx]->nodes.nelem); | ||
2610 | /* Add `new_dest_node' to state_log. */ | ||
2611 | if (dest_state == NULL) | ||
2612 | { | ||
2613 | mctx->state_log[dest_str_idx] | ||
2614 | = re_acquire_state_context (&err, dfa, new_dest_nodes, | ||
2615 | context); | ||
2616 | if (BE (mctx->state_log[dest_str_idx] == NULL | ||
2617 | && err != REG_NOERROR, 0)) | ||
2618 | goto free_return; | ||
2619 | } | ||
2620 | else | ||
2621 | { | ||
2622 | re_node_set dest_nodes; | ||
2623 | err = re_node_set_init_union (&dest_nodes, | ||
2624 | dest_state->entrance_nodes, | ||
2625 | new_dest_nodes); | ||
2626 | if (BE (err != REG_NOERROR, 0)) | ||
2627 | { | ||
2628 | re_node_set_free (&dest_nodes); | ||
2629 | goto free_return; | ||
2630 | } | ||
2631 | mctx->state_log[dest_str_idx] | ||
2632 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | ||
2633 | re_node_set_free (&dest_nodes); | ||
2634 | if (BE (mctx->state_log[dest_str_idx] == NULL | ||
2635 | && err != REG_NOERROR, 0)) | ||
2636 | goto free_return; | ||
2637 | } | ||
2638 | /* We need to check recursively if the backreference can epsilon | ||
2639 | transit. */ | ||
2640 | if (subexp_len == 0 | ||
2641 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) | ||
2642 | { | ||
2643 | err = check_subexp_matching_top (mctx, new_dest_nodes, | ||
2644 | cur_str_idx); | ||
2645 | if (BE (err != REG_NOERROR, 0)) | ||
2646 | goto free_return; | ||
2647 | err = transit_state_bkref (mctx, new_dest_nodes); | ||
2648 | if (BE (err != REG_NOERROR, 0)) | ||
2649 | goto free_return; | ||
2650 | } | ||
2651 | } | ||
2652 | } | ||
2653 | err = REG_NOERROR; | ||
2654 | free_return: | ||
2655 | return err; | ||
2656 | } | ||
2657 | |||
2658 | /* Enumerate all the candidates which the backreference BKREF_NODE can match | ||
2659 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). | ||
2660 | Note that we might collect inappropriate candidates here. | ||
2661 | However, the cost of checking them strictly here is too high, then we | ||
2662 | delay these checking for prune_impossible_nodes(). */ | ||
2663 | |||
2664 | static reg_errcode_t | ||
2665 | internal_function | ||
2666 | get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx) | ||
2667 | { | ||
2668 | re_dfa_t *const dfa = mctx->dfa; | ||
2669 | Idx subexp_num, sub_top_idx; | ||
2670 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2671 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ | ||
2672 | Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); | ||
2673 | if (cache_idx != REG_MISSING) | ||
2674 | { | ||
2675 | const struct re_backref_cache_entry *entry = mctx->bkref_ents + cache_idx; | ||
2676 | do | ||
2677 | if (entry->node == bkref_node) | ||
2678 | return REG_NOERROR; /* We already checked it. */ | ||
2679 | while (entry++->more); | ||
2680 | } | ||
2681 | |||
2682 | subexp_num = dfa->nodes[bkref_node].opr.idx; | ||
2683 | |||
2684 | /* For each sub expression */ | ||
2685 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) | ||
2686 | { | ||
2687 | reg_errcode_t err; | ||
2688 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; | ||
2689 | re_sub_match_last_t *sub_last; | ||
2690 | Idx sub_last_idx, sl_str, bkref_str_off; | ||
2691 | |||
2692 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) | ||
2693 | continue; /* It isn't related. */ | ||
2694 | |||
2695 | sl_str = sub_top->str_idx; | ||
2696 | bkref_str_off = bkref_str_idx; | ||
2697 | /* At first, check the last node of sub expressions we already | ||
2698 | evaluated. */ | ||
2699 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) | ||
2700 | { | ||
2701 | regoff_t sl_str_diff; | ||
2702 | sub_last = sub_top->lasts[sub_last_idx]; | ||
2703 | sl_str_diff = sub_last->str_idx - sl_str; | ||
2704 | /* The matched string by the sub expression match with the substring | ||
2705 | at the back reference? */ | ||
2706 | if (sl_str_diff > 0) | ||
2707 | { | ||
2708 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) | ||
2709 | { | ||
2710 | /* Not enough chars for a successful match. */ | ||
2711 | if (bkref_str_off + sl_str_diff > mctx->input.len) | ||
2712 | break; | ||
2713 | |||
2714 | err = clean_state_log_if_needed (mctx, | ||
2715 | bkref_str_off | ||
2716 | + sl_str_diff); | ||
2717 | if (BE (err != REG_NOERROR, 0)) | ||
2718 | return err; | ||
2719 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2720 | } | ||
2721 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) | ||
2722 | break; /* We don't need to search this sub expression any more. */ | ||
2723 | } | ||
2724 | bkref_str_off += sl_str_diff; | ||
2725 | sl_str += sl_str_diff; | ||
2726 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | ||
2727 | bkref_str_idx); | ||
2728 | |||
2729 | /* Reload buf, since the preceding call might have reallocated | ||
2730 | the buffer. */ | ||
2731 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2732 | |||
2733 | if (err == REG_NOMATCH) | ||
2734 | continue; | ||
2735 | if (BE (err != REG_NOERROR, 0)) | ||
2736 | return err; | ||
2737 | } | ||
2738 | |||
2739 | if (sub_last_idx < sub_top->nlasts) | ||
2740 | continue; | ||
2741 | if (sub_last_idx > 0) | ||
2742 | ++sl_str; | ||
2743 | /* Then, search for the other last nodes of the sub expression. */ | ||
2744 | for (; sl_str <= bkref_str_idx; ++sl_str) | ||
2745 | { | ||
2746 | Idx cls_node; | ||
2747 | regoff_t sl_str_off; | ||
2748 | const re_node_set *nodes; | ||
2749 | sl_str_off = sl_str - sub_top->str_idx; | ||
2750 | /* The matched string by the sub expression match with the substring | ||
2751 | at the back reference? */ | ||
2752 | if (sl_str_off > 0) | ||
2753 | { | ||
2754 | if (BE (bkref_str_off >= mctx->input.valid_len, 0)) | ||
2755 | { | ||
2756 | /* If we are at the end of the input, we cannot match. */ | ||
2757 | if (bkref_str_off >= mctx->input.len) | ||
2758 | break; | ||
2759 | |||
2760 | err = extend_buffers (mctx); | ||
2761 | if (BE (err != REG_NOERROR, 0)) | ||
2762 | return err; | ||
2763 | |||
2764 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2765 | } | ||
2766 | if (buf [bkref_str_off++] != buf[sl_str - 1]) | ||
2767 | break; /* We don't need to search this sub expression | ||
2768 | any more. */ | ||
2769 | } | ||
2770 | if (mctx->state_log[sl_str] == NULL) | ||
2771 | continue; | ||
2772 | /* Does this state have a ')' of the sub expression? */ | ||
2773 | nodes = &mctx->state_log[sl_str]->nodes; | ||
2774 | cls_node = find_subexp_node (dfa, nodes, subexp_num, OP_CLOSE_SUBEXP); | ||
2775 | if (cls_node == REG_MISSING) | ||
2776 | continue; /* No. */ | ||
2777 | if (sub_top->path == NULL) | ||
2778 | { | ||
2779 | sub_top->path = re_calloc (state_array_t, | ||
2780 | sl_str - sub_top->str_idx + 1); | ||
2781 | if (sub_top->path == NULL) | ||
2782 | return REG_ESPACE; | ||
2783 | } | ||
2784 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node | ||
2785 | in the current context? */ | ||
2786 | err = check_arrival (mctx, sub_top->path, sub_top->node, | ||
2787 | sub_top->str_idx, cls_node, sl_str, OP_CLOSE_SUBEXP); | ||
2788 | if (err == REG_NOMATCH) | ||
2789 | continue; | ||
2790 | if (BE (err != REG_NOERROR, 0)) | ||
2791 | return err; | ||
2792 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); | ||
2793 | if (BE (sub_last == NULL, 0)) | ||
2794 | return REG_ESPACE; | ||
2795 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | ||
2796 | bkref_str_idx); | ||
2797 | if (err == REG_NOMATCH) | ||
2798 | continue; | ||
2799 | } | ||
2800 | } | ||
2801 | return REG_NOERROR; | ||
2802 | } | ||
2803 | |||
2804 | /* Helper functions for get_subexp(). */ | ||
2805 | |||
2806 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. | ||
2807 | If it can arrive, register the sub expression expressed with SUB_TOP | ||
2808 | and SUB_LAST. */ | ||
2809 | |||
2810 | static reg_errcode_t | ||
2811 | internal_function | ||
2812 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, | ||
2813 | re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str) | ||
2814 | { | ||
2815 | reg_errcode_t err; | ||
2816 | Idx to_idx; | ||
2817 | /* Can the subexpression arrive the back reference? */ | ||
2818 | err = check_arrival (mctx, &sub_last->path, sub_last->node, | ||
2819 | sub_last->str_idx, bkref_node, bkref_str, OP_OPEN_SUBEXP); | ||
2820 | if (err != REG_NOERROR) | ||
2821 | return err; | ||
2822 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, | ||
2823 | sub_last->str_idx); | ||
2824 | if (BE (err != REG_NOERROR, 0)) | ||
2825 | return err; | ||
2826 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; | ||
2827 | return clean_state_log_if_needed (mctx, to_idx); | ||
2828 | } | ||
2829 | |||
2830 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. | ||
2831 | Search '(' if FL_OPEN, or search ')' otherwise. | ||
2832 | TODO: This function isn't efficient... | ||
2833 | Because there might be more than one nodes whose types are | ||
2834 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | ||
2835 | nodes. | ||
2836 | E.g. RE: (a){2} */ | ||
2837 | |||
2838 | static Idx | ||
2839 | internal_function | ||
2840 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | ||
2841 | Idx subexp_idx, int type) | ||
2842 | { | ||
2843 | Idx cls_idx; | ||
2844 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) | ||
2845 | { | ||
2846 | Idx cls_node = nodes->elems[cls_idx]; | ||
2847 | const re_token_t *node = dfa->nodes + cls_node; | ||
2848 | if (node->type == type | ||
2849 | && node->opr.idx == subexp_idx) | ||
2850 | return cls_node; | ||
2851 | } | ||
2852 | return REG_MISSING; | ||
2853 | } | ||
2854 | |||
2855 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node | ||
2856 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be | ||
2857 | heavily reused. | ||
2858 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */ | ||
2859 | |||
2860 | static reg_errcode_t | ||
2861 | internal_function | ||
2862 | check_arrival (re_match_context_t *mctx, state_array_t *path, | ||
2863 | Idx top_node, Idx top_str, Idx last_node, Idx last_str, | ||
2864 | int type) | ||
2865 | { | ||
2866 | re_dfa_t *const dfa = mctx->dfa; | ||
2867 | reg_errcode_t err; | ||
2868 | Idx subexp_num, backup_cur_idx, str_idx, null_cnt; | ||
2869 | re_dfastate_t *cur_state = NULL; | ||
2870 | re_node_set *cur_nodes, next_nodes; | ||
2871 | re_dfastate_t **backup_state_log; | ||
2872 | unsigned int context; | ||
2873 | |||
2874 | subexp_num = dfa->nodes[top_node].opr.idx; | ||
2875 | /* Extend the buffer if we need. */ | ||
2876 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) | ||
2877 | { | ||
2878 | re_dfastate_t **new_array; | ||
2879 | Idx old_alloc = path->alloc; | ||
2880 | Idx new_alloc = old_alloc + last_str + mctx->max_mb_elem_len + 1; | ||
2881 | if (BE (new_alloc < old_alloc, 0)) | ||
2882 | return REG_ESPACE; | ||
2883 | new_array = re_xrealloc (path->array, re_dfastate_t *, new_alloc); | ||
2884 | if (BE (new_array == NULL, 0)) | ||
2885 | return REG_ESPACE; | ||
2886 | path->array = new_array; | ||
2887 | path->alloc = new_alloc; | ||
2888 | memset (new_array + old_alloc, '\0', | ||
2889 | sizeof (re_dfastate_t *) * (new_alloc - old_alloc)); | ||
2890 | } | ||
2891 | |||
2892 | str_idx = path->next_idx == 0 ? top_str : path->next_idx; | ||
2893 | |||
2894 | /* Temporary modify MCTX. */ | ||
2895 | backup_state_log = mctx->state_log; | ||
2896 | backup_cur_idx = mctx->input.cur_idx; | ||
2897 | mctx->state_log = path->array; | ||
2898 | mctx->input.cur_idx = str_idx; | ||
2899 | |||
2900 | /* Setup initial node set. */ | ||
2901 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | ||
2902 | if (str_idx == top_str) | ||
2903 | { | ||
2904 | err = re_node_set_init_1 (&next_nodes, top_node); | ||
2905 | if (BE (err != REG_NOERROR, 0)) | ||
2906 | return err; | ||
2907 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | ||
2908 | if (BE (err != REG_NOERROR, 0)) | ||
2909 | { | ||
2910 | re_node_set_free (&next_nodes); | ||
2911 | return err; | ||
2912 | } | ||
2913 | } | ||
2914 | else | ||
2915 | { | ||
2916 | cur_state = mctx->state_log[str_idx]; | ||
2917 | if (cur_state && cur_state->has_backref) | ||
2918 | { | ||
2919 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); | ||
2920 | if (BE ( err != REG_NOERROR, 0)) | ||
2921 | return err; | ||
2922 | } | ||
2923 | else | ||
2924 | re_node_set_init_empty (&next_nodes); | ||
2925 | } | ||
2926 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) | ||
2927 | { | ||
2928 | if (next_nodes.nelem) | ||
2929 | { | ||
2930 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | ||
2931 | subexp_num, type); | ||
2932 | if (BE ( err != REG_NOERROR, 0)) | ||
2933 | { | ||
2934 | re_node_set_free (&next_nodes); | ||
2935 | return err; | ||
2936 | } | ||
2937 | } | ||
2938 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | ||
2939 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | ||
2940 | { | ||
2941 | re_node_set_free (&next_nodes); | ||
2942 | return err; | ||
2943 | } | ||
2944 | mctx->state_log[str_idx] = cur_state; | ||
2945 | } | ||
2946 | |||
2947 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) | ||
2948 | { | ||
2949 | re_node_set_empty (&next_nodes); | ||
2950 | if (mctx->state_log[str_idx + 1]) | ||
2951 | { | ||
2952 | err = re_node_set_merge (&next_nodes, | ||
2953 | &mctx->state_log[str_idx + 1]->nodes); | ||
2954 | if (BE (err != REG_NOERROR, 0)) | ||
2955 | { | ||
2956 | re_node_set_free (&next_nodes); | ||
2957 | return err; | ||
2958 | } | ||
2959 | } | ||
2960 | if (cur_state) | ||
2961 | { | ||
2962 | err = check_arrival_add_next_nodes (mctx, str_idx, | ||
2963 | &cur_state->non_eps_nodes, &next_nodes); | ||
2964 | if (BE (err != REG_NOERROR, 0)) | ||
2965 | { | ||
2966 | re_node_set_free (&next_nodes); | ||
2967 | return err; | ||
2968 | } | ||
2969 | } | ||
2970 | ++str_idx; | ||
2971 | if (next_nodes.nelem) | ||
2972 | { | ||
2973 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | ||
2974 | if (BE (err != REG_NOERROR, 0)) | ||
2975 | { | ||
2976 | re_node_set_free (&next_nodes); | ||
2977 | return err; | ||
2978 | } | ||
2979 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | ||
2980 | subexp_num, type); | ||
2981 | if (BE ( err != REG_NOERROR, 0)) | ||
2982 | { | ||
2983 | re_node_set_free (&next_nodes); | ||
2984 | return err; | ||
2985 | } | ||
2986 | } | ||
2987 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | ||
2988 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | ||
2989 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | ||
2990 | { | ||
2991 | re_node_set_free (&next_nodes); | ||
2992 | return err; | ||
2993 | } | ||
2994 | mctx->state_log[str_idx] = cur_state; | ||
2995 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; | ||
2996 | } | ||
2997 | re_node_set_free (&next_nodes); | ||
2998 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL | ||
2999 | : &mctx->state_log[last_str]->nodes); | ||
3000 | path->next_idx = str_idx; | ||
3001 | |||
3002 | /* Fix MCTX. */ | ||
3003 | mctx->state_log = backup_state_log; | ||
3004 | mctx->input.cur_idx = backup_cur_idx; | ||
3005 | |||
3006 | /* Then check the current node set has the node LAST_NODE. */ | ||
3007 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) | ||
3008 | return REG_NOERROR; | ||
3009 | |||
3010 | return REG_NOMATCH; | ||
3011 | } | ||
3012 | |||
3013 | /* Helper functions for check_arrival. */ | ||
3014 | |||
3015 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them | ||
3016 | to NEXT_NODES. | ||
3017 | TODO: This function is similar to the functions transit_state*(), | ||
3018 | however this function has many additional works. | ||
3019 | Can't we unify them? */ | ||
3020 | |||
3021 | static reg_errcode_t | ||
3022 | internal_function | ||
3023 | check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx, | ||
3024 | re_node_set *cur_nodes, | ||
3025 | re_node_set *next_nodes) | ||
3026 | { | ||
3027 | re_dfa_t *const dfa = mctx->dfa; | ||
3028 | bool ok; | ||
3029 | Idx cur_idx; | ||
3030 | reg_errcode_t err; | ||
3031 | re_node_set union_set; | ||
3032 | re_node_set_init_empty (&union_set); | ||
3033 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) | ||
3034 | { | ||
3035 | int naccepted = 0; | ||
3036 | Idx cur_node = cur_nodes->elems[cur_idx]; | ||
3037 | #ifdef DEBUG | ||
3038 | re_token_type_t type = dfa->nodes[cur_node].type; | ||
3039 | assert (!IS_EPSILON_NODE (type)); | ||
3040 | #endif | ||
3041 | #ifdef RE_ENABLE_I18N | ||
3042 | /* If the node may accept `multi byte'. */ | ||
3043 | if (dfa->nodes[cur_node].accept_mb) | ||
3044 | { | ||
3045 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, | ||
3046 | str_idx); | ||
3047 | if (naccepted > 1) | ||
3048 | { | ||
3049 | re_dfastate_t *dest_state; | ||
3050 | Idx next_node = dfa->nexts[cur_node]; | ||
3051 | Idx next_idx = str_idx + naccepted; | ||
3052 | dest_state = mctx->state_log[next_idx]; | ||
3053 | re_node_set_empty (&union_set); | ||
3054 | if (dest_state) | ||
3055 | { | ||
3056 | err = re_node_set_merge (&union_set, &dest_state->nodes); | ||
3057 | if (BE (err != REG_NOERROR, 0)) | ||
3058 | { | ||
3059 | re_node_set_free (&union_set); | ||
3060 | return err; | ||
3061 | } | ||
3062 | } | ||
3063 | ok = re_node_set_insert (&union_set, next_node); | ||
3064 | if (BE (! ok, 0)) | ||
3065 | { | ||
3066 | re_node_set_free (&union_set); | ||
3067 | return REG_ESPACE; | ||
3068 | } | ||
3069 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, | ||
3070 | &union_set); | ||
3071 | if (BE (mctx->state_log[next_idx] == NULL | ||
3072 | && err != REG_NOERROR, 0)) | ||
3073 | { | ||
3074 | re_node_set_free (&union_set); | ||
3075 | return err; | ||
3076 | } | ||
3077 | } | ||
3078 | } | ||
3079 | #endif /* RE_ENABLE_I18N */ | ||
3080 | if (naccepted | ||
3081 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) | ||
3082 | { | ||
3083 | ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); | ||
3084 | if (BE (! ok, 0)) | ||
3085 | { | ||
3086 | re_node_set_free (&union_set); | ||
3087 | return REG_ESPACE; | ||
3088 | } | ||
3089 | } | ||
3090 | } | ||
3091 | re_node_set_free (&union_set); | ||
3092 | return REG_NOERROR; | ||
3093 | } | ||
3094 | |||
3095 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to | ||
3096 | CUR_NODES, however exclude the nodes which are: | ||
3097 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. | ||
3098 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. | ||
3099 | */ | ||
3100 | |||
3101 | static reg_errcode_t | ||
3102 | internal_function | ||
3103 | check_arrival_expand_ecl (re_dfa_t *dfa, re_node_set *cur_nodes, | ||
3104 | Idx ex_subexp, int type) | ||
3105 | { | ||
3106 | reg_errcode_t err; | ||
3107 | Idx idx, outside_node; | ||
3108 | re_node_set new_nodes; | ||
3109 | #ifdef DEBUG | ||
3110 | assert (cur_nodes->nelem); | ||
3111 | #endif | ||
3112 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); | ||
3113 | if (BE (err != REG_NOERROR, 0)) | ||
3114 | return err; | ||
3115 | /* Create a new node set NEW_NODES with the nodes which are epsilon | ||
3116 | closures of the node in CUR_NODES. */ | ||
3117 | |||
3118 | for (idx = 0; idx < cur_nodes->nelem; ++idx) | ||
3119 | { | ||
3120 | Idx cur_node = cur_nodes->elems[idx]; | ||
3121 | re_node_set *eclosure = dfa->eclosures + cur_node; | ||
3122 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); | ||
3123 | if (outside_node == REG_MISSING) | ||
3124 | { | ||
3125 | /* There are no problematic nodes, just merge them. */ | ||
3126 | err = re_node_set_merge (&new_nodes, eclosure); | ||
3127 | if (BE (err != REG_NOERROR, 0)) | ||
3128 | { | ||
3129 | re_node_set_free (&new_nodes); | ||
3130 | return err; | ||
3131 | } | ||
3132 | } | ||
3133 | else | ||
3134 | { | ||
3135 | /* There are problematic nodes, re-calculate incrementally. */ | ||
3136 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, | ||
3137 | ex_subexp, type); | ||
3138 | if (BE (err != REG_NOERROR, 0)) | ||
3139 | { | ||
3140 | re_node_set_free (&new_nodes); | ||
3141 | return err; | ||
3142 | } | ||
3143 | } | ||
3144 | } | ||
3145 | re_node_set_free (cur_nodes); | ||
3146 | *cur_nodes = new_nodes; | ||
3147 | return REG_NOERROR; | ||
3148 | } | ||
3149 | |||
3150 | /* Helper function for check_arrival_expand_ecl. | ||
3151 | Check incrementally the epsilon closure of TARGET, and if it isn't | ||
3152 | problematic append it to DST_NODES. */ | ||
3153 | |||
3154 | static reg_errcode_t | ||
3155 | internal_function | ||
3156 | check_arrival_expand_ecl_sub (re_dfa_t *dfa, re_node_set *dst_nodes, | ||
3157 | Idx target, Idx ex_subexp, int type) | ||
3158 | { | ||
3159 | Idx cur_node; | ||
3160 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) | ||
3161 | { | ||
3162 | bool ok; | ||
3163 | |||
3164 | if (dfa->nodes[cur_node].type == type | ||
3165 | && dfa->nodes[cur_node].opr.idx == ex_subexp) | ||
3166 | { | ||
3167 | if (type == OP_CLOSE_SUBEXP) | ||
3168 | { | ||
3169 | ok = re_node_set_insert (dst_nodes, cur_node); | ||
3170 | if (BE (! ok, 0)) | ||
3171 | return REG_ESPACE; | ||
3172 | } | ||
3173 | break; | ||
3174 | } | ||
3175 | ok = re_node_set_insert (dst_nodes, cur_node); | ||
3176 | if (BE (! ok, 0)) | ||
3177 | return REG_ESPACE; | ||
3178 | if (dfa->edests[cur_node].nelem == 0) | ||
3179 | break; | ||
3180 | if (dfa->edests[cur_node].nelem == 2) | ||
3181 | { | ||
3182 | reg_errcode_t ret = | ||
3183 | check_arrival_expand_ecl_sub (dfa, dst_nodes, | ||
3184 | dfa->edests[cur_node].elems[1], | ||
3185 | ex_subexp, type); | ||
3186 | if (BE (ret != REG_NOERROR, 0)) | ||
3187 | return ret; | ||
3188 | } | ||
3189 | cur_node = dfa->edests[cur_node].elems[0]; | ||
3190 | } | ||
3191 | return REG_NOERROR; | ||
3192 | } | ||
3193 | |||
3194 | |||
3195 | /* For all the back references in the current state, calculate the | ||
3196 | destination of the back references by the appropriate entry | ||
3197 | in MCTX->BKREF_ENTS. */ | ||
3198 | |||
3199 | static reg_errcode_t | ||
3200 | internal_function | ||
3201 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, | ||
3202 | Idx cur_str, Idx subexp_num, int type) | ||
3203 | { | ||
3204 | re_dfa_t *const dfa = mctx->dfa; | ||
3205 | reg_errcode_t err; | ||
3206 | Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str); | ||
3207 | struct re_backref_cache_entry *ent; | ||
3208 | |||
3209 | if (cache_idx_start == REG_MISSING) | ||
3210 | return REG_NOERROR; | ||
3211 | |||
3212 | restart: | ||
3213 | ent = mctx->bkref_ents + cache_idx_start; | ||
3214 | do | ||
3215 | { | ||
3216 | Idx to_idx, next_node; | ||
3217 | |||
3218 | /* Is this entry ENT is appropriate? */ | ||
3219 | if (!re_node_set_contains (cur_nodes, ent->node)) | ||
3220 | continue; /* No. */ | ||
3221 | |||
3222 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; | ||
3223 | /* Calculate the destination of the back reference, and append it | ||
3224 | to MCTX->STATE_LOG. */ | ||
3225 | if (to_idx == cur_str) | ||
3226 | { | ||
3227 | /* The backreference did epsilon transit, we must re-check all the | ||
3228 | node in the current state. */ | ||
3229 | re_node_set new_dests; | ||
3230 | reg_errcode_t err2, err3; | ||
3231 | next_node = dfa->edests[ent->node].elems[0]; | ||
3232 | if (re_node_set_contains (cur_nodes, next_node)) | ||
3233 | continue; | ||
3234 | err = re_node_set_init_1 (&new_dests, next_node); | ||
3235 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); | ||
3236 | err3 = re_node_set_merge (cur_nodes, &new_dests); | ||
3237 | re_node_set_free (&new_dests); | ||
3238 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR | ||
3239 | || err3 != REG_NOERROR, 0)) | ||
3240 | { | ||
3241 | err = (err != REG_NOERROR ? err | ||
3242 | : (err2 != REG_NOERROR ? err2 : err3)); | ||
3243 | return err; | ||
3244 | } | ||
3245 | /* TODO: It is still inefficient... */ | ||
3246 | goto restart; | ||
3247 | } | ||
3248 | else | ||
3249 | { | ||
3250 | re_node_set union_set; | ||
3251 | next_node = dfa->nexts[ent->node]; | ||
3252 | if (mctx->state_log[to_idx]) | ||
3253 | { | ||
3254 | bool ok; | ||
3255 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, | ||
3256 | next_node)) | ||
3257 | continue; | ||
3258 | err = re_node_set_init_copy (&union_set, | ||
3259 | &mctx->state_log[to_idx]->nodes); | ||
3260 | ok = re_node_set_insert (&union_set, next_node); | ||
3261 | if (BE (err != REG_NOERROR || ! ok, 0)) | ||
3262 | { | ||
3263 | re_node_set_free (&union_set); | ||
3264 | err = err != REG_NOERROR ? err : REG_ESPACE; | ||
3265 | return err; | ||
3266 | } | ||
3267 | } | ||
3268 | else | ||
3269 | { | ||
3270 | err = re_node_set_init_1 (&union_set, next_node); | ||
3271 | if (BE (err != REG_NOERROR, 0)) | ||
3272 | return err; | ||
3273 | } | ||
3274 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); | ||
3275 | re_node_set_free (&union_set); | ||
3276 | if (BE (mctx->state_log[to_idx] == NULL | ||
3277 | && err != REG_NOERROR, 0)) | ||
3278 | return err; | ||
3279 | } | ||
3280 | } | ||
3281 | while (ent++->more); | ||
3282 | return REG_NOERROR; | ||
3283 | } | ||
3284 | |||
3285 | /* Build transition table for the state. | ||
3286 | Return true if successful. */ | ||
3287 | |||
3288 | static bool | ||
3289 | internal_function | ||
3290 | build_trtable (re_dfa_t *dfa, re_dfastate_t *state) | ||
3291 | { | ||
3292 | reg_errcode_t err; | ||
3293 | Idx i, j; | ||
3294 | int ch; | ||
3295 | bool need_word_trtable = false; | ||
3296 | bitset_word elem, mask; | ||
3297 | bool dests_node_malloced = false, dest_states_malloced = false; | ||
3298 | Idx ndests; /* Number of the destination states from `state'. */ | ||
3299 | re_dfastate_t **trtable; | ||
3300 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; | ||
3301 | re_node_set follows, *dests_node; | ||
3302 | bitset *dests_ch; | ||
3303 | bitset acceptable; | ||
3304 | |||
3305 | struct dests_alloc | ||
3306 | { | ||
3307 | re_node_set dests_node[SBC_MAX]; | ||
3308 | bitset dests_ch[SBC_MAX]; | ||
3309 | } *dests_alloc; | ||
3310 | |||
3311 | /* We build DFA states which corresponds to the destination nodes | ||
3312 | from `state'. `dests_node[i]' represents the nodes which i-th | ||
3313 | destination state contains, and `dests_ch[i]' represents the | ||
3314 | characters which i-th destination state accepts. */ | ||
3315 | if (__libc_use_alloca (sizeof (struct dests_alloc))) | ||
3316 | dests_alloc = (struct dests_alloc *) alloca (sizeof dests_alloc[0]); | ||
3317 | else | ||
3318 | { | ||
3319 | dests_alloc = re_malloc (struct dests_alloc, 1); | ||
3320 | if (BE (dests_alloc == NULL, 0)) | ||
3321 | return false; | ||
3322 | dests_node_malloced = true; | ||
3323 | } | ||
3324 | dests_node = dests_alloc->dests_node; | ||
3325 | dests_ch = dests_alloc->dests_ch; | ||
3326 | |||
3327 | /* Initialize transiton table. */ | ||
3328 | state->word_trtable = state->trtable = NULL; | ||
3329 | |||
3330 | /* At first, group all nodes belonging to `state' into several | ||
3331 | destinations. */ | ||
3332 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); | ||
3333 | if (BE (! REG_VALID_NONZERO_INDEX (ndests), 0)) | ||
3334 | { | ||
3335 | if (dests_node_malloced) | ||
3336 | free (dests_alloc); | ||
3337 | if (ndests == 0) | ||
3338 | { | ||
3339 | state->trtable = re_calloc (re_dfastate_t *, SBC_MAX); | ||
3340 | return true; | ||
3341 | } | ||
3342 | return false; | ||
3343 | } | ||
3344 | |||
3345 | err = re_node_set_alloc (&follows, ndests + 1); | ||
3346 | if (BE (err != REG_NOERROR, 0)) | ||
3347 | goto out_free; | ||
3348 | |||
3349 | /* Avoid arithmetic overflow in size calculation. */ | ||
3350 | if (BE (((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX) | ||
3351 | / (3 * sizeof (re_dfastate_t *))) | ||
3352 | < ndests, 0)) | ||
3353 | goto out_free; | ||
3354 | |||
3355 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX | ||
3356 | + ndests * 3 * sizeof (re_dfastate_t *))) | ||
3357 | dest_states = (re_dfastate_t **) | ||
3358 | alloca (ndests * 3 * sizeof (re_dfastate_t *)); | ||
3359 | else | ||
3360 | { | ||
3361 | dest_states = (re_dfastate_t **) | ||
3362 | malloc (ndests * 3 * sizeof (re_dfastate_t *)); | ||
3363 | if (BE (dest_states == NULL, 0)) | ||
3364 | { | ||
3365 | out_free: | ||
3366 | if (dest_states_malloced) | ||
3367 | free (dest_states); | ||
3368 | re_node_set_free (&follows); | ||
3369 | for (i = 0; i < ndests; ++i) | ||
3370 | re_node_set_free (dests_node + i); | ||
3371 | if (dests_node_malloced) | ||
3372 | free (dests_alloc); | ||
3373 | return false; | ||
3374 | } | ||
3375 | dest_states_malloced = true; | ||
3376 | } | ||
3377 | dest_states_word = dest_states + ndests; | ||
3378 | dest_states_nl = dest_states_word + ndests; | ||
3379 | bitset_empty (acceptable); | ||
3380 | |||
3381 | /* Then build the states for all destinations. */ | ||
3382 | for (i = 0; i < ndests; ++i) | ||
3383 | { | ||
3384 | Idx next_node; | ||
3385 | re_node_set_empty (&follows); | ||
3386 | /* Merge the follows of this destination states. */ | ||
3387 | for (j = 0; j < dests_node[i].nelem; ++j) | ||
3388 | { | ||
3389 | next_node = dfa->nexts[dests_node[i].elems[j]]; | ||
3390 | if (next_node != REG_MISSING) | ||
3391 | { | ||
3392 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); | ||
3393 | if (BE (err != REG_NOERROR, 0)) | ||
3394 | goto out_free; | ||
3395 | } | ||
3396 | } | ||
3397 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); | ||
3398 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) | ||
3399 | goto out_free; | ||
3400 | /* If the new state has context constraint, | ||
3401 | build appropriate states for these contexts. */ | ||
3402 | if (dest_states[i]->has_constraint) | ||
3403 | { | ||
3404 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, | ||
3405 | CONTEXT_WORD); | ||
3406 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) | ||
3407 | goto out_free; | ||
3408 | |||
3409 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) | ||
3410 | need_word_trtable = true; | ||
3411 | |||
3412 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, | ||
3413 | CONTEXT_NEWLINE); | ||
3414 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) | ||
3415 | goto out_free; | ||
3416 | } | ||
3417 | else | ||
3418 | { | ||
3419 | dest_states_word[i] = dest_states[i]; | ||
3420 | dest_states_nl[i] = dest_states[i]; | ||
3421 | } | ||
3422 | bitset_merge (acceptable, dests_ch[i]); | ||
3423 | } | ||
3424 | |||
3425 | if (!BE (need_word_trtable, 0)) | ||
3426 | { | ||
3427 | /* We don't care about whether the following character is a word | ||
3428 | character, or we are in a single-byte character set so we can | ||
3429 | discern by looking at the character code: allocate a | ||
3430 | 256-entry transition table. */ | ||
3431 | trtable = state->trtable = re_calloc (re_dfastate_t *, SBC_MAX); | ||
3432 | if (BE (trtable == NULL, 0)) | ||
3433 | goto out_free; | ||
3434 | |||
3435 | /* For all characters ch...: */ | ||
3436 | for (i = 0; i < BITSET_WORDS; ++i) | ||
3437 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | ||
3438 | elem; | ||
3439 | mask <<= 1, elem >>= 1, ++ch) | ||
3440 | if (BE (elem & 1, 0)) | ||
3441 | { | ||
3442 | /* There must be exactly one destination which accepts | ||
3443 | character ch. See group_nodes_into_DFAstates. */ | ||
3444 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | ||
3445 | ; | ||
3446 | |||
3447 | /* j-th destination accepts the word character ch. */ | ||
3448 | if (dfa->word_char[i] & mask) | ||
3449 | trtable[ch] = dest_states_word[j]; | ||
3450 | else | ||
3451 | trtable[ch] = dest_states[j]; | ||
3452 | } | ||
3453 | } | ||
3454 | else | ||
3455 | { | ||
3456 | /* We care about whether the following character is a word | ||
3457 | character, and we are in a multi-byte character set: discern | ||
3458 | by looking at the character code: build two 256-entry | ||
3459 | transition tables, one starting at trtable[0] and one | ||
3460 | starting at trtable[SBC_MAX]. */ | ||
3461 | trtable = state->word_trtable = re_calloc (re_dfastate_t *, 2 * SBC_MAX); | ||
3462 | if (BE (trtable == NULL, 0)) | ||
3463 | goto out_free; | ||
3464 | |||
3465 | /* For all characters ch...: */ | ||
3466 | for (i = 0; i < BITSET_WORDS; ++i) | ||
3467 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | ||
3468 | elem; | ||
3469 | mask <<= 1, elem >>= 1, ++ch) | ||
3470 | if (BE (elem & 1, 0)) | ||
3471 | { | ||
3472 | /* There must be exactly one destination which accepts | ||
3473 | character ch. See group_nodes_into_DFAstates. */ | ||
3474 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | ||
3475 | ; | ||
3476 | |||
3477 | /* j-th destination accepts the word character ch. */ | ||
3478 | trtable[ch] = dest_states[j]; | ||
3479 | trtable[ch + SBC_MAX] = dest_states_word[j]; | ||
3480 | } | ||
3481 | } | ||
3482 | |||
3483 | /* new line */ | ||
3484 | if (bitset_contain (acceptable, NEWLINE_CHAR)) | ||
3485 | { | ||
3486 | /* The current state accepts newline character. */ | ||
3487 | for (j = 0; j < ndests; ++j) | ||
3488 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) | ||
3489 | { | ||
3490 | /* k-th destination accepts newline character. */ | ||
3491 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; | ||
3492 | if (need_word_trtable) | ||
3493 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; | ||
3494 | /* There must be only one destination which accepts | ||
3495 | newline. See group_nodes_into_DFAstates. */ | ||
3496 | break; | ||
3497 | } | ||
3498 | } | ||
3499 | |||
3500 | if (dest_states_malloced) | ||
3501 | free (dest_states); | ||
3502 | |||
3503 | re_node_set_free (&follows); | ||
3504 | for (i = 0; i < ndests; ++i) | ||
3505 | re_node_set_free (dests_node + i); | ||
3506 | |||
3507 | if (dests_node_malloced) | ||
3508 | free (dests_alloc); | ||
3509 | |||
3510 | return true; | ||
3511 | } | ||
3512 | |||
3513 | /* Group all nodes belonging to STATE into several destinations. | ||
3514 | Then for all destinations, set the nodes belonging to the destination | ||
3515 | to DESTS_NODE[i] and set the characters accepted by the destination | ||
3516 | to DEST_CH[i]. This function return the number of destinations. */ | ||
3517 | |||
3518 | static Idx | ||
3519 | internal_function | ||
3520 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, | ||
3521 | re_node_set *dests_node, bitset *dests_ch) | ||
3522 | { | ||
3523 | reg_errcode_t err; | ||
3524 | bool ok; | ||
3525 | Idx i, j, k; | ||
3526 | Idx ndests; /* Number of the destinations from `state'. */ | ||
3527 | bitset accepts; /* Characters a node can accept. */ | ||
3528 | const re_node_set *cur_nodes = &state->nodes; | ||
3529 | bitset_empty (accepts); | ||
3530 | ndests = 0; | ||
3531 | |||
3532 | /* For all the nodes belonging to `state', */ | ||
3533 | for (i = 0; i < cur_nodes->nelem; ++i) | ||
3534 | { | ||
3535 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; | ||
3536 | re_token_type_t type = node->type; | ||
3537 | unsigned int constraint = node->constraint; | ||
3538 | |||
3539 | /* Enumerate all single byte character this node can accept. */ | ||
3540 | if (type == CHARACTER) | ||
3541 | bitset_set (accepts, node->opr.c); | ||
3542 | else if (type == SIMPLE_BRACKET) | ||
3543 | { | ||
3544 | bitset_merge (accepts, node->opr.sbcset); | ||
3545 | } | ||
3546 | else if (type == OP_PERIOD) | ||
3547 | { | ||
3548 | #ifdef RE_ENABLE_I18N | ||
3549 | if (dfa->mb_cur_max > 1) | ||
3550 | bitset_merge (accepts, dfa->sb_char); | ||
3551 | else | ||
3552 | #endif | ||
3553 | bitset_set_all (accepts); | ||
3554 | if (!(dfa->syntax & REG_DOT_NEWLINE)) | ||
3555 | bitset_clear (accepts, '\n'); | ||
3556 | if (dfa->syntax & REG_DOT_NOT_NULL) | ||
3557 | bitset_clear (accepts, '\0'); | ||
3558 | } | ||
3559 | #ifdef RE_ENABLE_I18N | ||
3560 | else if (type == OP_UTF8_PERIOD) | ||
3561 | { | ||
3562 | if (SBC_MAX / 2 % BITSET_WORD_BITS == 0) | ||
3563 | memset (accepts, -1, sizeof accepts / 2); | ||
3564 | else | ||
3565 | bitset_merge (accepts, utf8_sb_map); | ||
3566 | if (!(dfa->syntax & REG_DOT_NEWLINE)) | ||
3567 | bitset_clear (accepts, '\n'); | ||
3568 | if (dfa->syntax & REG_DOT_NOT_NULL) | ||
3569 | bitset_clear (accepts, '\0'); | ||
3570 | } | ||
3571 | #endif | ||
3572 | else | ||
3573 | continue; | ||
3574 | |||
3575 | /* Check the `accepts' and sift the characters which are not | ||
3576 | match it the context. */ | ||
3577 | if (constraint) | ||
3578 | { | ||
3579 | if (constraint & NEXT_NEWLINE_CONSTRAINT) | ||
3580 | { | ||
3581 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); | ||
3582 | bitset_empty (accepts); | ||
3583 | if (accepts_newline) | ||
3584 | bitset_set (accepts, NEWLINE_CHAR); | ||
3585 | else | ||
3586 | continue; | ||
3587 | } | ||
3588 | if (constraint & NEXT_ENDBUF_CONSTRAINT) | ||
3589 | { | ||
3590 | bitset_empty (accepts); | ||
3591 | continue; | ||
3592 | } | ||
3593 | |||
3594 | if (constraint & NEXT_WORD_CONSTRAINT) | ||
3595 | { | ||
3596 | bitset_word any_set = 0; | ||
3597 | if (type == CHARACTER && !node->word_char) | ||
3598 | { | ||
3599 | bitset_empty (accepts); | ||
3600 | continue; | ||
3601 | } | ||
3602 | #ifdef RE_ENABLE_I18N | ||
3603 | if (dfa->mb_cur_max > 1) | ||
3604 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3605 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); | ||
3606 | else | ||
3607 | #endif | ||
3608 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3609 | any_set |= (accepts[j] &= dfa->word_char[j]); | ||
3610 | if (!any_set) | ||
3611 | continue; | ||
3612 | } | ||
3613 | if (constraint & NEXT_NOTWORD_CONSTRAINT) | ||
3614 | { | ||
3615 | bitset_word any_set = 0; | ||
3616 | if (type == CHARACTER && node->word_char) | ||
3617 | { | ||
3618 | bitset_empty (accepts); | ||
3619 | continue; | ||
3620 | } | ||
3621 | #ifdef RE_ENABLE_I18N | ||
3622 | if (dfa->mb_cur_max > 1) | ||
3623 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3624 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); | ||
3625 | else | ||
3626 | #endif | ||
3627 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3628 | any_set |= (accepts[j] &= ~dfa->word_char[j]); | ||
3629 | if (!any_set) | ||
3630 | continue; | ||
3631 | } | ||
3632 | } | ||
3633 | |||
3634 | /* Then divide `accepts' into DFA states, or create a new | ||
3635 | state. Above, we make sure that accepts is not empty. */ | ||
3636 | for (j = 0; j < ndests; ++j) | ||
3637 | { | ||
3638 | bitset intersec; /* Intersection sets, see below. */ | ||
3639 | bitset remains; | ||
3640 | /* Flags, see below. */ | ||
3641 | bitset_word has_intersec, not_subset, not_consumed; | ||
3642 | |||
3643 | /* Optimization, skip if this state doesn't accept the character. */ | ||
3644 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) | ||
3645 | continue; | ||
3646 | |||
3647 | /* Enumerate the intersection set of this state and `accepts'. */ | ||
3648 | has_intersec = 0; | ||
3649 | for (k = 0; k < BITSET_WORDS; ++k) | ||
3650 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; | ||
3651 | /* And skip if the intersection set is empty. */ | ||
3652 | if (!has_intersec) | ||
3653 | continue; | ||
3654 | |||
3655 | /* Then check if this state is a subset of `accepts'. */ | ||
3656 | not_subset = not_consumed = 0; | ||
3657 | for (k = 0; k < BITSET_WORDS; ++k) | ||
3658 | { | ||
3659 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; | ||
3660 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; | ||
3661 | } | ||
3662 | |||
3663 | /* If this state isn't a subset of `accepts', create a | ||
3664 | new group state, which has the `remains'. */ | ||
3665 | if (not_subset) | ||
3666 | { | ||
3667 | bitset_copy (dests_ch[ndests], remains); | ||
3668 | bitset_copy (dests_ch[j], intersec); | ||
3669 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); | ||
3670 | if (BE (err != REG_NOERROR, 0)) | ||
3671 | goto error_return; | ||
3672 | ++ndests; | ||
3673 | } | ||
3674 | |||
3675 | /* Put the position in the current group. */ | ||
3676 | ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); | ||
3677 | if (BE (! ok, 0)) | ||
3678 | goto error_return; | ||
3679 | |||
3680 | /* If all characters are consumed, go to next node. */ | ||
3681 | if (!not_consumed) | ||
3682 | break; | ||
3683 | } | ||
3684 | /* Some characters remain, create a new group. */ | ||
3685 | if (j == ndests) | ||
3686 | { | ||
3687 | bitset_copy (dests_ch[ndests], accepts); | ||
3688 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); | ||
3689 | if (BE (err != REG_NOERROR, 0)) | ||
3690 | goto error_return; | ||
3691 | ++ndests; | ||
3692 | bitset_empty (accepts); | ||
3693 | } | ||
3694 | } | ||
3695 | return ndests; | ||
3696 | error_return: | ||
3697 | for (j = 0; j < ndests; ++j) | ||
3698 | re_node_set_free (dests_node + j); | ||
3699 | return REG_MISSING; | ||
3700 | } | ||
3701 | |||
3702 | #ifdef RE_ENABLE_I18N | ||
3703 | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. | ||
3704 | Return the number of the bytes the node accepts. | ||
3705 | STR_IDX is the current index of the input string. | ||
3706 | |||
3707 | This function handles the nodes which can accept one character, or | ||
3708 | one collating element like '.', '[a-z]', opposite to the other nodes | ||
3709 | can only accept one byte. */ | ||
3710 | |||
3711 | static int | ||
3712 | internal_function | ||
3713 | check_node_accept_bytes (re_dfa_t *dfa, Idx node_idx, | ||
3714 | const re_string_t *input, Idx str_idx) | ||
3715 | { | ||
3716 | const re_token_t *node = dfa->nodes + node_idx; | ||
3717 | int char_len, elem_len; | ||
3718 | Idx i; | ||
3719 | |||
3720 | if (BE (node->type == OP_UTF8_PERIOD, 0)) | ||
3721 | { | ||
3722 | unsigned char c = re_string_byte_at (input, str_idx), d; | ||
3723 | if (BE (c < 0xc2, 1)) | ||
3724 | return 0; | ||
3725 | |||
3726 | if (str_idx + 2 > input->len) | ||
3727 | return 0; | ||
3728 | |||
3729 | d = re_string_byte_at (input, str_idx + 1); | ||
3730 | if (c < 0xe0) | ||
3731 | return (d < 0x80 || d > 0xbf) ? 0 : 2; | ||
3732 | else if (c < 0xf0) | ||
3733 | { | ||
3734 | char_len = 3; | ||
3735 | if (c == 0xe0 && d < 0xa0) | ||
3736 | return 0; | ||
3737 | } | ||
3738 | else if (c < 0xf8) | ||
3739 | { | ||
3740 | char_len = 4; | ||
3741 | if (c == 0xf0 && d < 0x90) | ||
3742 | return 0; | ||
3743 | } | ||
3744 | else if (c < 0xfc) | ||
3745 | { | ||
3746 | char_len = 5; | ||
3747 | if (c == 0xf8 && d < 0x88) | ||
3748 | return 0; | ||
3749 | } | ||
3750 | else if (c < 0xfe) | ||
3751 | { | ||
3752 | char_len = 6; | ||
3753 | if (c == 0xfc && d < 0x84) | ||
3754 | return 0; | ||
3755 | } | ||
3756 | else | ||
3757 | return 0; | ||
3758 | |||
3759 | if (str_idx + char_len > input->len) | ||
3760 | return 0; | ||
3761 | |||
3762 | for (i = 1; i < char_len; ++i) | ||
3763 | { | ||
3764 | d = re_string_byte_at (input, str_idx + i); | ||
3765 | if (d < 0x80 || d > 0xbf) | ||
3766 | return 0; | ||
3767 | } | ||
3768 | return char_len; | ||
3769 | } | ||
3770 | |||
3771 | char_len = re_string_char_size_at (input, str_idx); | ||
3772 | if (node->type == OP_PERIOD) | ||
3773 | { | ||
3774 | if (char_len <= 1) | ||
3775 | return 0; | ||
3776 | /* FIXME: I don't think this if is needed, as both '\n' | ||
3777 | and '\0' are char_len == 1. */ | ||
3778 | /* '.' accepts any one character except the following two cases. */ | ||
3779 | if ((!(dfa->syntax & REG_DOT_NEWLINE) && | ||
3780 | re_string_byte_at (input, str_idx) == '\n') || | ||
3781 | ((dfa->syntax & REG_DOT_NOT_NULL) && | ||
3782 | re_string_byte_at (input, str_idx) == '\0')) | ||
3783 | return 0; | ||
3784 | return char_len; | ||
3785 | } | ||
3786 | |||
3787 | elem_len = re_string_elem_size_at (input, str_idx); | ||
3788 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) | ||
3789 | return 0; | ||
3790 | |||
3791 | if (node->type == COMPLEX_BRACKET) | ||
3792 | { | ||
3793 | const re_charset_t *cset = node->opr.mbcset; | ||
3794 | # ifdef _LIBC | ||
3795 | const unsigned char *pin | ||
3796 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); | ||
3797 | Idx j; | ||
3798 | uint32_t nrules; | ||
3799 | # endif /* _LIBC */ | ||
3800 | int match_len = 0; | ||
3801 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) | ||
3802 | ? re_string_wchar_at (input, str_idx) : 0); | ||
3803 | |||
3804 | /* match with multibyte character? */ | ||
3805 | for (i = 0; i < cset->nmbchars; ++i) | ||
3806 | if (wc == cset->mbchars[i]) | ||
3807 | { | ||
3808 | match_len = char_len; | ||
3809 | goto check_node_accept_bytes_match; | ||
3810 | } | ||
3811 | /* match with character_class? */ | ||
3812 | for (i = 0; i < cset->nchar_classes; ++i) | ||
3813 | { | ||
3814 | wctype_t wt = cset->char_classes[i]; | ||
3815 | if (__iswctype (wc, wt)) | ||
3816 | { | ||
3817 | match_len = char_len; | ||
3818 | goto check_node_accept_bytes_match; | ||
3819 | } | ||
3820 | } | ||
3821 | |||
3822 | # ifdef _LIBC | ||
3823 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3824 | if (nrules != 0) | ||
3825 | { | ||
3826 | unsigned int in_collseq = 0; | ||
3827 | const int32_t *table, *indirect; | ||
3828 | const unsigned char *weights, *extra; | ||
3829 | const char *collseqwc; | ||
3830 | int32_t idx; | ||
3831 | /* This #include defines a local function! */ | ||
3832 | # include <locale/weight.h> | ||
3833 | |||
3834 | /* match with collating_symbol? */ | ||
3835 | if (cset->ncoll_syms) | ||
3836 | extra = (const unsigned char *) | ||
3837 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | ||
3838 | for (i = 0; i < cset->ncoll_syms; ++i) | ||
3839 | { | ||
3840 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; | ||
3841 | /* Compare the length of input collating element and | ||
3842 | the length of current collating element. */ | ||
3843 | if (*coll_sym != elem_len) | ||
3844 | continue; | ||
3845 | /* Compare each bytes. */ | ||
3846 | for (j = 0; j < *coll_sym; j++) | ||
3847 | if (pin[j] != coll_sym[1 + j]) | ||
3848 | break; | ||
3849 | if (j == *coll_sym) | ||
3850 | { | ||
3851 | /* Match if every bytes is equal. */ | ||
3852 | match_len = j; | ||
3853 | goto check_node_accept_bytes_match; | ||
3854 | } | ||
3855 | } | ||
3856 | |||
3857 | if (cset->nranges) | ||
3858 | { | ||
3859 | if (elem_len <= char_len) | ||
3860 | { | ||
3861 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | ||
3862 | in_collseq = __collseq_table_lookup (collseqwc, wc); | ||
3863 | } | ||
3864 | else | ||
3865 | in_collseq = find_collation_sequence_value (pin, elem_len); | ||
3866 | } | ||
3867 | /* match with range expression? */ | ||
3868 | for (i = 0; i < cset->nranges; ++i) | ||
3869 | if (cset->range_starts[i] <= in_collseq | ||
3870 | && in_collseq <= cset->range_ends[i]) | ||
3871 | { | ||
3872 | match_len = elem_len; | ||
3873 | goto check_node_accept_bytes_match; | ||
3874 | } | ||
3875 | |||
3876 | /* match with equivalence_class? */ | ||
3877 | if (cset->nequiv_classes) | ||
3878 | { | ||
3879 | const unsigned char *cp = pin; | ||
3880 | table = (const int32_t *) | ||
3881 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
3882 | weights = (const unsigned char *) | ||
3883 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); | ||
3884 | extra = (const unsigned char *) | ||
3885 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | ||
3886 | indirect = (const int32_t *) | ||
3887 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); | ||
3888 | idx = findidx (&cp); | ||
3889 | if (idx > 0) | ||
3890 | for (i = 0; i < cset->nequiv_classes; ++i) | ||
3891 | { | ||
3892 | int32_t equiv_class_idx = cset->equiv_classes[i]; | ||
3893 | size_t weight_len = weights[idx]; | ||
3894 | if (weight_len == weights[equiv_class_idx]) | ||
3895 | { | ||
3896 | Idx cnt = 0; | ||
3897 | while (cnt <= weight_len | ||
3898 | && (weights[equiv_class_idx + 1 + cnt] | ||
3899 | == weights[idx + 1 + cnt])) | ||
3900 | ++cnt; | ||
3901 | if (cnt > weight_len) | ||
3902 | { | ||
3903 | match_len = elem_len; | ||
3904 | goto check_node_accept_bytes_match; | ||
3905 | } | ||
3906 | } | ||
3907 | } | ||
3908 | } | ||
3909 | } | ||
3910 | else | ||
3911 | # endif /* _LIBC */ | ||
3912 | { | ||
3913 | /* match with range expression? */ | ||
3914 | #if __GNUC__ >= 2 | ||
3915 | wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'}; | ||
3916 | #else | ||
3917 | wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | ||
3918 | cmp_buf[2] = wc; | ||
3919 | #endif | ||
3920 | for (i = 0; i < cset->nranges; ++i) | ||
3921 | { | ||
3922 | cmp_buf[0] = cset->range_starts[i]; | ||
3923 | cmp_buf[4] = cset->range_ends[i]; | ||
3924 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | ||
3925 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | ||
3926 | { | ||
3927 | match_len = char_len; | ||
3928 | goto check_node_accept_bytes_match; | ||
3929 | } | ||
3930 | } | ||
3931 | } | ||
3932 | check_node_accept_bytes_match: | ||
3933 | if (!cset->non_match) | ||
3934 | return match_len; | ||
3935 | else | ||
3936 | { | ||
3937 | if (match_len > 0) | ||
3938 | return 0; | ||
3939 | else | ||
3940 | return (elem_len > char_len) ? elem_len : char_len; | ||
3941 | } | ||
3942 | } | ||
3943 | return 0; | ||
3944 | } | ||
3945 | |||
3946 | # ifdef _LIBC | ||
3947 | static unsigned int | ||
3948 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) | ||
3949 | { | ||
3950 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3951 | if (nrules == 0) | ||
3952 | { | ||
3953 | if (mbs_len == 1) | ||
3954 | { | ||
3955 | /* No valid character. Match it as a single byte character. */ | ||
3956 | const unsigned char *collseq = (const unsigned char *) | ||
3957 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | ||
3958 | return collseq[mbs[0]]; | ||
3959 | } | ||
3960 | return UINT_MAX; | ||
3961 | } | ||
3962 | else | ||
3963 | { | ||
3964 | int32_t idx; | ||
3965 | const unsigned char *extra = (const unsigned char *) | ||
3966 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | ||
3967 | int32_t extrasize = (const unsigned char *) | ||
3968 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; | ||
3969 | |||
3970 | for (idx = 0; idx < extrasize;) | ||
3971 | { | ||
3972 | int mbs_cnt; | ||
3973 | bool found = false; | ||
3974 | int32_t elem_mbs_len; | ||
3975 | /* Skip the name of collating element name. */ | ||
3976 | idx = idx + extra[idx] + 1; | ||
3977 | elem_mbs_len = extra[idx++]; | ||
3978 | if (mbs_len == elem_mbs_len) | ||
3979 | { | ||
3980 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) | ||
3981 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) | ||
3982 | break; | ||
3983 | if (mbs_cnt == elem_mbs_len) | ||
3984 | /* Found the entry. */ | ||
3985 | found = true; | ||
3986 | } | ||
3987 | /* Skip the byte sequence of the collating element. */ | ||
3988 | idx += elem_mbs_len; | ||
3989 | /* Adjust for the alignment. */ | ||
3990 | idx = (idx + 3) & ~3; | ||
3991 | /* Skip the collation sequence value. */ | ||
3992 | idx += sizeof (uint32_t); | ||
3993 | /* Skip the wide char sequence of the collating element. */ | ||
3994 | idx = idx + sizeof (uint32_t) * (extra[idx] + 1); | ||
3995 | /* If we found the entry, return the sequence value. */ | ||
3996 | if (found) | ||
3997 | return *(uint32_t *) (extra + idx); | ||
3998 | /* Skip the collation sequence value. */ | ||
3999 | idx += sizeof (uint32_t); | ||
4000 | } | ||
4001 | return UINT_MAX; | ||
4002 | } | ||
4003 | } | ||
4004 | # endif /* _LIBC */ | ||
4005 | #endif /* RE_ENABLE_I18N */ | ||
4006 | |||
4007 | /* Check whether the node accepts the byte which is IDX-th | ||
4008 | byte of the INPUT. */ | ||
4009 | |||
4010 | static bool | ||
4011 | internal_function | ||
4012 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, | ||
4013 | Idx idx) | ||
4014 | { | ||
4015 | unsigned char ch; | ||
4016 | ch = re_string_byte_at (&mctx->input, idx); | ||
4017 | switch (node->type) | ||
4018 | { | ||
4019 | case CHARACTER: | ||
4020 | if (node->opr.c != ch) | ||
4021 | return false; | ||
4022 | break; | ||
4023 | |||
4024 | case SIMPLE_BRACKET: | ||
4025 | if (!bitset_contain (node->opr.sbcset, ch)) | ||
4026 | return false; | ||
4027 | break; | ||
4028 | |||
4029 | #ifdef RE_ENABLE_I18N | ||
4030 | case OP_UTF8_PERIOD: | ||
4031 | if (ch >= 0x80) | ||
4032 | return false; | ||
4033 | /* FALLTHROUGH */ | ||
4034 | #endif | ||
4035 | case OP_PERIOD: | ||
4036 | if ((ch == '\n' && !(mctx->dfa->syntax & REG_DOT_NEWLINE)) | ||
4037 | || (ch == '\0' && (mctx->dfa->syntax & REG_DOT_NOT_NULL))) | ||
4038 | return false; | ||
4039 | break; | ||
4040 | |||
4041 | default: | ||
4042 | return false; | ||
4043 | } | ||
4044 | |||
4045 | if (node->constraint) | ||
4046 | { | ||
4047 | /* The node has constraints. Check whether the current context | ||
4048 | satisfies the constraints. */ | ||
4049 | unsigned int context = re_string_context_at (&mctx->input, idx, | ||
4050 | mctx->eflags); | ||
4051 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | ||
4052 | return false; | ||
4053 | } | ||
4054 | |||
4055 | return true; | ||
4056 | } | ||
4057 | |||
4058 | /* Extend the buffers, if the buffers have run out. */ | ||
4059 | |||
4060 | static reg_errcode_t | ||
4061 | internal_function | ||
4062 | extend_buffers (re_match_context_t *mctx) | ||
4063 | { | ||
4064 | reg_errcode_t ret; | ||
4065 | re_string_t *pstr = &mctx->input; | ||
4066 | |||
4067 | /* Double the lengthes of the buffers. */ | ||
4068 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | ||
4069 | if (BE (ret != REG_NOERROR, 0)) | ||
4070 | return ret; | ||
4071 | |||
4072 | if (mctx->state_log != NULL) | ||
4073 | { | ||
4074 | /* And double the length of state_log. */ | ||
4075 | /* XXX We have no indication of the size of this buffer. If this | ||
4076 | allocation fail we have no indication that the state_log array | ||
4077 | does not have the right size. */ | ||
4078 | re_dfastate_t **new_array = re_xrealloc (mctx->state_log, re_dfastate_t *, | ||
4079 | pstr->bufs_len + 1); | ||
4080 | if (BE (new_array == NULL, 0)) | ||
4081 | return REG_ESPACE; | ||
4082 | mctx->state_log = new_array; | ||
4083 | } | ||
4084 | |||
4085 | /* Then reconstruct the buffers. */ | ||
4086 | if (pstr->icase) | ||
4087 | { | ||
4088 | #ifdef RE_ENABLE_I18N | ||
4089 | if (pstr->mb_cur_max > 1) | ||
4090 | { | ||
4091 | ret = build_wcs_upper_buffer (pstr); | ||
4092 | if (BE (ret != REG_NOERROR, 0)) | ||
4093 | return ret; | ||
4094 | } | ||
4095 | else | ||
4096 | #endif /* RE_ENABLE_I18N */ | ||
4097 | build_upper_buffer (pstr); | ||
4098 | } | ||
4099 | else | ||
4100 | { | ||
4101 | #ifdef RE_ENABLE_I18N | ||
4102 | if (pstr->mb_cur_max > 1) | ||
4103 | build_wcs_buffer (pstr); | ||
4104 | else | ||
4105 | #endif /* RE_ENABLE_I18N */ | ||
4106 | { | ||
4107 | if (pstr->trans != NULL) | ||
4108 | re_string_translate_buffer (pstr); | ||
4109 | } | ||
4110 | } | ||
4111 | return REG_NOERROR; | ||
4112 | } | ||
4113 | |||
4114 | |||
4115 | /* Functions for matching context. */ | ||
4116 | |||
4117 | /* Initialize MCTX. */ | ||
4118 | |||
4119 | static reg_errcode_t | ||
4120 | internal_function | ||
4121 | match_ctx_init (re_match_context_t *mctx, int eflags, Idx n) | ||
4122 | { | ||
4123 | mctx->eflags = eflags; | ||
4124 | mctx->match_last = REG_MISSING; | ||
4125 | if (n > 0) | ||
4126 | { | ||
4127 | mctx->bkref_ents = re_xmalloc (struct re_backref_cache_entry, n); | ||
4128 | mctx->sub_tops = re_xmalloc (re_sub_match_top_t *, n); | ||
4129 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) | ||
4130 | return REG_ESPACE; | ||
4131 | } | ||
4132 | /* Already zero-ed by the caller. | ||
4133 | else | ||
4134 | mctx->bkref_ents = NULL; | ||
4135 | mctx->nbkref_ents = 0; | ||
4136 | mctx->nsub_tops = 0; */ | ||
4137 | mctx->abkref_ents = n; | ||
4138 | mctx->max_mb_elem_len = 1; | ||
4139 | mctx->asub_tops = n; | ||
4140 | return REG_NOERROR; | ||
4141 | } | ||
4142 | |||
4143 | /* Clean the entries which depend on the current input in MCTX. | ||
4144 | This function must be invoked when the matcher changes the start index | ||
4145 | of the input, or changes the input string. */ | ||
4146 | |||
4147 | static void | ||
4148 | internal_function | ||
4149 | match_ctx_clean (re_match_context_t *mctx) | ||
4150 | { | ||
4151 | Idx st_idx; | ||
4152 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) | ||
4153 | { | ||
4154 | Idx sl_idx; | ||
4155 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; | ||
4156 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) | ||
4157 | { | ||
4158 | re_sub_match_last_t *last = top->lasts[sl_idx]; | ||
4159 | re_free (last->path.array); | ||
4160 | re_free (last); | ||
4161 | } | ||
4162 | re_free (top->lasts); | ||
4163 | if (top->path) | ||
4164 | { | ||
4165 | re_free (top->path->array); | ||
4166 | re_free (top->path); | ||
4167 | } | ||
4168 | free (top); | ||
4169 | } | ||
4170 | |||
4171 | mctx->nsub_tops = 0; | ||
4172 | mctx->nbkref_ents = 0; | ||
4173 | } | ||
4174 | |||
4175 | /* Free all the memory associated with MCTX. */ | ||
4176 | |||
4177 | static void | ||
4178 | internal_function | ||
4179 | match_ctx_free (re_match_context_t *mctx) | ||
4180 | { | ||
4181 | /* First, free all the memory associated with MCTX->SUB_TOPS. */ | ||
4182 | match_ctx_clean (mctx); | ||
4183 | re_free (mctx->sub_tops); | ||
4184 | re_free (mctx->bkref_ents); | ||
4185 | } | ||
4186 | |||
4187 | /* Add a new backreference entry to MCTX. | ||
4188 | Note that we assume that caller never call this function with duplicate | ||
4189 | entry, and call with STR_IDX which isn't smaller than any existing entry. | ||
4190 | */ | ||
4191 | |||
4192 | static reg_errcode_t | ||
4193 | internal_function | ||
4194 | match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, | ||
4195 | Idx from, Idx to) | ||
4196 | { | ||
4197 | if (mctx->nbkref_ents >= mctx->abkref_ents) | ||
4198 | { | ||
4199 | struct re_backref_cache_entry* new_entry; | ||
4200 | new_entry = re_x2realloc (mctx->bkref_ents, struct re_backref_cache_entry, | ||
4201 | &mctx->abkref_ents); | ||
4202 | if (BE (new_entry == NULL, 0)) | ||
4203 | { | ||
4204 | re_free (mctx->bkref_ents); | ||
4205 | return REG_ESPACE; | ||
4206 | } | ||
4207 | mctx->bkref_ents = new_entry; | ||
4208 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', | ||
4209 | (sizeof (struct re_backref_cache_entry) | ||
4210 | * (mctx->abkref_ents - mctx->nbkref_ents))); | ||
4211 | } | ||
4212 | if (mctx->nbkref_ents > 0 | ||
4213 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) | ||
4214 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; | ||
4215 | |||
4216 | mctx->bkref_ents[mctx->nbkref_ents].node = node; | ||
4217 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; | ||
4218 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; | ||
4219 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; | ||
4220 | |||
4221 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. | ||
4222 | If bit N is clear, means that this entry won't epsilon-transition to | ||
4223 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If | ||
4224 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one | ||
4225 | such node. | ||
4226 | |||
4227 | A backreference does not epsilon-transition unless it is empty, so set | ||
4228 | to all zeros if FROM != TO. */ | ||
4229 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map | ||
4230 | = (from == to ? -1 : 0); | ||
4231 | |||
4232 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; | ||
4233 | if (mctx->max_mb_elem_len < to - from) | ||
4234 | mctx->max_mb_elem_len = to - from; | ||
4235 | return REG_NOERROR; | ||
4236 | } | ||
4237 | |||
4238 | /* Return the first entry with the same str_idx, or REG_MISSING if none is | ||
4239 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ | ||
4240 | |||
4241 | static Idx | ||
4242 | internal_function | ||
4243 | search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) | ||
4244 | { | ||
4245 | Idx left, right, mid, last; | ||
4246 | last = right = mctx->nbkref_ents; | ||
4247 | for (left = 0; left < right;) | ||
4248 | { | ||
4249 | mid = (left + right) / 2; | ||
4250 | if (mctx->bkref_ents[mid].str_idx < str_idx) | ||
4251 | left = mid + 1; | ||
4252 | else | ||
4253 | right = mid; | ||
4254 | } | ||
4255 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) | ||
4256 | return left; | ||
4257 | else | ||
4258 | return REG_MISSING; | ||
4259 | } | ||
4260 | |||
4261 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches | ||
4262 | at STR_IDX. */ | ||
4263 | |||
4264 | static reg_errcode_t | ||
4265 | internal_function | ||
4266 | match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx) | ||
4267 | { | ||
4268 | #ifdef DEBUG | ||
4269 | assert (mctx->sub_tops != NULL); | ||
4270 | assert (mctx->asub_tops > 0); | ||
4271 | #endif | ||
4272 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) | ||
4273 | { | ||
4274 | Idx new_asub_tops = mctx->asub_tops; | ||
4275 | re_sub_match_top_t **new_array = re_x2realloc (mctx->sub_tops, | ||
4276 | re_sub_match_top_t *, | ||
4277 | &new_asub_tops); | ||
4278 | if (BE (new_array == NULL, 0)) | ||
4279 | return REG_ESPACE; | ||
4280 | mctx->sub_tops = new_array; | ||
4281 | mctx->asub_tops = new_asub_tops; | ||
4282 | } | ||
4283 | mctx->sub_tops[mctx->nsub_tops] = re_calloc (re_sub_match_top_t, 1); | ||
4284 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) | ||
4285 | return REG_ESPACE; | ||
4286 | mctx->sub_tops[mctx->nsub_tops]->node = node; | ||
4287 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; | ||
4288 | return REG_NOERROR; | ||
4289 | } | ||
4290 | |||
4291 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches | ||
4292 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */ | ||
4293 | |||
4294 | static re_sub_match_last_t * | ||
4295 | internal_function | ||
4296 | match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx) | ||
4297 | { | ||
4298 | re_sub_match_last_t *new_entry; | ||
4299 | if (BE (subtop->nlasts == subtop->alasts, 0)) | ||
4300 | { | ||
4301 | Idx new_alasts = subtop->alasts; | ||
4302 | re_sub_match_last_t **new_array = re_x2realloc (subtop->lasts, | ||
4303 | re_sub_match_last_t *, | ||
4304 | &new_alasts); | ||
4305 | if (BE (new_array == NULL, 0)) | ||
4306 | return NULL; | ||
4307 | subtop->lasts = new_array; | ||
4308 | subtop->alasts = new_alasts; | ||
4309 | } | ||
4310 | new_entry = re_calloc (re_sub_match_last_t, 1); | ||
4311 | if (BE (new_entry != NULL, 1)) | ||
4312 | { | ||
4313 | subtop->lasts[subtop->nlasts] = new_entry; | ||
4314 | new_entry->node = node; | ||
4315 | new_entry->str_idx = str_idx; | ||
4316 | ++subtop->nlasts; | ||
4317 | } | ||
4318 | return new_entry; | ||
4319 | } | ||
4320 | |||
4321 | static void | ||
4322 | internal_function | ||
4323 | sift_ctx_init (re_sift_context_t *sctx, | ||
4324 | re_dfastate_t **sifted_sts, | ||
4325 | re_dfastate_t **limited_sts, | ||
4326 | Idx last_node, Idx last_str_idx) | ||
4327 | { | ||
4328 | sctx->sifted_states = sifted_sts; | ||
4329 | sctx->limited_states = limited_sts; | ||
4330 | sctx->last_node = last_node; | ||
4331 | sctx->last_str_idx = last_str_idx; | ||
4332 | re_node_set_init_empty (&sctx->limits); | ||
4333 | } | ||