diff options
author | Ton Voon <tonvoon@users.sourceforge.net> | 2006-05-25 12:33:24 +0000 |
---|---|---|
committer | Ton Voon <tonvoon@users.sourceforge.net> | 2006-05-25 12:33:24 +0000 |
commit | 5fd2550d4c96318b2de4a4a44e15e3c50c268e79 (patch) | |
tree | b712838611281a444a9b603949352bc4003de657 /lib | |
parent | 80e155c9cf826d977393ee130a07be599401335e (diff) | |
download | monitoring-plugins-5fd2550d4c96318b2de4a4a44e15e3c50c268e79.tar.gz |
Use coreutils' regexp libraries, so regexp always available now
git-svn-id: https://nagiosplug.svn.sourceforge.net/svnroot/nagiosplug/nagiosplug/trunk@1403 f882894a-f735-0410-b71e-b25c423dba1c
Diffstat (limited to 'lib')
-rw-r--r-- | lib/.cvsignore | 18 | ||||
-rw-r--r-- | lib/regcomp.c | 3779 | ||||
-rw-r--r-- | lib/regex.c | 68 | ||||
-rw-r--r-- | lib/regex.h | 769 | ||||
-rw-r--r-- | lib/regex.o | bin | 0 -> 172827 bytes | |||
-rw-r--r-- | lib/regex_internal.c | 1656 | ||||
-rw-r--r-- | lib/regex_internal.h | 911 | ||||
-rw-r--r-- | lib/regexec.c | 4333 | ||||
-rw-r--r-- | lib/strcase.h | 48 |
9 files changed, 11565 insertions, 17 deletions
diff --git a/lib/.cvsignore b/lib/.cvsignore index b057eef5..20e66d6f 100644 --- a/lib/.cvsignore +++ b/lib/.cvsignore | |||
@@ -1,20 +1,4 @@ | |||
1 | Makefile | 1 | Makefile |
2 | Makefile.in | 2 | Makefile.in |
3 | .deps | 3 | .deps |
4 | codeset.m4 | 4 | getopt.h |
5 | gettext.m4 | ||
6 | glibc21.m4 | ||
7 | iconv.m4 | ||
8 | intdiv0.m4 | ||
9 | inttypes-pri.m4 | ||
10 | inttypes.m4 | ||
11 | inttypes_h.m4 | ||
12 | isc-posix.m4 | ||
13 | lcmessage.m4 | ||
14 | lib-ld.m4 | ||
15 | lib-link.m4 | ||
16 | lib-prefix.m4 | ||
17 | progtest.m4 | ||
18 | stdint_h.m4 | ||
19 | uintmax_t.m4 | ||
20 | ulonglong.m4 | ||
diff --git a/lib/regcomp.c b/lib/regcomp.c new file mode 100644 index 00000000..279b20c4 --- /dev/null +++ b/lib/regcomp.c | |||
@@ -0,0 +1,3779 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, | ||
21 | Idx length, reg_syntax_t syntax); | ||
22 | static void re_compile_fastmap_iter (regex_t *bufp, | ||
23 | const re_dfastate_t *init_state, | ||
24 | char *fastmap); | ||
25 | static reg_errcode_t init_dfa (re_dfa_t *dfa, Idx pat_len); | ||
26 | #ifdef RE_ENABLE_I18N | ||
27 | static void free_charset (re_charset_t *cset); | ||
28 | #endif /* RE_ENABLE_I18N */ | ||
29 | static void free_workarea_compile (regex_t *preg); | ||
30 | static reg_errcode_t create_initial_state (re_dfa_t *dfa); | ||
31 | #ifdef RE_ENABLE_I18N | ||
32 | static void optimize_utf8 (re_dfa_t *dfa); | ||
33 | #endif | ||
34 | static reg_errcode_t analyze (regex_t *preg); | ||
35 | static reg_errcode_t preorder (bin_tree_t *root, | ||
36 | reg_errcode_t (fn (void *, bin_tree_t *)), | ||
37 | void *extra); | ||
38 | static reg_errcode_t postorder (bin_tree_t *root, | ||
39 | reg_errcode_t (fn (void *, bin_tree_t *)), | ||
40 | void *extra); | ||
41 | static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); | ||
42 | static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); | ||
43 | static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, | ||
44 | bin_tree_t *node); | ||
45 | static reg_errcode_t calc_first (void *extra, bin_tree_t *node); | ||
46 | static reg_errcode_t calc_next (void *extra, bin_tree_t *node); | ||
47 | static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); | ||
48 | static Idx duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint); | ||
49 | static Idx search_duplicated_node (const re_dfa_t *dfa, Idx org_node, | ||
50 | unsigned int constraint); | ||
51 | static reg_errcode_t calc_eclosure (re_dfa_t *dfa); | ||
52 | static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, | ||
53 | Idx node, bool root); | ||
54 | static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); | ||
55 | static Idx fetch_number (re_string_t *input, re_token_t *token, | ||
56 | reg_syntax_t syntax); | ||
57 | static int peek_token (re_token_t *token, re_string_t *input, | ||
58 | reg_syntax_t syntax); | ||
59 | static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, | ||
60 | reg_syntax_t syntax, reg_errcode_t *err); | ||
61 | static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, | ||
62 | re_token_t *token, reg_syntax_t syntax, | ||
63 | Idx nest, reg_errcode_t *err); | ||
64 | static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, | ||
65 | re_token_t *token, reg_syntax_t syntax, | ||
66 | Idx nest, reg_errcode_t *err); | ||
67 | static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, | ||
68 | re_token_t *token, reg_syntax_t syntax, | ||
69 | Idx nest, reg_errcode_t *err); | ||
70 | static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, | ||
71 | re_token_t *token, reg_syntax_t syntax, | ||
72 | Idx nest, reg_errcode_t *err); | ||
73 | static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, | ||
74 | re_dfa_t *dfa, re_token_t *token, | ||
75 | reg_syntax_t syntax, reg_errcode_t *err); | ||
76 | static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, | ||
77 | re_token_t *token, reg_syntax_t syntax, | ||
78 | reg_errcode_t *err); | ||
79 | static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, | ||
80 | re_string_t *regexp, | ||
81 | re_token_t *token, int token_len, | ||
82 | re_dfa_t *dfa, | ||
83 | reg_syntax_t syntax, | ||
84 | bool accept_hyphen); | ||
85 | static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, | ||
86 | re_string_t *regexp, | ||
87 | re_token_t *token); | ||
88 | #ifdef RE_ENABLE_I18N | ||
89 | static reg_errcode_t build_equiv_class (bitset sbcset, | ||
90 | re_charset_t *mbcset, | ||
91 | Idx *equiv_class_alloc, | ||
92 | const unsigned char *name); | ||
93 | static reg_errcode_t build_charclass (unsigned REG_TRANSLATE_TYPE trans, | ||
94 | bitset sbcset, | ||
95 | re_charset_t *mbcset, | ||
96 | Idx *char_class_alloc, | ||
97 | const unsigned char *class_name, | ||
98 | reg_syntax_t syntax); | ||
99 | #else /* not RE_ENABLE_I18N */ | ||
100 | static reg_errcode_t build_equiv_class (bitset sbcset, | ||
101 | const unsigned char *name); | ||
102 | static reg_errcode_t build_charclass (unsigned REG_TRANSLATE_TYPE trans, | ||
103 | bitset sbcset, | ||
104 | const unsigned char *class_name, | ||
105 | reg_syntax_t syntax); | ||
106 | #endif /* not RE_ENABLE_I18N */ | ||
107 | static bin_tree_t *build_charclass_op (re_dfa_t *dfa, | ||
108 | unsigned REG_TRANSLATE_TYPE trans, | ||
109 | const unsigned char *class_name, | ||
110 | const unsigned char *extra, | ||
111 | bool non_match, reg_errcode_t *err); | ||
112 | static bin_tree_t *create_tree (re_dfa_t *dfa, | ||
113 | bin_tree_t *left, bin_tree_t *right, | ||
114 | re_token_type_t type); | ||
115 | static bin_tree_t *create_token_tree (re_dfa_t *dfa, | ||
116 | bin_tree_t *left, bin_tree_t *right, | ||
117 | const re_token_t *token); | ||
118 | static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); | ||
119 | static void free_token (re_token_t *node); | ||
120 | static reg_errcode_t free_tree (void *extra, bin_tree_t *node); | ||
121 | static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); | ||
122 | |||
123 | /* This table gives an error message for each of the error codes listed | ||
124 | in regex.h. Obviously the order here has to be same as there. | ||
125 | POSIX doesn't require that we do anything for REG_NOERROR, | ||
126 | but why not be nice? */ | ||
127 | |||
128 | const char __re_error_msgid[] attribute_hidden = | ||
129 | { | ||
130 | #define REG_NOERROR_IDX 0 | ||
131 | gettext_noop ("Success") /* REG_NOERROR */ | ||
132 | "\0" | ||
133 | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") | ||
134 | gettext_noop ("No match") /* REG_NOMATCH */ | ||
135 | "\0" | ||
136 | #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") | ||
137 | gettext_noop ("Invalid regular expression") /* REG_BADPAT */ | ||
138 | "\0" | ||
139 | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") | ||
140 | gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ | ||
141 | "\0" | ||
142 | #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") | ||
143 | gettext_noop ("Invalid character class name") /* REG_ECTYPE */ | ||
144 | "\0" | ||
145 | #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") | ||
146 | gettext_noop ("Trailing backslash") /* REG_EESCAPE */ | ||
147 | "\0" | ||
148 | #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") | ||
149 | gettext_noop ("Invalid back reference") /* REG_ESUBREG */ | ||
150 | "\0" | ||
151 | #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") | ||
152 | gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ | ||
153 | "\0" | ||
154 | #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") | ||
155 | gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ | ||
156 | "\0" | ||
157 | #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") | ||
158 | gettext_noop ("Unmatched \\{") /* REG_EBRACE */ | ||
159 | "\0" | ||
160 | #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") | ||
161 | gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ | ||
162 | "\0" | ||
163 | #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") | ||
164 | gettext_noop ("Invalid range end") /* REG_ERANGE */ | ||
165 | "\0" | ||
166 | #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") | ||
167 | gettext_noop ("Memory exhausted") /* REG_ESPACE */ | ||
168 | "\0" | ||
169 | #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") | ||
170 | gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ | ||
171 | "\0" | ||
172 | #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") | ||
173 | gettext_noop ("Premature end of regular expression") /* REG_EEND */ | ||
174 | "\0" | ||
175 | #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") | ||
176 | gettext_noop ("Regular expression too big") /* REG_ESIZE */ | ||
177 | "\0" | ||
178 | #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") | ||
179 | gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ | ||
180 | }; | ||
181 | |||
182 | const size_t __re_error_msgid_idx[] attribute_hidden = | ||
183 | { | ||
184 | REG_NOERROR_IDX, | ||
185 | REG_NOMATCH_IDX, | ||
186 | REG_BADPAT_IDX, | ||
187 | REG_ECOLLATE_IDX, | ||
188 | REG_ECTYPE_IDX, | ||
189 | REG_EESCAPE_IDX, | ||
190 | REG_ESUBREG_IDX, | ||
191 | REG_EBRACK_IDX, | ||
192 | REG_EPAREN_IDX, | ||
193 | REG_EBRACE_IDX, | ||
194 | REG_BADBR_IDX, | ||
195 | REG_ERANGE_IDX, | ||
196 | REG_ESPACE_IDX, | ||
197 | REG_BADRPT_IDX, | ||
198 | REG_EEND_IDX, | ||
199 | REG_ESIZE_IDX, | ||
200 | REG_ERPAREN_IDX | ||
201 | }; | ||
202 | |||
203 | /* Entry points for GNU code. */ | ||
204 | |||
205 | /* re_compile_pattern is the GNU regular expression compiler: it | ||
206 | compiles PATTERN (of length LENGTH) and puts the result in BUFP. | ||
207 | Returns 0 if the pattern was valid, otherwise an error string. | ||
208 | |||
209 | Assumes the `re_allocated' (and perhaps `re_buffer') and `translate' fields | ||
210 | are set in BUFP on entry. */ | ||
211 | |||
212 | const char * | ||
213 | re_compile_pattern (const char *pattern, size_t length, | ||
214 | struct re_pattern_buffer *bufp) | ||
215 | { | ||
216 | reg_errcode_t ret; | ||
217 | |||
218 | /* And GNU code determines whether or not to get register information | ||
219 | by passing null for the REGS argument to re_match, etc., not by | ||
220 | setting re_no_sub, unless REG_NO_SUB is set. */ | ||
221 | bufp->re_no_sub = !!(re_syntax_options & REG_NO_SUB); | ||
222 | |||
223 | /* Match anchors at newline. */ | ||
224 | bufp->re_newline_anchor = 1; | ||
225 | |||
226 | ret = re_compile_internal (bufp, pattern, length, re_syntax_options); | ||
227 | |||
228 | if (!ret) | ||
229 | return NULL; | ||
230 | return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | ||
231 | } | ||
232 | #ifdef _LIBC | ||
233 | weak_alias (__re_compile_pattern, re_compile_pattern) | ||
234 | #endif | ||
235 | |||
236 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | ||
237 | also be assigned to arbitrarily: each pattern buffer stores its own | ||
238 | syntax, so it can be changed between regex compilations. */ | ||
239 | /* This has no initializer because initialized variables in Emacs | ||
240 | become read-only after dumping. */ | ||
241 | reg_syntax_t re_syntax_options; | ||
242 | |||
243 | |||
244 | /* Specify the precise syntax of regexps for compilation. This provides | ||
245 | for compatibility for various utilities which historically have | ||
246 | different, incompatible syntaxes. | ||
247 | |||
248 | The argument SYNTAX is a bit mask comprised of the various bits | ||
249 | defined in regex.h. We return the old syntax. */ | ||
250 | |||
251 | reg_syntax_t | ||
252 | re_set_syntax (reg_syntax_t syntax) | ||
253 | { | ||
254 | reg_syntax_t ret = re_syntax_options; | ||
255 | |||
256 | re_syntax_options = syntax; | ||
257 | return ret; | ||
258 | } | ||
259 | #ifdef _LIBC | ||
260 | weak_alias (__re_set_syntax, re_set_syntax) | ||
261 | #endif | ||
262 | |||
263 | int | ||
264 | re_compile_fastmap (struct re_pattern_buffer *bufp) | ||
265 | { | ||
266 | re_dfa_t *dfa = (re_dfa_t *) bufp->re_buffer; | ||
267 | char *fastmap = bufp->re_fastmap; | ||
268 | |||
269 | memset (fastmap, '\0', sizeof (char) * SBC_MAX); | ||
270 | re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); | ||
271 | if (dfa->init_state != dfa->init_state_word) | ||
272 | re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); | ||
273 | if (dfa->init_state != dfa->init_state_nl) | ||
274 | re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); | ||
275 | if (dfa->init_state != dfa->init_state_begbuf) | ||
276 | re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); | ||
277 | bufp->re_fastmap_accurate = 1; | ||
278 | return 0; | ||
279 | } | ||
280 | #ifdef _LIBC | ||
281 | weak_alias (__re_compile_fastmap, re_compile_fastmap) | ||
282 | #endif | ||
283 | |||
284 | static inline void | ||
285 | __attribute ((always_inline)) | ||
286 | re_set_fastmap (char *fastmap, bool icase, int ch) | ||
287 | { | ||
288 | fastmap[ch] = 1; | ||
289 | if (icase) | ||
290 | fastmap[tolower (ch)] = 1; | ||
291 | } | ||
292 | |||
293 | /* Helper function for re_compile_fastmap. | ||
294 | Compile fastmap for the initial_state INIT_STATE. */ | ||
295 | |||
296 | static void | ||
297 | re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, | ||
298 | char *fastmap) | ||
299 | { | ||
300 | re_dfa_t *dfa = (re_dfa_t *) bufp->re_buffer; | ||
301 | Idx node_cnt; | ||
302 | bool icase = (dfa->mb_cur_max == 1 && (bufp->re_syntax & REG_IGNORE_CASE)); | ||
303 | for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) | ||
304 | { | ||
305 | Idx node = init_state->nodes.elems[node_cnt]; | ||
306 | re_token_type_t type = dfa->nodes[node].type; | ||
307 | |||
308 | if (type == CHARACTER) | ||
309 | { | ||
310 | re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); | ||
311 | #ifdef RE_ENABLE_I18N | ||
312 | if ((bufp->re_syntax & REG_IGNORE_CASE) && dfa->mb_cur_max > 1) | ||
313 | { | ||
314 | unsigned char buf[MB_LEN_MAX]; | ||
315 | unsigned char *p; | ||
316 | wchar_t wc; | ||
317 | mbstate_t state; | ||
318 | |||
319 | p = buf; | ||
320 | *p++ = dfa->nodes[node].opr.c; | ||
321 | while (++node < dfa->nodes_len | ||
322 | && dfa->nodes[node].type == CHARACTER | ||
323 | && dfa->nodes[node].mb_partial) | ||
324 | *p++ = dfa->nodes[node].opr.c; | ||
325 | memset (&state, 0, sizeof (state)); | ||
326 | if (mbrtowc (&wc, (const char *) buf, p - buf, | ||
327 | &state) == p - buf | ||
328 | && (__wcrtomb ((char *) buf, towlower (wc), &state) | ||
329 | != (size_t) -1)) | ||
330 | re_set_fastmap (fastmap, false, buf[0]); | ||
331 | } | ||
332 | #endif | ||
333 | } | ||
334 | else if (type == SIMPLE_BRACKET) | ||
335 | { | ||
336 | int i, j, ch; | ||
337 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
338 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
339 | if (dfa->nodes[node].opr.sbcset[i] & ((bitset_word) 1 << j)) | ||
340 | re_set_fastmap (fastmap, icase, ch); | ||
341 | } | ||
342 | #ifdef RE_ENABLE_I18N | ||
343 | else if (type == COMPLEX_BRACKET) | ||
344 | { | ||
345 | Idx i; | ||
346 | re_charset_t *cset = dfa->nodes[node].opr.mbcset; | ||
347 | if (cset->non_match || cset->ncoll_syms || cset->nequiv_classes | ||
348 | || cset->nranges || cset->nchar_classes) | ||
349 | { | ||
350 | # ifdef _LIBC | ||
351 | if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0) | ||
352 | { | ||
353 | /* In this case we want to catch the bytes which are | ||
354 | the first byte of any collation elements. | ||
355 | e.g. In da_DK, we want to catch 'a' since "aa" | ||
356 | is a valid collation element, and don't catch | ||
357 | 'b' since 'b' is the only collation element | ||
358 | which starts from 'b'. */ | ||
359 | const int32_t *table = (const int32_t *) | ||
360 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
361 | for (i = 0; i < SBC_MAX; ++i) | ||
362 | if (table[i] < 0) | ||
363 | re_set_fastmap (fastmap, icase, i); | ||
364 | } | ||
365 | # else | ||
366 | if (dfa->mb_cur_max > 1) | ||
367 | for (i = 0; i < SBC_MAX; ++i) | ||
368 | if (__btowc (i) == WEOF) | ||
369 | re_set_fastmap (fastmap, icase, i); | ||
370 | # endif /* not _LIBC */ | ||
371 | } | ||
372 | for (i = 0; i < cset->nmbchars; ++i) | ||
373 | { | ||
374 | char buf[256]; | ||
375 | mbstate_t state; | ||
376 | memset (&state, '\0', sizeof (state)); | ||
377 | if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) | ||
378 | re_set_fastmap (fastmap, icase, *(unsigned char *) buf); | ||
379 | if ((bufp->re_syntax & REG_IGNORE_CASE) && dfa->mb_cur_max > 1) | ||
380 | { | ||
381 | if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) | ||
382 | != (size_t) -1) | ||
383 | re_set_fastmap (fastmap, false, *(unsigned char *) buf); | ||
384 | } | ||
385 | } | ||
386 | } | ||
387 | #endif /* RE_ENABLE_I18N */ | ||
388 | else if (type == OP_PERIOD | ||
389 | #ifdef RE_ENABLE_I18N | ||
390 | || type == OP_UTF8_PERIOD | ||
391 | #endif /* RE_ENABLE_I18N */ | ||
392 | || type == END_OF_RE) | ||
393 | { | ||
394 | memset (fastmap, '\1', sizeof (char) * SBC_MAX); | ||
395 | if (type == END_OF_RE) | ||
396 | bufp->re_can_be_null = 1; | ||
397 | return; | ||
398 | } | ||
399 | } | ||
400 | } | ||
401 | |||
402 | /* Entry point for POSIX code. */ | ||
403 | /* regcomp takes a regular expression as a string and compiles it. | ||
404 | |||
405 | PREG is a regex_t *. We do not expect any fields to be initialized, | ||
406 | since POSIX says we shouldn't. Thus, we set | ||
407 | |||
408 | `re_buffer' to the compiled pattern; | ||
409 | `re_used' to the length of the compiled pattern; | ||
410 | `re_syntax' to REG_SYNTAX_POSIX_EXTENDED if the | ||
411 | REG_EXTENDED bit in CFLAGS is set; otherwise, to | ||
412 | REG_SYNTAX_POSIX_BASIC; | ||
413 | `re_newline_anchor' to REG_NEWLINE being set in CFLAGS; | ||
414 | `re_fastmap' to an allocated space for the fastmap; | ||
415 | `re_fastmap_accurate' to zero; | ||
416 | `re_nsub' to the number of subexpressions in PATTERN. | ||
417 | |||
418 | PATTERN is the address of the pattern string. | ||
419 | |||
420 | CFLAGS is a series of bits which affect compilation. | ||
421 | |||
422 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | ||
423 | use POSIX basic syntax. | ||
424 | |||
425 | If REG_NEWLINE is set, then . and [^...] don't match newline. | ||
426 | Also, regexec will try a match beginning after every newline. | ||
427 | |||
428 | If REG_ICASE is set, then we considers upper- and lowercase | ||
429 | versions of letters to be equivalent when matching. | ||
430 | |||
431 | If REG_NOSUB is set, then when PREG is passed to regexec, that | ||
432 | routine will report only success or failure, and nothing about the | ||
433 | registers. | ||
434 | |||
435 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | ||
436 | the return codes and their meanings.) */ | ||
437 | |||
438 | int | ||
439 | regcomp (regex_t *__restrict preg, const char *__restrict pattern, int cflags) | ||
440 | { | ||
441 | reg_errcode_t ret; | ||
442 | reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? REG_SYNTAX_POSIX_EXTENDED | ||
443 | : REG_SYNTAX_POSIX_BASIC); | ||
444 | |||
445 | preg->re_buffer = NULL; | ||
446 | preg->re_allocated = 0; | ||
447 | preg->re_used = 0; | ||
448 | |||
449 | /* Try to allocate space for the fastmap. */ | ||
450 | preg->re_fastmap = re_malloc (char, SBC_MAX); | ||
451 | if (BE (preg->re_fastmap == NULL, 0)) | ||
452 | return REG_ESPACE; | ||
453 | |||
454 | syntax |= (cflags & REG_ICASE) ? REG_IGNORE_CASE : 0; | ||
455 | |||
456 | /* If REG_NEWLINE is set, newlines are treated differently. */ | ||
457 | if (cflags & REG_NEWLINE) | ||
458 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | ||
459 | syntax &= ~REG_DOT_NEWLINE; | ||
460 | syntax |= REG_HAT_LISTS_NOT_NEWLINE; | ||
461 | /* It also changes the matching behavior. */ | ||
462 | preg->re_newline_anchor = 1; | ||
463 | } | ||
464 | else | ||
465 | preg->re_newline_anchor = 0; | ||
466 | preg->re_no_sub = !!(cflags & REG_NOSUB); | ||
467 | preg->re_translate = NULL; | ||
468 | |||
469 | ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); | ||
470 | |||
471 | /* POSIX doesn't distinguish between an unmatched open-group and an | ||
472 | unmatched close-group: both are REG_EPAREN. */ | ||
473 | if (ret == REG_ERPAREN) | ||
474 | ret = REG_EPAREN; | ||
475 | |||
476 | /* We have already checked preg->re_fastmap != NULL. */ | ||
477 | if (BE (ret == REG_NOERROR, 1)) | ||
478 | /* Compute the fastmap now, since regexec cannot modify the pattern | ||
479 | buffer. This function never fails in this implementation. */ | ||
480 | (void) re_compile_fastmap (preg); | ||
481 | else | ||
482 | { | ||
483 | /* Some error occurred while compiling the expression. */ | ||
484 | re_free (preg->re_fastmap); | ||
485 | preg->re_fastmap = NULL; | ||
486 | } | ||
487 | |||
488 | return (int) ret; | ||
489 | } | ||
490 | #ifdef _LIBC | ||
491 | weak_alias (__regcomp, regcomp) | ||
492 | #endif | ||
493 | |||
494 | /* Returns a message corresponding to an error code, ERRCODE, returned | ||
495 | from either regcomp or regexec. We don't use PREG here. */ | ||
496 | |||
497 | size_t | ||
498 | regerror (int errcode, const regex_t *__restrict preg, | ||
499 | char *__restrict errbuf, size_t errbuf_size) | ||
500 | { | ||
501 | const char *msg; | ||
502 | size_t msg_size; | ||
503 | |||
504 | if (BE (errcode < 0 | ||
505 | || errcode >= (int) (sizeof (__re_error_msgid_idx) | ||
506 | / sizeof (__re_error_msgid_idx[0])), 0)) | ||
507 | /* Only error codes returned by the rest of the code should be passed | ||
508 | to this routine. If we are given anything else, or if other regex | ||
509 | code generates an invalid error code, then the program has a bug. | ||
510 | Dump core so we can fix it. */ | ||
511 | abort (); | ||
512 | |||
513 | msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); | ||
514 | |||
515 | msg_size = strlen (msg) + 1; /* Includes the null. */ | ||
516 | |||
517 | if (BE (errbuf_size != 0, 1)) | ||
518 | { | ||
519 | if (BE (msg_size > errbuf_size, 0)) | ||
520 | { | ||
521 | #if defined HAVE_MEMPCPY || defined _LIBC | ||
522 | *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0'; | ||
523 | #else | ||
524 | memcpy (errbuf, msg, errbuf_size - 1); | ||
525 | errbuf[errbuf_size - 1] = 0; | ||
526 | #endif | ||
527 | } | ||
528 | else | ||
529 | memcpy (errbuf, msg, msg_size); | ||
530 | } | ||
531 | |||
532 | return msg_size; | ||
533 | } | ||
534 | #ifdef _LIBC | ||
535 | weak_alias (__regerror, regerror) | ||
536 | #endif | ||
537 | |||
538 | |||
539 | #ifdef RE_ENABLE_I18N | ||
540 | /* This static array is used for the map to single-byte characters when | ||
541 | UTF-8 is used. Otherwise we would allocate memory just to initialize | ||
542 | it the same all the time. UTF-8 is the preferred encoding so this is | ||
543 | a worthwhile optimization. */ | ||
544 | static const bitset utf8_sb_map = | ||
545 | { | ||
546 | /* Set the first 128 bits. */ | ||
547 | # if 2 < BITSET_WORDS | ||
548 | BITSET_WORD_MAX, | ||
549 | # endif | ||
550 | # if 4 < BITSET_WORDS | ||
551 | BITSET_WORD_MAX, | ||
552 | # endif | ||
553 | # if 6 < BITSET_WORDS | ||
554 | BITSET_WORD_MAX, | ||
555 | # endif | ||
556 | # if 8 < BITSET_WORDS | ||
557 | # error "Invalid BITSET_WORDS" | ||
558 | # endif | ||
559 | (BITSET_WORD_MAX | ||
560 | >> (SBC_MAX % BITSET_WORD_BITS == 0 | ||
561 | ? 0 | ||
562 | : BITSET_WORD_BITS - SBC_MAX % BITSET_WORD_BITS)) | ||
563 | }; | ||
564 | #endif | ||
565 | |||
566 | |||
567 | static void | ||
568 | free_dfa_content (re_dfa_t *dfa) | ||
569 | { | ||
570 | Idx i, j; | ||
571 | |||
572 | if (dfa->nodes) | ||
573 | for (i = 0; i < dfa->nodes_len; ++i) | ||
574 | free_token (dfa->nodes + i); | ||
575 | re_free (dfa->nexts); | ||
576 | for (i = 0; i < dfa->nodes_len; ++i) | ||
577 | { | ||
578 | if (dfa->eclosures != NULL) | ||
579 | re_node_set_free (dfa->eclosures + i); | ||
580 | if (dfa->inveclosures != NULL) | ||
581 | re_node_set_free (dfa->inveclosures + i); | ||
582 | if (dfa->edests != NULL) | ||
583 | re_node_set_free (dfa->edests + i); | ||
584 | } | ||
585 | re_free (dfa->edests); | ||
586 | re_free (dfa->eclosures); | ||
587 | re_free (dfa->inveclosures); | ||
588 | re_free (dfa->nodes); | ||
589 | |||
590 | if (dfa->state_table) | ||
591 | for (i = 0; i <= dfa->state_hash_mask; ++i) | ||
592 | { | ||
593 | struct re_state_table_entry *entry = dfa->state_table + i; | ||
594 | for (j = 0; j < entry->num; ++j) | ||
595 | { | ||
596 | re_dfastate_t *state = entry->array[j]; | ||
597 | free_state (state); | ||
598 | } | ||
599 | re_free (entry->array); | ||
600 | } | ||
601 | re_free (dfa->state_table); | ||
602 | #ifdef RE_ENABLE_I18N | ||
603 | if (dfa->sb_char != utf8_sb_map) | ||
604 | re_free (dfa->sb_char); | ||
605 | #endif | ||
606 | re_free (dfa->subexp_map); | ||
607 | #ifdef DEBUG | ||
608 | re_free (dfa->re_str); | ||
609 | #endif | ||
610 | |||
611 | re_free (dfa); | ||
612 | } | ||
613 | |||
614 | |||
615 | /* Free dynamically allocated space used by PREG. */ | ||
616 | |||
617 | void | ||
618 | regfree (regex_t *preg) | ||
619 | { | ||
620 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
621 | if (BE (dfa != NULL, 1)) | ||
622 | free_dfa_content (dfa); | ||
623 | preg->re_buffer = NULL; | ||
624 | preg->re_allocated = 0; | ||
625 | |||
626 | re_free (preg->re_fastmap); | ||
627 | preg->re_fastmap = NULL; | ||
628 | |||
629 | re_free (preg->re_translate); | ||
630 | preg->re_translate = NULL; | ||
631 | } | ||
632 | #ifdef _LIBC | ||
633 | weak_alias (__regfree, regfree) | ||
634 | #endif | ||
635 | |||
636 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
637 | them unless specifically requested. */ | ||
638 | |||
639 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
640 | |||
641 | /* BSD has one and only one pattern buffer. */ | ||
642 | static struct re_pattern_buffer re_comp_buf; | ||
643 | |||
644 | char * | ||
645 | # ifdef _LIBC | ||
646 | /* Make these definitions weak in libc, so POSIX programs can redefine | ||
647 | these names if they don't use our functions, and still use | ||
648 | regcomp/regexec above without link errors. */ | ||
649 | weak_function | ||
650 | # endif | ||
651 | re_comp (const char *s) | ||
652 | { | ||
653 | reg_errcode_t ret; | ||
654 | char *fastmap; | ||
655 | |||
656 | if (!s) | ||
657 | { | ||
658 | if (!re_comp_buf.re_buffer) | ||
659 | return gettext ("No previous regular expression"); | ||
660 | return 0; | ||
661 | } | ||
662 | |||
663 | if (re_comp_buf.re_buffer) | ||
664 | { | ||
665 | fastmap = re_comp_buf.re_fastmap; | ||
666 | re_comp_buf.re_fastmap = NULL; | ||
667 | __regfree (&re_comp_buf); | ||
668 | memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); | ||
669 | re_comp_buf.re_fastmap = fastmap; | ||
670 | } | ||
671 | |||
672 | if (re_comp_buf.re_fastmap == NULL) | ||
673 | { | ||
674 | re_comp_buf.re_fastmap = (char *) malloc (SBC_MAX); | ||
675 | if (re_comp_buf.re_fastmap == NULL) | ||
676 | return (char *) gettext (__re_error_msgid | ||
677 | + __re_error_msgid_idx[(int) REG_ESPACE]); | ||
678 | } | ||
679 | |||
680 | /* Since `re_exec' always passes NULL for the `regs' argument, we | ||
681 | don't need to initialize the pattern buffer fields which affect it. */ | ||
682 | |||
683 | /* Match anchors at newlines. */ | ||
684 | re_comp_buf.re_newline_anchor = 1; | ||
685 | |||
686 | ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); | ||
687 | |||
688 | if (!ret) | ||
689 | return NULL; | ||
690 | |||
691 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | ||
692 | return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | ||
693 | } | ||
694 | |||
695 | #ifdef _LIBC | ||
696 | libc_freeres_fn (free_mem) | ||
697 | { | ||
698 | __regfree (&re_comp_buf); | ||
699 | } | ||
700 | #endif | ||
701 | |||
702 | #endif /* _REGEX_RE_COMP */ | ||
703 | |||
704 | /* Internal entry point. | ||
705 | Compile the regular expression PATTERN, whose length is LENGTH. | ||
706 | SYNTAX indicate regular expression's syntax. */ | ||
707 | |||
708 | static reg_errcode_t | ||
709 | re_compile_internal (regex_t *preg, const char *pattern, Idx length, | ||
710 | reg_syntax_t syntax) | ||
711 | { | ||
712 | reg_errcode_t err = REG_NOERROR; | ||
713 | re_dfa_t *dfa; | ||
714 | re_string_t regexp; | ||
715 | |||
716 | /* Initialize the pattern buffer. */ | ||
717 | preg->re_fastmap_accurate = 0; | ||
718 | preg->re_syntax = syntax; | ||
719 | preg->re_not_bol = preg->re_not_eol = 0; | ||
720 | preg->re_used = 0; | ||
721 | preg->re_nsub = 0; | ||
722 | preg->re_can_be_null = 0; | ||
723 | preg->re_regs_allocated = REG_UNALLOCATED; | ||
724 | |||
725 | /* Initialize the dfa. */ | ||
726 | dfa = (re_dfa_t *) preg->re_buffer; | ||
727 | if (BE (preg->re_allocated < sizeof (re_dfa_t), 0)) | ||
728 | { | ||
729 | /* If zero allocated, but buffer is non-null, try to realloc | ||
730 | enough space. This loses if buffer's address is bogus, but | ||
731 | that is the user's responsibility. If buffer is null this | ||
732 | is a simple allocation. */ | ||
733 | dfa = re_realloc (preg->re_buffer, re_dfa_t, 1); | ||
734 | if (dfa == NULL) | ||
735 | return REG_ESPACE; | ||
736 | preg->re_allocated = sizeof (re_dfa_t); | ||
737 | preg->re_buffer = (unsigned char *) dfa; | ||
738 | } | ||
739 | preg->re_used = sizeof (re_dfa_t); | ||
740 | |||
741 | __libc_lock_init (dfa->lock); | ||
742 | |||
743 | err = init_dfa (dfa, length); | ||
744 | if (BE (err != REG_NOERROR, 0)) | ||
745 | { | ||
746 | free_dfa_content (dfa); | ||
747 | preg->re_buffer = NULL; | ||
748 | preg->re_allocated = 0; | ||
749 | return err; | ||
750 | } | ||
751 | #ifdef DEBUG | ||
752 | dfa->re_str = re_malloc (char, length + 1); | ||
753 | strncpy (dfa->re_str, pattern, length + 1); | ||
754 | #endif | ||
755 | |||
756 | err = re_string_construct (®exp, pattern, length, preg->re_translate, | ||
757 | syntax & REG_IGNORE_CASE, dfa); | ||
758 | if (BE (err != REG_NOERROR, 0)) | ||
759 | { | ||
760 | re_compile_internal_free_return: | ||
761 | free_workarea_compile (preg); | ||
762 | re_string_destruct (®exp); | ||
763 | free_dfa_content (dfa); | ||
764 | preg->re_buffer = NULL; | ||
765 | preg->re_allocated = 0; | ||
766 | return err; | ||
767 | } | ||
768 | |||
769 | /* Parse the regular expression, and build a structure tree. */ | ||
770 | preg->re_nsub = 0; | ||
771 | dfa->str_tree = parse (®exp, preg, syntax, &err); | ||
772 | if (BE (dfa->str_tree == NULL, 0)) | ||
773 | goto re_compile_internal_free_return; | ||
774 | |||
775 | /* Analyze the tree and create the nfa. */ | ||
776 | err = analyze (preg); | ||
777 | if (BE (err != REG_NOERROR, 0)) | ||
778 | goto re_compile_internal_free_return; | ||
779 | |||
780 | #ifdef RE_ENABLE_I18N | ||
781 | /* If possible, do searching in single byte encoding to speed things up. */ | ||
782 | if (dfa->is_utf8 && !(syntax & REG_IGNORE_CASE) && preg->re_translate == NULL) | ||
783 | optimize_utf8 (dfa); | ||
784 | #endif | ||
785 | |||
786 | /* Then create the initial state of the dfa. */ | ||
787 | err = create_initial_state (dfa); | ||
788 | |||
789 | /* Release work areas. */ | ||
790 | free_workarea_compile (preg); | ||
791 | re_string_destruct (®exp); | ||
792 | |||
793 | if (BE (err != REG_NOERROR, 0)) | ||
794 | { | ||
795 | free_dfa_content (dfa); | ||
796 | preg->re_buffer = NULL; | ||
797 | preg->re_allocated = 0; | ||
798 | } | ||
799 | |||
800 | return err; | ||
801 | } | ||
802 | |||
803 | /* Initialize DFA. We use the length of the regular expression PAT_LEN | ||
804 | as the initial length of some arrays. */ | ||
805 | |||
806 | static reg_errcode_t | ||
807 | init_dfa (re_dfa_t *dfa, Idx pat_len) | ||
808 | { | ||
809 | __re_size_t table_size; | ||
810 | #ifndef _LIBC | ||
811 | char *codeset_name; | ||
812 | #endif | ||
813 | |||
814 | memset (dfa, '\0', sizeof (re_dfa_t)); | ||
815 | |||
816 | /* Force allocation of str_tree_storage the first time. */ | ||
817 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | ||
818 | |||
819 | dfa->nodes_alloc = pat_len + 1; | ||
820 | dfa->nodes = re_xmalloc (re_token_t, dfa->nodes_alloc); | ||
821 | |||
822 | /* table_size = 2 ^ ceil(log pat_len) */ | ||
823 | for (table_size = 1; table_size <= pat_len; table_size <<= 1) | ||
824 | if (0 < (Idx) -1 && table_size == 0) | ||
825 | return REG_ESPACE; | ||
826 | |||
827 | dfa->state_table = re_calloc (struct re_state_table_entry, table_size); | ||
828 | dfa->state_hash_mask = table_size - 1; | ||
829 | |||
830 | dfa->mb_cur_max = MB_CUR_MAX; | ||
831 | #ifdef _LIBC | ||
832 | if (dfa->mb_cur_max == 6 | ||
833 | && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) | ||
834 | dfa->is_utf8 = 1; | ||
835 | dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) | ||
836 | != 0); | ||
837 | #else | ||
838 | # ifdef HAVE_LANGINFO_CODESET | ||
839 | codeset_name = nl_langinfo (CODESET); | ||
840 | # else | ||
841 | codeset_name = getenv ("LC_ALL"); | ||
842 | if (codeset_name == NULL || codeset_name[0] == '\0') | ||
843 | codeset_name = getenv ("LC_CTYPE"); | ||
844 | if (codeset_name == NULL || codeset_name[0] == '\0') | ||
845 | codeset_name = getenv ("LANG"); | ||
846 | if (codeset_name == NULL) | ||
847 | codeset_name = ""; | ||
848 | else if (strchr (codeset_name, '.') != NULL) | ||
849 | codeset_name = strchr (codeset_name, '.') + 1; | ||
850 | # endif | ||
851 | |||
852 | if (strcasecmp (codeset_name, "UTF-8") == 0 | ||
853 | || strcasecmp (codeset_name, "UTF8") == 0) | ||
854 | dfa->is_utf8 = 1; | ||
855 | |||
856 | /* We check exhaustively in the loop below if this charset is a | ||
857 | superset of ASCII. */ | ||
858 | dfa->map_notascii = 0; | ||
859 | #endif | ||
860 | |||
861 | #ifdef RE_ENABLE_I18N | ||
862 | if (dfa->mb_cur_max > 1) | ||
863 | { | ||
864 | if (dfa->is_utf8) | ||
865 | dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; | ||
866 | else | ||
867 | { | ||
868 | int i, j, ch; | ||
869 | |||
870 | dfa->sb_char = re_calloc (bitset_word, BITSET_WORDS); | ||
871 | if (BE (dfa->sb_char == NULL, 0)) | ||
872 | return REG_ESPACE; | ||
873 | |||
874 | /* Set the bits corresponding to single byte chars. */ | ||
875 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
876 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
877 | { | ||
878 | wint_t wch = __btowc (ch); | ||
879 | if (wch != WEOF) | ||
880 | dfa->sb_char[i] |= (bitset_word) 1 << j; | ||
881 | # ifndef _LIBC | ||
882 | if (isascii (ch) && wch != ch) | ||
883 | dfa->map_notascii = 1; | ||
884 | # endif | ||
885 | } | ||
886 | } | ||
887 | } | ||
888 | #endif | ||
889 | |||
890 | if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) | ||
891 | return REG_ESPACE; | ||
892 | return REG_NOERROR; | ||
893 | } | ||
894 | |||
895 | /* Initialize WORD_CHAR table, which indicate which character is | ||
896 | "word". In this case "word" means that it is the word construction | ||
897 | character used by some operators like "\<", "\>", etc. */ | ||
898 | |||
899 | static void | ||
900 | init_word_char (re_dfa_t *dfa) | ||
901 | { | ||
902 | int i, j, ch; | ||
903 | dfa->word_ops_used = 1; | ||
904 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
905 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
906 | if (isalnum (ch) || ch == '_') | ||
907 | dfa->word_char[i] |= (bitset_word) 1 << j; | ||
908 | } | ||
909 | |||
910 | /* Free the work area which are only used while compiling. */ | ||
911 | |||
912 | static void | ||
913 | free_workarea_compile (regex_t *preg) | ||
914 | { | ||
915 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
916 | bin_tree_storage_t *storage, *next; | ||
917 | for (storage = dfa->str_tree_storage; storage; storage = next) | ||
918 | { | ||
919 | next = storage->next; | ||
920 | re_free (storage); | ||
921 | } | ||
922 | dfa->str_tree_storage = NULL; | ||
923 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | ||
924 | dfa->str_tree = NULL; | ||
925 | re_free (dfa->org_indices); | ||
926 | dfa->org_indices = NULL; | ||
927 | } | ||
928 | |||
929 | /* Create initial states for all contexts. */ | ||
930 | |||
931 | static reg_errcode_t | ||
932 | create_initial_state (re_dfa_t *dfa) | ||
933 | { | ||
934 | Idx first, i; | ||
935 | reg_errcode_t err; | ||
936 | re_node_set init_nodes; | ||
937 | |||
938 | /* Initial states have the epsilon closure of the node which is | ||
939 | the first node of the regular expression. */ | ||
940 | first = dfa->str_tree->first->node_idx; | ||
941 | dfa->init_node = first; | ||
942 | err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); | ||
943 | if (BE (err != REG_NOERROR, 0)) | ||
944 | return err; | ||
945 | |||
946 | /* The back-references which are in initial states can epsilon transit, | ||
947 | since in this case all of the subexpressions can be null. | ||
948 | Then we add epsilon closures of the nodes which are the next nodes of | ||
949 | the back-references. */ | ||
950 | if (dfa->nbackref > 0) | ||
951 | for (i = 0; i < init_nodes.nelem; ++i) | ||
952 | { | ||
953 | Idx node_idx = init_nodes.elems[i]; | ||
954 | re_token_type_t type = dfa->nodes[node_idx].type; | ||
955 | |||
956 | Idx clexp_idx; | ||
957 | if (type != OP_BACK_REF) | ||
958 | continue; | ||
959 | for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) | ||
960 | { | ||
961 | re_token_t *clexp_node; | ||
962 | clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; | ||
963 | if (clexp_node->type == OP_CLOSE_SUBEXP | ||
964 | && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) | ||
965 | break; | ||
966 | } | ||
967 | if (clexp_idx == init_nodes.nelem) | ||
968 | continue; | ||
969 | |||
970 | if (type == OP_BACK_REF) | ||
971 | { | ||
972 | Idx dest_idx = dfa->edests[node_idx].elems[0]; | ||
973 | if (!re_node_set_contains (&init_nodes, dest_idx)) | ||
974 | { | ||
975 | re_node_set_merge (&init_nodes, dfa->eclosures + dest_idx); | ||
976 | i = 0; | ||
977 | } | ||
978 | } | ||
979 | } | ||
980 | |||
981 | /* It must be the first time to invoke acquire_state. */ | ||
982 | dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); | ||
983 | /* We don't check ERR here, since the initial state must not be NULL. */ | ||
984 | if (BE (dfa->init_state == NULL, 0)) | ||
985 | return err; | ||
986 | if (dfa->init_state->has_constraint) | ||
987 | { | ||
988 | dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, | ||
989 | CONTEXT_WORD); | ||
990 | dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, | ||
991 | CONTEXT_NEWLINE); | ||
992 | dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, | ||
993 | &init_nodes, | ||
994 | CONTEXT_NEWLINE | ||
995 | | CONTEXT_BEGBUF); | ||
996 | if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL | ||
997 | || dfa->init_state_begbuf == NULL, 0)) | ||
998 | return err; | ||
999 | } | ||
1000 | else | ||
1001 | dfa->init_state_word = dfa->init_state_nl | ||
1002 | = dfa->init_state_begbuf = dfa->init_state; | ||
1003 | |||
1004 | re_node_set_free (&init_nodes); | ||
1005 | return REG_NOERROR; | ||
1006 | } | ||
1007 | |||
1008 | #ifdef RE_ENABLE_I18N | ||
1009 | /* If it is possible to do searching in single byte encoding instead of UTF-8 | ||
1010 | to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change | ||
1011 | DFA nodes where needed. */ | ||
1012 | |||
1013 | static void | ||
1014 | optimize_utf8 (re_dfa_t *dfa) | ||
1015 | { | ||
1016 | Idx node; | ||
1017 | int i; | ||
1018 | bool mb_chars = false; | ||
1019 | bool has_period = false; | ||
1020 | |||
1021 | for (node = 0; node < dfa->nodes_len; ++node) | ||
1022 | switch (dfa->nodes[node].type) | ||
1023 | { | ||
1024 | case CHARACTER: | ||
1025 | if (dfa->nodes[node].opr.c >= 0x80) | ||
1026 | mb_chars = true; | ||
1027 | break; | ||
1028 | case ANCHOR: | ||
1029 | switch (dfa->nodes[node].opr.idx) | ||
1030 | { | ||
1031 | case LINE_FIRST: | ||
1032 | case LINE_LAST: | ||
1033 | case BUF_FIRST: | ||
1034 | case BUF_LAST: | ||
1035 | break; | ||
1036 | default: | ||
1037 | /* Word anchors etc. cannot be handled. */ | ||
1038 | return; | ||
1039 | } | ||
1040 | break; | ||
1041 | case OP_PERIOD: | ||
1042 | has_period = true; | ||
1043 | break; | ||
1044 | case OP_BACK_REF: | ||
1045 | case OP_ALT: | ||
1046 | case END_OF_RE: | ||
1047 | case OP_DUP_ASTERISK: | ||
1048 | case OP_OPEN_SUBEXP: | ||
1049 | case OP_CLOSE_SUBEXP: | ||
1050 | break; | ||
1051 | case COMPLEX_BRACKET: | ||
1052 | return; | ||
1053 | case SIMPLE_BRACKET: | ||
1054 | /* Just double check. */ | ||
1055 | { | ||
1056 | int rshift = | ||
1057 | (SBC_MAX / 2 % BITSET_WORD_BITS == 0 | ||
1058 | ? 0 | ||
1059 | : BITSET_WORD_BITS - SBC_MAX / 2 % BITSET_WORD_BITS); | ||
1060 | for (i = SBC_MAX / 2 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) | ||
1061 | { | ||
1062 | if (dfa->nodes[node].opr.sbcset[i] >> rshift != 0) | ||
1063 | return; | ||
1064 | rshift = 0; | ||
1065 | } | ||
1066 | } | ||
1067 | break; | ||
1068 | default: | ||
1069 | abort (); | ||
1070 | } | ||
1071 | |||
1072 | if (mb_chars || has_period) | ||
1073 | for (node = 0; node < dfa->nodes_len; ++node) | ||
1074 | { | ||
1075 | if (dfa->nodes[node].type == CHARACTER | ||
1076 | && dfa->nodes[node].opr.c >= 0x80) | ||
1077 | dfa->nodes[node].mb_partial = 0; | ||
1078 | else if (dfa->nodes[node].type == OP_PERIOD) | ||
1079 | dfa->nodes[node].type = OP_UTF8_PERIOD; | ||
1080 | } | ||
1081 | |||
1082 | /* The search can be in single byte locale. */ | ||
1083 | dfa->mb_cur_max = 1; | ||
1084 | dfa->is_utf8 = 0; | ||
1085 | dfa->has_mb_node = dfa->nbackref > 0 || has_period; | ||
1086 | } | ||
1087 | #endif | ||
1088 | |||
1089 | /* Analyze the structure tree, and calculate "first", "next", "edest", | ||
1090 | "eclosure", and "inveclosure". */ | ||
1091 | |||
1092 | static reg_errcode_t | ||
1093 | analyze (regex_t *preg) | ||
1094 | { | ||
1095 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
1096 | reg_errcode_t ret; | ||
1097 | |||
1098 | /* Allocate arrays. */ | ||
1099 | dfa->nexts = re_malloc (Idx, dfa->nodes_alloc); | ||
1100 | dfa->org_indices = re_malloc (Idx, dfa->nodes_alloc); | ||
1101 | dfa->edests = re_xmalloc (re_node_set, dfa->nodes_alloc); | ||
1102 | dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); | ||
1103 | if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL | ||
1104 | || dfa->eclosures == NULL, 0)) | ||
1105 | return REG_ESPACE; | ||
1106 | |||
1107 | dfa->subexp_map = re_xmalloc (Idx, preg->re_nsub); | ||
1108 | if (dfa->subexp_map != NULL) | ||
1109 | { | ||
1110 | Idx i; | ||
1111 | for (i = 0; i < preg->re_nsub; i++) | ||
1112 | dfa->subexp_map[i] = i; | ||
1113 | preorder (dfa->str_tree, optimize_subexps, dfa); | ||
1114 | for (i = 0; i < preg->re_nsub; i++) | ||
1115 | if (dfa->subexp_map[i] != i) | ||
1116 | break; | ||
1117 | if (i == preg->re_nsub) | ||
1118 | { | ||
1119 | free (dfa->subexp_map); | ||
1120 | dfa->subexp_map = NULL; | ||
1121 | } | ||
1122 | } | ||
1123 | |||
1124 | ret = postorder (dfa->str_tree, lower_subexps, preg); | ||
1125 | if (BE (ret != REG_NOERROR, 0)) | ||
1126 | return ret; | ||
1127 | ret = postorder (dfa->str_tree, calc_first, dfa); | ||
1128 | if (BE (ret != REG_NOERROR, 0)) | ||
1129 | return ret; | ||
1130 | preorder (dfa->str_tree, calc_next, dfa); | ||
1131 | ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); | ||
1132 | if (BE (ret != REG_NOERROR, 0)) | ||
1133 | return ret; | ||
1134 | ret = calc_eclosure (dfa); | ||
1135 | if (BE (ret != REG_NOERROR, 0)) | ||
1136 | return ret; | ||
1137 | |||
1138 | /* We only need this during the prune_impossible_nodes pass in regexec.c; | ||
1139 | skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */ | ||
1140 | if ((!preg->re_no_sub && preg->re_nsub > 0 && dfa->has_plural_match) | ||
1141 | || dfa->nbackref) | ||
1142 | { | ||
1143 | dfa->inveclosures = re_xmalloc (re_node_set, dfa->nodes_len); | ||
1144 | if (BE (dfa->inveclosures == NULL, 0)) | ||
1145 | return REG_ESPACE; | ||
1146 | ret = calc_inveclosure (dfa); | ||
1147 | } | ||
1148 | |||
1149 | return ret; | ||
1150 | } | ||
1151 | |||
1152 | /* Our parse trees are very unbalanced, so we cannot use a stack to | ||
1153 | implement parse tree visits. Instead, we use parent pointers and | ||
1154 | some hairy code in these two functions. */ | ||
1155 | static reg_errcode_t | ||
1156 | postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | ||
1157 | void *extra) | ||
1158 | { | ||
1159 | bin_tree_t *node, *prev; | ||
1160 | |||
1161 | for (node = root; ; ) | ||
1162 | { | ||
1163 | /* Descend down the tree, preferably to the left (or to the right | ||
1164 | if that's the only child). */ | ||
1165 | while (node->left || node->right) | ||
1166 | if (node->left) | ||
1167 | node = node->left; | ||
1168 | else | ||
1169 | node = node->right; | ||
1170 | |||
1171 | do | ||
1172 | { | ||
1173 | reg_errcode_t err = fn (extra, node); | ||
1174 | if (BE (err != REG_NOERROR, 0)) | ||
1175 | return err; | ||
1176 | if (node->parent == NULL) | ||
1177 | return REG_NOERROR; | ||
1178 | prev = node; | ||
1179 | node = node->parent; | ||
1180 | } | ||
1181 | /* Go up while we have a node that is reached from the right. */ | ||
1182 | while (node->right == prev || node->right == NULL); | ||
1183 | node = node->right; | ||
1184 | } | ||
1185 | } | ||
1186 | |||
1187 | static reg_errcode_t | ||
1188 | preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | ||
1189 | void *extra) | ||
1190 | { | ||
1191 | bin_tree_t *node; | ||
1192 | |||
1193 | for (node = root; ; ) | ||
1194 | { | ||
1195 | reg_errcode_t err = fn (extra, node); | ||
1196 | if (BE (err != REG_NOERROR, 0)) | ||
1197 | return err; | ||
1198 | |||
1199 | /* Go to the left node, or up and to the right. */ | ||
1200 | if (node->left) | ||
1201 | node = node->left; | ||
1202 | else | ||
1203 | { | ||
1204 | bin_tree_t *prev = NULL; | ||
1205 | while (node->right == prev || node->right == NULL) | ||
1206 | { | ||
1207 | prev = node; | ||
1208 | node = node->parent; | ||
1209 | if (!node) | ||
1210 | return REG_NOERROR; | ||
1211 | } | ||
1212 | node = node->right; | ||
1213 | } | ||
1214 | } | ||
1215 | } | ||
1216 | |||
1217 | /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell | ||
1218 | re_search_internal to map the inner one's opr.idx to this one's. Adjust | ||
1219 | backreferences as well. Requires a preorder visit. */ | ||
1220 | static reg_errcode_t | ||
1221 | optimize_subexps (void *extra, bin_tree_t *node) | ||
1222 | { | ||
1223 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1224 | |||
1225 | if (node->token.type == OP_BACK_REF && dfa->subexp_map) | ||
1226 | { | ||
1227 | int idx = node->token.opr.idx; | ||
1228 | node->token.opr.idx = dfa->subexp_map[idx]; | ||
1229 | dfa->used_bkref_map |= 1 << node->token.opr.idx; | ||
1230 | } | ||
1231 | |||
1232 | else if (node->token.type == SUBEXP | ||
1233 | && node->left && node->left->token.type == SUBEXP) | ||
1234 | { | ||
1235 | Idx other_idx = node->left->token.opr.idx; | ||
1236 | |||
1237 | node->left = node->left->left; | ||
1238 | if (node->left) | ||
1239 | node->left->parent = node; | ||
1240 | |||
1241 | dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; | ||
1242 | if (other_idx < BITSET_WORD_BITS) | ||
1243 | dfa->used_bkref_map &= ~ ((bitset_word) 1 << other_idx); | ||
1244 | } | ||
1245 | |||
1246 | return REG_NOERROR; | ||
1247 | } | ||
1248 | |||
1249 | /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation | ||
1250 | of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */ | ||
1251 | static reg_errcode_t | ||
1252 | lower_subexps (void *extra, bin_tree_t *node) | ||
1253 | { | ||
1254 | regex_t *preg = (regex_t *) extra; | ||
1255 | reg_errcode_t err = REG_NOERROR; | ||
1256 | |||
1257 | if (node->left && node->left->token.type == SUBEXP) | ||
1258 | { | ||
1259 | node->left = lower_subexp (&err, preg, node->left); | ||
1260 | if (node->left) | ||
1261 | node->left->parent = node; | ||
1262 | } | ||
1263 | if (node->right && node->right->token.type == SUBEXP) | ||
1264 | { | ||
1265 | node->right = lower_subexp (&err, preg, node->right); | ||
1266 | if (node->right) | ||
1267 | node->right->parent = node; | ||
1268 | } | ||
1269 | |||
1270 | return err; | ||
1271 | } | ||
1272 | |||
1273 | static bin_tree_t * | ||
1274 | lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) | ||
1275 | { | ||
1276 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
1277 | bin_tree_t *body = node->left; | ||
1278 | bin_tree_t *op, *cls, *tree1, *tree; | ||
1279 | |||
1280 | if (preg->re_no_sub | ||
1281 | /* We do not optimize empty subexpressions, because otherwise we may | ||
1282 | have bad CONCAT nodes with NULL children. This is obviously not | ||
1283 | very common, so we do not lose much. An example that triggers | ||
1284 | this case is the sed "script" /\(\)/x. */ | ||
1285 | && node->left != NULL | ||
1286 | && ! (node->token.opr.idx < BITSET_WORD_BITS | ||
1287 | && dfa->used_bkref_map & ((bitset_word) 1 << node->token.opr.idx))) | ||
1288 | return node->left; | ||
1289 | |||
1290 | /* Convert the SUBEXP node to the concatenation of an | ||
1291 | OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */ | ||
1292 | op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); | ||
1293 | cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); | ||
1294 | tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; | ||
1295 | tree = create_tree (dfa, op, tree1, CONCAT); | ||
1296 | if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) | ||
1297 | { | ||
1298 | *err = REG_ESPACE; | ||
1299 | return NULL; | ||
1300 | } | ||
1301 | |||
1302 | op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; | ||
1303 | op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; | ||
1304 | return tree; | ||
1305 | } | ||
1306 | |||
1307 | /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton | ||
1308 | nodes. Requires a postorder visit. */ | ||
1309 | static reg_errcode_t | ||
1310 | calc_first (void *extra, bin_tree_t *node) | ||
1311 | { | ||
1312 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1313 | if (node->token.type == CONCAT) | ||
1314 | { | ||
1315 | node->first = node->left->first; | ||
1316 | node->node_idx = node->left->node_idx; | ||
1317 | } | ||
1318 | else | ||
1319 | { | ||
1320 | node->first = node; | ||
1321 | node->node_idx = re_dfa_add_node (dfa, node->token); | ||
1322 | if (BE (node->node_idx == REG_MISSING, 0)) | ||
1323 | return REG_ESPACE; | ||
1324 | } | ||
1325 | return REG_NOERROR; | ||
1326 | } | ||
1327 | |||
1328 | /* Pass 2: compute NEXT on the tree. Preorder visit. */ | ||
1329 | static reg_errcode_t | ||
1330 | calc_next (void *extra, bin_tree_t *node) | ||
1331 | { | ||
1332 | switch (node->token.type) | ||
1333 | { | ||
1334 | case OP_DUP_ASTERISK: | ||
1335 | node->left->next = node; | ||
1336 | break; | ||
1337 | case CONCAT: | ||
1338 | node->left->next = node->right->first; | ||
1339 | node->right->next = node->next; | ||
1340 | break; | ||
1341 | default: | ||
1342 | if (node->left) | ||
1343 | node->left->next = node->next; | ||
1344 | if (node->right) | ||
1345 | node->right->next = node->next; | ||
1346 | break; | ||
1347 | } | ||
1348 | return REG_NOERROR; | ||
1349 | } | ||
1350 | |||
1351 | /* Pass 3: link all DFA nodes to their NEXT node (any order will do). */ | ||
1352 | static reg_errcode_t | ||
1353 | link_nfa_nodes (void *extra, bin_tree_t *node) | ||
1354 | { | ||
1355 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1356 | Idx idx = node->node_idx; | ||
1357 | reg_errcode_t err = REG_NOERROR; | ||
1358 | |||
1359 | switch (node->token.type) | ||
1360 | { | ||
1361 | case CONCAT: | ||
1362 | break; | ||
1363 | |||
1364 | case END_OF_RE: | ||
1365 | assert (node->next == NULL); | ||
1366 | break; | ||
1367 | |||
1368 | case OP_DUP_ASTERISK: | ||
1369 | case OP_ALT: | ||
1370 | { | ||
1371 | Idx left, right; | ||
1372 | dfa->has_plural_match = 1; | ||
1373 | if (node->left != NULL) | ||
1374 | left = node->left->first->node_idx; | ||
1375 | else | ||
1376 | left = node->next->node_idx; | ||
1377 | if (node->right != NULL) | ||
1378 | right = node->right->first->node_idx; | ||
1379 | else | ||
1380 | right = node->next->node_idx; | ||
1381 | assert (REG_VALID_INDEX (left)); | ||
1382 | assert (REG_VALID_INDEX (right)); | ||
1383 | err = re_node_set_init_2 (dfa->edests + idx, left, right); | ||
1384 | } | ||
1385 | break; | ||
1386 | |||
1387 | case ANCHOR: | ||
1388 | case OP_OPEN_SUBEXP: | ||
1389 | case OP_CLOSE_SUBEXP: | ||
1390 | err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); | ||
1391 | break; | ||
1392 | |||
1393 | case OP_BACK_REF: | ||
1394 | dfa->nexts[idx] = node->next->node_idx; | ||
1395 | if (node->token.type == OP_BACK_REF) | ||
1396 | re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); | ||
1397 | break; | ||
1398 | |||
1399 | default: | ||
1400 | assert (!IS_EPSILON_NODE (node->token.type)); | ||
1401 | dfa->nexts[idx] = node->next->node_idx; | ||
1402 | break; | ||
1403 | } | ||
1404 | |||
1405 | return err; | ||
1406 | } | ||
1407 | |||
1408 | /* Duplicate the epsilon closure of the node ROOT_NODE. | ||
1409 | Note that duplicated nodes have constraint INIT_CONSTRAINT in addition | ||
1410 | to their own constraint. */ | ||
1411 | |||
1412 | static reg_errcode_t | ||
1413 | duplicate_node_closure (re_dfa_t *dfa, Idx top_org_node, | ||
1414 | Idx top_clone_node, Idx root_node, | ||
1415 | unsigned int init_constraint) | ||
1416 | { | ||
1417 | Idx org_node, clone_node; | ||
1418 | bool ok; | ||
1419 | unsigned int constraint = init_constraint; | ||
1420 | for (org_node = top_org_node, clone_node = top_clone_node;;) | ||
1421 | { | ||
1422 | Idx org_dest, clone_dest; | ||
1423 | if (dfa->nodes[org_node].type == OP_BACK_REF) | ||
1424 | { | ||
1425 | /* If the back reference epsilon-transit, its destination must | ||
1426 | also have the constraint. Then duplicate the epsilon closure | ||
1427 | of the destination of the back reference, and store it in | ||
1428 | edests of the back reference. */ | ||
1429 | org_dest = dfa->nexts[org_node]; | ||
1430 | re_node_set_empty (dfa->edests + clone_node); | ||
1431 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1432 | if (BE (clone_dest == REG_MISSING, 0)) | ||
1433 | return REG_ESPACE; | ||
1434 | dfa->nexts[clone_node] = dfa->nexts[org_node]; | ||
1435 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1436 | if (BE (! ok, 0)) | ||
1437 | return REG_ESPACE; | ||
1438 | } | ||
1439 | else if (dfa->edests[org_node].nelem == 0) | ||
1440 | { | ||
1441 | /* In case of the node can't epsilon-transit, don't duplicate the | ||
1442 | destination and store the original destination as the | ||
1443 | destination of the node. */ | ||
1444 | dfa->nexts[clone_node] = dfa->nexts[org_node]; | ||
1445 | break; | ||
1446 | } | ||
1447 | else if (dfa->edests[org_node].nelem == 1) | ||
1448 | { | ||
1449 | /* In case of the node can epsilon-transit, and it has only one | ||
1450 | destination. */ | ||
1451 | org_dest = dfa->edests[org_node].elems[0]; | ||
1452 | re_node_set_empty (dfa->edests + clone_node); | ||
1453 | if (dfa->nodes[org_node].type == ANCHOR) | ||
1454 | { | ||
1455 | /* In case of the node has another constraint, append it. */ | ||
1456 | if (org_node == root_node && clone_node != org_node) | ||
1457 | { | ||
1458 | /* ...but if the node is root_node itself, it means the | ||
1459 | epsilon closure have a loop, then tie it to the | ||
1460 | destination of the root_node. */ | ||
1461 | ok = re_node_set_insert (dfa->edests + clone_node, | ||
1462 | org_dest); | ||
1463 | if (BE (! ok, 0)) | ||
1464 | return REG_ESPACE; | ||
1465 | break; | ||
1466 | } | ||
1467 | constraint |= dfa->nodes[org_node].opr.ctx_type; | ||
1468 | } | ||
1469 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1470 | if (BE (clone_dest == REG_MISSING, 0)) | ||
1471 | return REG_ESPACE; | ||
1472 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1473 | if (BE (! ok, 0)) | ||
1474 | return REG_ESPACE; | ||
1475 | } | ||
1476 | else /* dfa->edests[org_node].nelem == 2 */ | ||
1477 | { | ||
1478 | /* In case of the node can epsilon-transit, and it has two | ||
1479 | destinations. In the bin_tree_t and DFA, that's '|' and '*'. */ | ||
1480 | org_dest = dfa->edests[org_node].elems[0]; | ||
1481 | re_node_set_empty (dfa->edests + clone_node); | ||
1482 | /* Search for a duplicated node which satisfies the constraint. */ | ||
1483 | clone_dest = search_duplicated_node (dfa, org_dest, constraint); | ||
1484 | if (clone_dest == REG_MISSING) | ||
1485 | { | ||
1486 | /* There are no such a duplicated node, create a new one. */ | ||
1487 | reg_errcode_t err; | ||
1488 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1489 | if (BE (clone_dest == REG_MISSING, 0)) | ||
1490 | return REG_ESPACE; | ||
1491 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1492 | if (BE (! ok, 0)) | ||
1493 | return REG_ESPACE; | ||
1494 | err = duplicate_node_closure (dfa, org_dest, clone_dest, | ||
1495 | root_node, constraint); | ||
1496 | if (BE (err != REG_NOERROR, 0)) | ||
1497 | return err; | ||
1498 | } | ||
1499 | else | ||
1500 | { | ||
1501 | /* There are a duplicated node which satisfy the constraint, | ||
1502 | use it to avoid infinite loop. */ | ||
1503 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1504 | if (BE (! ok, 0)) | ||
1505 | return REG_ESPACE; | ||
1506 | } | ||
1507 | |||
1508 | org_dest = dfa->edests[org_node].elems[1]; | ||
1509 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1510 | if (BE (clone_dest == REG_MISSING, 0)) | ||
1511 | return REG_ESPACE; | ||
1512 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1513 | if (BE (! ok, 0)) | ||
1514 | return REG_ESPACE; | ||
1515 | } | ||
1516 | org_node = org_dest; | ||
1517 | clone_node = clone_dest; | ||
1518 | } | ||
1519 | return REG_NOERROR; | ||
1520 | } | ||
1521 | |||
1522 | /* Search for a node which is duplicated from the node ORG_NODE, and | ||
1523 | satisfies the constraint CONSTRAINT. */ | ||
1524 | |||
1525 | static Idx | ||
1526 | search_duplicated_node (const re_dfa_t *dfa, Idx org_node, | ||
1527 | unsigned int constraint) | ||
1528 | { | ||
1529 | Idx idx; | ||
1530 | for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) | ||
1531 | { | ||
1532 | if (org_node == dfa->org_indices[idx] | ||
1533 | && constraint == dfa->nodes[idx].constraint) | ||
1534 | return idx; /* Found. */ | ||
1535 | } | ||
1536 | return REG_MISSING; /* Not found. */ | ||
1537 | } | ||
1538 | |||
1539 | /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. | ||
1540 | Return the index of the new node, or REG_MISSING if insufficient storage is | ||
1541 | available. */ | ||
1542 | |||
1543 | static Idx | ||
1544 | duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint) | ||
1545 | { | ||
1546 | Idx dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); | ||
1547 | if (BE (dup_idx != REG_MISSING, 1)) | ||
1548 | { | ||
1549 | dfa->nodes[dup_idx].constraint = constraint; | ||
1550 | if (dfa->nodes[org_idx].type == ANCHOR) | ||
1551 | dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].opr.ctx_type; | ||
1552 | dfa->nodes[dup_idx].duplicated = 1; | ||
1553 | |||
1554 | /* Store the index of the original node. */ | ||
1555 | dfa->org_indices[dup_idx] = org_idx; | ||
1556 | } | ||
1557 | return dup_idx; | ||
1558 | } | ||
1559 | |||
1560 | static reg_errcode_t | ||
1561 | calc_inveclosure (re_dfa_t *dfa) | ||
1562 | { | ||
1563 | Idx src, idx; | ||
1564 | bool ok; | ||
1565 | for (idx = 0; idx < dfa->nodes_len; ++idx) | ||
1566 | re_node_set_init_empty (dfa->inveclosures + idx); | ||
1567 | |||
1568 | for (src = 0; src < dfa->nodes_len; ++src) | ||
1569 | { | ||
1570 | Idx *elems = dfa->eclosures[src].elems; | ||
1571 | for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) | ||
1572 | { | ||
1573 | ok = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); | ||
1574 | if (BE (! ok, 0)) | ||
1575 | return REG_ESPACE; | ||
1576 | } | ||
1577 | } | ||
1578 | |||
1579 | return REG_NOERROR; | ||
1580 | } | ||
1581 | |||
1582 | /* Calculate "eclosure" for all the node in DFA. */ | ||
1583 | |||
1584 | static reg_errcode_t | ||
1585 | calc_eclosure (re_dfa_t *dfa) | ||
1586 | { | ||
1587 | Idx node_idx; | ||
1588 | bool incomplete; | ||
1589 | #ifdef DEBUG | ||
1590 | assert (dfa->nodes_len > 0); | ||
1591 | #endif | ||
1592 | incomplete = false; | ||
1593 | /* For each nodes, calculate epsilon closure. */ | ||
1594 | for (node_idx = 0; ; ++node_idx) | ||
1595 | { | ||
1596 | reg_errcode_t err; | ||
1597 | re_node_set eclosure_elem; | ||
1598 | if (node_idx == dfa->nodes_len) | ||
1599 | { | ||
1600 | if (!incomplete) | ||
1601 | break; | ||
1602 | incomplete = false; | ||
1603 | node_idx = 0; | ||
1604 | } | ||
1605 | |||
1606 | #ifdef DEBUG | ||
1607 | assert (dfa->eclosures[node_idx].nelem != REG_MISSING); | ||
1608 | #endif | ||
1609 | |||
1610 | /* If we have already calculated, skip it. */ | ||
1611 | if (dfa->eclosures[node_idx].nelem != 0) | ||
1612 | continue; | ||
1613 | /* Calculate epsilon closure of `node_idx'. */ | ||
1614 | err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, true); | ||
1615 | if (BE (err != REG_NOERROR, 0)) | ||
1616 | return err; | ||
1617 | |||
1618 | if (dfa->eclosures[node_idx].nelem == 0) | ||
1619 | { | ||
1620 | incomplete = true; | ||
1621 | re_node_set_free (&eclosure_elem); | ||
1622 | } | ||
1623 | } | ||
1624 | return REG_NOERROR; | ||
1625 | } | ||
1626 | |||
1627 | /* Calculate epsilon closure of NODE. */ | ||
1628 | |||
1629 | static reg_errcode_t | ||
1630 | calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, Idx node, bool root) | ||
1631 | { | ||
1632 | reg_errcode_t err; | ||
1633 | unsigned int constraint; | ||
1634 | Idx i; | ||
1635 | bool incomplete; | ||
1636 | bool ok; | ||
1637 | re_node_set eclosure; | ||
1638 | incomplete = false; | ||
1639 | err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); | ||
1640 | if (BE (err != REG_NOERROR, 0)) | ||
1641 | return err; | ||
1642 | |||
1643 | /* This indicates that we are calculating this node now. | ||
1644 | We reference this value to avoid infinite loop. */ | ||
1645 | dfa->eclosures[node].nelem = REG_MISSING; | ||
1646 | |||
1647 | constraint = ((dfa->nodes[node].type == ANCHOR) | ||
1648 | ? dfa->nodes[node].opr.ctx_type : 0); | ||
1649 | /* If the current node has constraints, duplicate all nodes. | ||
1650 | Since they must inherit the constraints. */ | ||
1651 | if (constraint | ||
1652 | && dfa->edests[node].nelem | ||
1653 | && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) | ||
1654 | { | ||
1655 | Idx org_node, cur_node; | ||
1656 | org_node = cur_node = node; | ||
1657 | err = duplicate_node_closure (dfa, node, node, node, constraint); | ||
1658 | if (BE (err != REG_NOERROR, 0)) | ||
1659 | return err; | ||
1660 | } | ||
1661 | |||
1662 | /* Expand each epsilon destination nodes. */ | ||
1663 | if (IS_EPSILON_NODE(dfa->nodes[node].type)) | ||
1664 | for (i = 0; i < dfa->edests[node].nelem; ++i) | ||
1665 | { | ||
1666 | re_node_set eclosure_elem; | ||
1667 | Idx edest = dfa->edests[node].elems[i]; | ||
1668 | /* If calculating the epsilon closure of `edest' is in progress, | ||
1669 | return intermediate result. */ | ||
1670 | if (dfa->eclosures[edest].nelem == REG_MISSING) | ||
1671 | { | ||
1672 | incomplete = true; | ||
1673 | continue; | ||
1674 | } | ||
1675 | /* If we haven't calculated the epsilon closure of `edest' yet, | ||
1676 | calculate now. Otherwise use calculated epsilon closure. */ | ||
1677 | if (dfa->eclosures[edest].nelem == 0) | ||
1678 | { | ||
1679 | err = calc_eclosure_iter (&eclosure_elem, dfa, edest, false); | ||
1680 | if (BE (err != REG_NOERROR, 0)) | ||
1681 | return err; | ||
1682 | } | ||
1683 | else | ||
1684 | eclosure_elem = dfa->eclosures[edest]; | ||
1685 | /* Merge the epsilon closure of `edest'. */ | ||
1686 | re_node_set_merge (&eclosure, &eclosure_elem); | ||
1687 | /* If the epsilon closure of `edest' is incomplete, | ||
1688 | the epsilon closure of this node is also incomplete. */ | ||
1689 | if (dfa->eclosures[edest].nelem == 0) | ||
1690 | { | ||
1691 | incomplete = true; | ||
1692 | re_node_set_free (&eclosure_elem); | ||
1693 | } | ||
1694 | } | ||
1695 | |||
1696 | /* Epsilon closures include itself. */ | ||
1697 | ok = re_node_set_insert (&eclosure, node); | ||
1698 | if (BE (! ok, 0)) | ||
1699 | return REG_ESPACE; | ||
1700 | if (incomplete && !root) | ||
1701 | dfa->eclosures[node].nelem = 0; | ||
1702 | else | ||
1703 | dfa->eclosures[node] = eclosure; | ||
1704 | *new_set = eclosure; | ||
1705 | return REG_NOERROR; | ||
1706 | } | ||
1707 | |||
1708 | /* Functions for token which are used in the parser. */ | ||
1709 | |||
1710 | /* Fetch a token from INPUT. | ||
1711 | We must not use this function inside bracket expressions. */ | ||
1712 | |||
1713 | static void | ||
1714 | fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) | ||
1715 | { | ||
1716 | re_string_skip_bytes (input, peek_token (result, input, syntax)); | ||
1717 | } | ||
1718 | |||
1719 | /* Peek a token from INPUT, and return the length of the token. | ||
1720 | We must not use this function inside bracket expressions. */ | ||
1721 | |||
1722 | static int | ||
1723 | peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | ||
1724 | { | ||
1725 | unsigned char c; | ||
1726 | |||
1727 | if (re_string_eoi (input)) | ||
1728 | { | ||
1729 | token->type = END_OF_RE; | ||
1730 | return 0; | ||
1731 | } | ||
1732 | |||
1733 | c = re_string_peek_byte (input, 0); | ||
1734 | token->opr.c = c; | ||
1735 | |||
1736 | token->word_char = 0; | ||
1737 | #ifdef RE_ENABLE_I18N | ||
1738 | token->mb_partial = 0; | ||
1739 | if (input->mb_cur_max > 1 && | ||
1740 | !re_string_first_byte (input, re_string_cur_idx (input))) | ||
1741 | { | ||
1742 | token->type = CHARACTER; | ||
1743 | token->mb_partial = 1; | ||
1744 | return 1; | ||
1745 | } | ||
1746 | #endif | ||
1747 | if (c == '\\') | ||
1748 | { | ||
1749 | unsigned char c2; | ||
1750 | if (re_string_cur_idx (input) + 1 >= re_string_length (input)) | ||
1751 | { | ||
1752 | token->type = BACK_SLASH; | ||
1753 | return 1; | ||
1754 | } | ||
1755 | |||
1756 | c2 = re_string_peek_byte_case (input, 1); | ||
1757 | token->opr.c = c2; | ||
1758 | token->type = CHARACTER; | ||
1759 | #ifdef RE_ENABLE_I18N | ||
1760 | if (input->mb_cur_max > 1) | ||
1761 | { | ||
1762 | wint_t wc = re_string_wchar_at (input, | ||
1763 | re_string_cur_idx (input) + 1); | ||
1764 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | ||
1765 | } | ||
1766 | else | ||
1767 | #endif | ||
1768 | token->word_char = IS_WORD_CHAR (c2) != 0; | ||
1769 | |||
1770 | switch (c2) | ||
1771 | { | ||
1772 | case '|': | ||
1773 | if (!(syntax & REG_LIMITED_OPS) && !(syntax & REG_NO_BK_VBAR)) | ||
1774 | token->type = OP_ALT; | ||
1775 | break; | ||
1776 | case '1': case '2': case '3': case '4': case '5': | ||
1777 | case '6': case '7': case '8': case '9': | ||
1778 | if (!(syntax & REG_NO_BK_REFS)) | ||
1779 | { | ||
1780 | token->type = OP_BACK_REF; | ||
1781 | token->opr.idx = c2 - '1'; | ||
1782 | } | ||
1783 | break; | ||
1784 | case '<': | ||
1785 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1786 | { | ||
1787 | token->type = ANCHOR; | ||
1788 | token->opr.ctx_type = WORD_FIRST; | ||
1789 | } | ||
1790 | break; | ||
1791 | case '>': | ||
1792 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1793 | { | ||
1794 | token->type = ANCHOR; | ||
1795 | token->opr.ctx_type = WORD_LAST; | ||
1796 | } | ||
1797 | break; | ||
1798 | case 'b': | ||
1799 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1800 | { | ||
1801 | token->type = ANCHOR; | ||
1802 | token->opr.ctx_type = WORD_DELIM; | ||
1803 | } | ||
1804 | break; | ||
1805 | case 'B': | ||
1806 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1807 | { | ||
1808 | token->type = ANCHOR; | ||
1809 | token->opr.ctx_type = NOT_WORD_DELIM; | ||
1810 | } | ||
1811 | break; | ||
1812 | case 'w': | ||
1813 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1814 | token->type = OP_WORD; | ||
1815 | break; | ||
1816 | case 'W': | ||
1817 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1818 | token->type = OP_NOTWORD; | ||
1819 | break; | ||
1820 | case 's': | ||
1821 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1822 | token->type = OP_SPACE; | ||
1823 | break; | ||
1824 | case 'S': | ||
1825 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1826 | token->type = OP_NOTSPACE; | ||
1827 | break; | ||
1828 | case '`': | ||
1829 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1830 | { | ||
1831 | token->type = ANCHOR; | ||
1832 | token->opr.ctx_type = BUF_FIRST; | ||
1833 | } | ||
1834 | break; | ||
1835 | case '\'': | ||
1836 | if (!(syntax & REG_NO_GNU_OPS)) | ||
1837 | { | ||
1838 | token->type = ANCHOR; | ||
1839 | token->opr.ctx_type = BUF_LAST; | ||
1840 | } | ||
1841 | break; | ||
1842 | case '(': | ||
1843 | if (!(syntax & REG_NO_BK_PARENS)) | ||
1844 | token->type = OP_OPEN_SUBEXP; | ||
1845 | break; | ||
1846 | case ')': | ||
1847 | if (!(syntax & REG_NO_BK_PARENS)) | ||
1848 | token->type = OP_CLOSE_SUBEXP; | ||
1849 | break; | ||
1850 | case '+': | ||
1851 | if (!(syntax & REG_LIMITED_OPS) && (syntax & REG_BK_PLUS_QM)) | ||
1852 | token->type = OP_DUP_PLUS; | ||
1853 | break; | ||
1854 | case '?': | ||
1855 | if (!(syntax & REG_LIMITED_OPS) && (syntax & REG_BK_PLUS_QM)) | ||
1856 | token->type = OP_DUP_QUESTION; | ||
1857 | break; | ||
1858 | case '{': | ||
1859 | if ((syntax & REG_INTERVALS) && (!(syntax & REG_NO_BK_BRACES))) | ||
1860 | token->type = OP_OPEN_DUP_NUM; | ||
1861 | break; | ||
1862 | case '}': | ||
1863 | if ((syntax & REG_INTERVALS) && (!(syntax & REG_NO_BK_BRACES))) | ||
1864 | token->type = OP_CLOSE_DUP_NUM; | ||
1865 | break; | ||
1866 | default: | ||
1867 | break; | ||
1868 | } | ||
1869 | return 2; | ||
1870 | } | ||
1871 | |||
1872 | token->type = CHARACTER; | ||
1873 | #ifdef RE_ENABLE_I18N | ||
1874 | if (input->mb_cur_max > 1) | ||
1875 | { | ||
1876 | wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); | ||
1877 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | ||
1878 | } | ||
1879 | else | ||
1880 | #endif | ||
1881 | token->word_char = IS_WORD_CHAR (token->opr.c); | ||
1882 | |||
1883 | switch (c) | ||
1884 | { | ||
1885 | case '\n': | ||
1886 | if (syntax & REG_NEWLINE_ALT) | ||
1887 | token->type = OP_ALT; | ||
1888 | break; | ||
1889 | case '|': | ||
1890 | if (!(syntax & REG_LIMITED_OPS) && (syntax & REG_NO_BK_VBAR)) | ||
1891 | token->type = OP_ALT; | ||
1892 | break; | ||
1893 | case '*': | ||
1894 | token->type = OP_DUP_ASTERISK; | ||
1895 | break; | ||
1896 | case '+': | ||
1897 | if (!(syntax & REG_LIMITED_OPS) && !(syntax & REG_BK_PLUS_QM)) | ||
1898 | token->type = OP_DUP_PLUS; | ||
1899 | break; | ||
1900 | case '?': | ||
1901 | if (!(syntax & REG_LIMITED_OPS) && !(syntax & REG_BK_PLUS_QM)) | ||
1902 | token->type = OP_DUP_QUESTION; | ||
1903 | break; | ||
1904 | case '{': | ||
1905 | if ((syntax & REG_INTERVALS) && (syntax & REG_NO_BK_BRACES)) | ||
1906 | token->type = OP_OPEN_DUP_NUM; | ||
1907 | break; | ||
1908 | case '}': | ||
1909 | if ((syntax & REG_INTERVALS) && (syntax & REG_NO_BK_BRACES)) | ||
1910 | token->type = OP_CLOSE_DUP_NUM; | ||
1911 | break; | ||
1912 | case '(': | ||
1913 | if (syntax & REG_NO_BK_PARENS) | ||
1914 | token->type = OP_OPEN_SUBEXP; | ||
1915 | break; | ||
1916 | case ')': | ||
1917 | if (syntax & REG_NO_BK_PARENS) | ||
1918 | token->type = OP_CLOSE_SUBEXP; | ||
1919 | break; | ||
1920 | case '[': | ||
1921 | token->type = OP_OPEN_BRACKET; | ||
1922 | break; | ||
1923 | case '.': | ||
1924 | token->type = OP_PERIOD; | ||
1925 | break; | ||
1926 | case '^': | ||
1927 | if (!(syntax & (REG_CONTEXT_INDEP_ANCHORS | REG_CARET_ANCHORS_HERE)) && | ||
1928 | re_string_cur_idx (input) != 0) | ||
1929 | { | ||
1930 | char prev = re_string_peek_byte (input, -1); | ||
1931 | if (!(syntax & REG_NEWLINE_ALT) || prev != '\n') | ||
1932 | break; | ||
1933 | } | ||
1934 | token->type = ANCHOR; | ||
1935 | token->opr.ctx_type = LINE_FIRST; | ||
1936 | break; | ||
1937 | case '$': | ||
1938 | if (!(syntax & REG_CONTEXT_INDEP_ANCHORS) && | ||
1939 | re_string_cur_idx (input) + 1 != re_string_length (input)) | ||
1940 | { | ||
1941 | re_token_t next; | ||
1942 | re_string_skip_bytes (input, 1); | ||
1943 | peek_token (&next, input, syntax); | ||
1944 | re_string_skip_bytes (input, -1); | ||
1945 | if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) | ||
1946 | break; | ||
1947 | } | ||
1948 | token->type = ANCHOR; | ||
1949 | token->opr.ctx_type = LINE_LAST; | ||
1950 | break; | ||
1951 | default: | ||
1952 | break; | ||
1953 | } | ||
1954 | return 1; | ||
1955 | } | ||
1956 | |||
1957 | /* Peek a token from INPUT, and return the length of the token. | ||
1958 | We must not use this function out of bracket expressions. */ | ||
1959 | |||
1960 | static int | ||
1961 | peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | ||
1962 | { | ||
1963 | unsigned char c; | ||
1964 | if (re_string_eoi (input)) | ||
1965 | { | ||
1966 | token->type = END_OF_RE; | ||
1967 | return 0; | ||
1968 | } | ||
1969 | c = re_string_peek_byte (input, 0); | ||
1970 | token->opr.c = c; | ||
1971 | |||
1972 | #ifdef RE_ENABLE_I18N | ||
1973 | if (input->mb_cur_max > 1 && | ||
1974 | !re_string_first_byte (input, re_string_cur_idx (input))) | ||
1975 | { | ||
1976 | token->type = CHARACTER; | ||
1977 | return 1; | ||
1978 | } | ||
1979 | #endif /* RE_ENABLE_I18N */ | ||
1980 | |||
1981 | if (c == '\\' && (syntax & REG_BACKSLASH_ESCAPE_IN_LISTS) | ||
1982 | && re_string_cur_idx (input) + 1 < re_string_length (input)) | ||
1983 | { | ||
1984 | /* In this case, '\' escape a character. */ | ||
1985 | unsigned char c2; | ||
1986 | re_string_skip_bytes (input, 1); | ||
1987 | c2 = re_string_peek_byte (input, 0); | ||
1988 | token->opr.c = c2; | ||
1989 | token->type = CHARACTER; | ||
1990 | return 1; | ||
1991 | } | ||
1992 | if (c == '[') /* '[' is a special char in a bracket exps. */ | ||
1993 | { | ||
1994 | unsigned char c2; | ||
1995 | int token_len; | ||
1996 | if (re_string_cur_idx (input) + 1 < re_string_length (input)) | ||
1997 | c2 = re_string_peek_byte (input, 1); | ||
1998 | else | ||
1999 | c2 = 0; | ||
2000 | token->opr.c = c2; | ||
2001 | token_len = 2; | ||
2002 | switch (c2) | ||
2003 | { | ||
2004 | case '.': | ||
2005 | token->type = OP_OPEN_COLL_ELEM; | ||
2006 | break; | ||
2007 | case '=': | ||
2008 | token->type = OP_OPEN_EQUIV_CLASS; | ||
2009 | break; | ||
2010 | case ':': | ||
2011 | if (syntax & REG_CHAR_CLASSES) | ||
2012 | { | ||
2013 | token->type = OP_OPEN_CHAR_CLASS; | ||
2014 | break; | ||
2015 | } | ||
2016 | /* else fall through. */ | ||
2017 | default: | ||
2018 | token->type = CHARACTER; | ||
2019 | token->opr.c = c; | ||
2020 | token_len = 1; | ||
2021 | break; | ||
2022 | } | ||
2023 | return token_len; | ||
2024 | } | ||
2025 | switch (c) | ||
2026 | { | ||
2027 | case '-': | ||
2028 | token->type = OP_CHARSET_RANGE; | ||
2029 | break; | ||
2030 | case ']': | ||
2031 | token->type = OP_CLOSE_BRACKET; | ||
2032 | break; | ||
2033 | case '^': | ||
2034 | token->type = OP_NON_MATCH_LIST; | ||
2035 | break; | ||
2036 | default: | ||
2037 | token->type = CHARACTER; | ||
2038 | } | ||
2039 | return 1; | ||
2040 | } | ||
2041 | |||
2042 | /* Functions for parser. */ | ||
2043 | |||
2044 | /* Entry point of the parser. | ||
2045 | Parse the regular expression REGEXP and return the structure tree. | ||
2046 | If an error is occured, ERR is set by error code, and return NULL. | ||
2047 | This function build the following tree, from regular expression <reg_exp>: | ||
2048 | CAT | ||
2049 | / \ | ||
2050 | / \ | ||
2051 | <reg_exp> EOR | ||
2052 | |||
2053 | CAT means concatenation. | ||
2054 | EOR means end of regular expression. */ | ||
2055 | |||
2056 | static bin_tree_t * | ||
2057 | parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, | ||
2058 | reg_errcode_t *err) | ||
2059 | { | ||
2060 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
2061 | bin_tree_t *tree, *eor, *root; | ||
2062 | re_token_t current_token; | ||
2063 | dfa->syntax = syntax; | ||
2064 | fetch_token (¤t_token, regexp, syntax | REG_CARET_ANCHORS_HERE); | ||
2065 | tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); | ||
2066 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2067 | return NULL; | ||
2068 | eor = create_tree (dfa, NULL, NULL, END_OF_RE); | ||
2069 | if (tree != NULL) | ||
2070 | root = create_tree (dfa, tree, eor, CONCAT); | ||
2071 | else | ||
2072 | root = eor; | ||
2073 | if (BE (eor == NULL || root == NULL, 0)) | ||
2074 | { | ||
2075 | *err = REG_ESPACE; | ||
2076 | return NULL; | ||
2077 | } | ||
2078 | return root; | ||
2079 | } | ||
2080 | |||
2081 | /* This function build the following tree, from regular expression | ||
2082 | <branch1>|<branch2>: | ||
2083 | ALT | ||
2084 | / \ | ||
2085 | / \ | ||
2086 | <branch1> <branch2> | ||
2087 | |||
2088 | ALT means alternative, which represents the operator `|'. */ | ||
2089 | |||
2090 | static bin_tree_t * | ||
2091 | parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2092 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
2093 | { | ||
2094 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
2095 | bin_tree_t *tree, *branch = NULL; | ||
2096 | tree = parse_branch (regexp, preg, token, syntax, nest, err); | ||
2097 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2098 | return NULL; | ||
2099 | |||
2100 | while (token->type == OP_ALT) | ||
2101 | { | ||
2102 | fetch_token (token, regexp, syntax | REG_CARET_ANCHORS_HERE); | ||
2103 | if (token->type != OP_ALT && token->type != END_OF_RE | ||
2104 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | ||
2105 | { | ||
2106 | branch = parse_branch (regexp, preg, token, syntax, nest, err); | ||
2107 | if (BE (*err != REG_NOERROR && branch == NULL, 0)) | ||
2108 | return NULL; | ||
2109 | } | ||
2110 | else | ||
2111 | branch = NULL; | ||
2112 | tree = create_tree (dfa, tree, branch, OP_ALT); | ||
2113 | if (BE (tree == NULL, 0)) | ||
2114 | { | ||
2115 | *err = REG_ESPACE; | ||
2116 | return NULL; | ||
2117 | } | ||
2118 | } | ||
2119 | return tree; | ||
2120 | } | ||
2121 | |||
2122 | /* This function build the following tree, from regular expression | ||
2123 | <exp1><exp2>: | ||
2124 | CAT | ||
2125 | / \ | ||
2126 | / \ | ||
2127 | <exp1> <exp2> | ||
2128 | |||
2129 | CAT means concatenation. */ | ||
2130 | |||
2131 | static bin_tree_t * | ||
2132 | parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2133 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
2134 | { | ||
2135 | bin_tree_t *tree, *exp; | ||
2136 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
2137 | tree = parse_expression (regexp, preg, token, syntax, nest, err); | ||
2138 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2139 | return NULL; | ||
2140 | |||
2141 | while (token->type != OP_ALT && token->type != END_OF_RE | ||
2142 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | ||
2143 | { | ||
2144 | exp = parse_expression (regexp, preg, token, syntax, nest, err); | ||
2145 | if (BE (*err != REG_NOERROR && exp == NULL, 0)) | ||
2146 | { | ||
2147 | return NULL; | ||
2148 | } | ||
2149 | if (tree != NULL && exp != NULL) | ||
2150 | { | ||
2151 | tree = create_tree (dfa, tree, exp, CONCAT); | ||
2152 | if (tree == NULL) | ||
2153 | { | ||
2154 | *err = REG_ESPACE; | ||
2155 | return NULL; | ||
2156 | } | ||
2157 | } | ||
2158 | else if (tree == NULL) | ||
2159 | tree = exp; | ||
2160 | /* Otherwise exp == NULL, we don't need to create new tree. */ | ||
2161 | } | ||
2162 | return tree; | ||
2163 | } | ||
2164 | |||
2165 | /* This function build the following tree, from regular expression a*: | ||
2166 | * | ||
2167 | | | ||
2168 | a | ||
2169 | */ | ||
2170 | |||
2171 | static bin_tree_t * | ||
2172 | parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2173 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
2174 | { | ||
2175 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
2176 | bin_tree_t *tree; | ||
2177 | switch (token->type) | ||
2178 | { | ||
2179 | case CHARACTER: | ||
2180 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2181 | if (BE (tree == NULL, 0)) | ||
2182 | { | ||
2183 | *err = REG_ESPACE; | ||
2184 | return NULL; | ||
2185 | } | ||
2186 | #ifdef RE_ENABLE_I18N | ||
2187 | if (dfa->mb_cur_max > 1) | ||
2188 | { | ||
2189 | while (!re_string_eoi (regexp) | ||
2190 | && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) | ||
2191 | { | ||
2192 | bin_tree_t *mbc_remain; | ||
2193 | fetch_token (token, regexp, syntax); | ||
2194 | mbc_remain = create_token_tree (dfa, NULL, NULL, token); | ||
2195 | tree = create_tree (dfa, tree, mbc_remain, CONCAT); | ||
2196 | if (BE (mbc_remain == NULL || tree == NULL, 0)) | ||
2197 | { | ||
2198 | *err = REG_ESPACE; | ||
2199 | return NULL; | ||
2200 | } | ||
2201 | } | ||
2202 | } | ||
2203 | #endif | ||
2204 | break; | ||
2205 | case OP_OPEN_SUBEXP: | ||
2206 | tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); | ||
2207 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2208 | return NULL; | ||
2209 | break; | ||
2210 | case OP_OPEN_BRACKET: | ||
2211 | tree = parse_bracket_exp (regexp, dfa, token, syntax, err); | ||
2212 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2213 | return NULL; | ||
2214 | break; | ||
2215 | case OP_BACK_REF: | ||
2216 | if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) | ||
2217 | { | ||
2218 | *err = REG_ESUBREG; | ||
2219 | return NULL; | ||
2220 | } | ||
2221 | dfa->used_bkref_map |= 1 << token->opr.idx; | ||
2222 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2223 | if (BE (tree == NULL, 0)) | ||
2224 | { | ||
2225 | *err = REG_ESPACE; | ||
2226 | return NULL; | ||
2227 | } | ||
2228 | ++dfa->nbackref; | ||
2229 | dfa->has_mb_node = 1; | ||
2230 | break; | ||
2231 | case OP_OPEN_DUP_NUM: | ||
2232 | if (syntax & REG_CONTEXT_INVALID_DUP) | ||
2233 | { | ||
2234 | *err = REG_BADRPT; | ||
2235 | return NULL; | ||
2236 | } | ||
2237 | /* FALLTHROUGH */ | ||
2238 | case OP_DUP_ASTERISK: | ||
2239 | case OP_DUP_PLUS: | ||
2240 | case OP_DUP_QUESTION: | ||
2241 | if (syntax & REG_CONTEXT_INVALID_OPS) | ||
2242 | { | ||
2243 | *err = REG_BADRPT; | ||
2244 | return NULL; | ||
2245 | } | ||
2246 | else if (syntax & REG_CONTEXT_INDEP_OPS) | ||
2247 | { | ||
2248 | fetch_token (token, regexp, syntax); | ||
2249 | return parse_expression (regexp, preg, token, syntax, nest, err); | ||
2250 | } | ||
2251 | /* else fall through */ | ||
2252 | case OP_CLOSE_SUBEXP: | ||
2253 | if ((token->type == OP_CLOSE_SUBEXP) && | ||
2254 | !(syntax & REG_UNMATCHED_RIGHT_PAREN_ORD)) | ||
2255 | { | ||
2256 | *err = REG_ERPAREN; | ||
2257 | return NULL; | ||
2258 | } | ||
2259 | /* else fall through */ | ||
2260 | case OP_CLOSE_DUP_NUM: | ||
2261 | /* We treat it as a normal character. */ | ||
2262 | |||
2263 | /* Then we can these characters as normal characters. */ | ||
2264 | token->type = CHARACTER; | ||
2265 | /* mb_partial and word_char bits should be initialized already | ||
2266 | by peek_token. */ | ||
2267 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2268 | if (BE (tree == NULL, 0)) | ||
2269 | { | ||
2270 | *err = REG_ESPACE; | ||
2271 | return NULL; | ||
2272 | } | ||
2273 | break; | ||
2274 | case ANCHOR: | ||
2275 | if ((token->opr.ctx_type | ||
2276 | & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) | ||
2277 | && dfa->word_ops_used == 0) | ||
2278 | init_word_char (dfa); | ||
2279 | if (token->opr.ctx_type == WORD_DELIM | ||
2280 | || token->opr.ctx_type == NOT_WORD_DELIM) | ||
2281 | { | ||
2282 | bin_tree_t *tree_first, *tree_last; | ||
2283 | if (token->opr.ctx_type == WORD_DELIM) | ||
2284 | { | ||
2285 | token->opr.ctx_type = WORD_FIRST; | ||
2286 | tree_first = create_token_tree (dfa, NULL, NULL, token); | ||
2287 | token->opr.ctx_type = WORD_LAST; | ||
2288 | } | ||
2289 | else | ||
2290 | { | ||
2291 | token->opr.ctx_type = INSIDE_WORD; | ||
2292 | tree_first = create_token_tree (dfa, NULL, NULL, token); | ||
2293 | token->opr.ctx_type = INSIDE_NOTWORD; | ||
2294 | } | ||
2295 | tree_last = create_token_tree (dfa, NULL, NULL, token); | ||
2296 | tree = create_tree (dfa, tree_first, tree_last, OP_ALT); | ||
2297 | if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) | ||
2298 | { | ||
2299 | *err = REG_ESPACE; | ||
2300 | return NULL; | ||
2301 | } | ||
2302 | } | ||
2303 | else | ||
2304 | { | ||
2305 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2306 | if (BE (tree == NULL, 0)) | ||
2307 | { | ||
2308 | *err = REG_ESPACE; | ||
2309 | return NULL; | ||
2310 | } | ||
2311 | } | ||
2312 | /* We must return here, since ANCHORs can't be followed | ||
2313 | by repetition operators. | ||
2314 | eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", | ||
2315 | it must not be "<ANCHOR(^)><REPEAT(*)>". */ | ||
2316 | fetch_token (token, regexp, syntax); | ||
2317 | return tree; | ||
2318 | case OP_PERIOD: | ||
2319 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2320 | if (BE (tree == NULL, 0)) | ||
2321 | { | ||
2322 | *err = REG_ESPACE; | ||
2323 | return NULL; | ||
2324 | } | ||
2325 | if (dfa->mb_cur_max > 1) | ||
2326 | dfa->has_mb_node = 1; | ||
2327 | break; | ||
2328 | case OP_WORD: | ||
2329 | case OP_NOTWORD: | ||
2330 | tree = build_charclass_op (dfa, regexp->trans, | ||
2331 | (const unsigned char *) "alnum", | ||
2332 | (const unsigned char *) "_", | ||
2333 | token->type == OP_NOTWORD, err); | ||
2334 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2335 | return NULL; | ||
2336 | break; | ||
2337 | case OP_SPACE: | ||
2338 | case OP_NOTSPACE: | ||
2339 | tree = build_charclass_op (dfa, regexp->trans, | ||
2340 | (const unsigned char *) "space", | ||
2341 | (const unsigned char *) "", | ||
2342 | token->type == OP_NOTSPACE, err); | ||
2343 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2344 | return NULL; | ||
2345 | break; | ||
2346 | case OP_ALT: | ||
2347 | case END_OF_RE: | ||
2348 | return NULL; | ||
2349 | case BACK_SLASH: | ||
2350 | *err = REG_EESCAPE; | ||
2351 | return NULL; | ||
2352 | default: | ||
2353 | /* Must not happen? */ | ||
2354 | #ifdef DEBUG | ||
2355 | assert (0); | ||
2356 | #endif | ||
2357 | return NULL; | ||
2358 | } | ||
2359 | fetch_token (token, regexp, syntax); | ||
2360 | |||
2361 | while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS | ||
2362 | || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) | ||
2363 | { | ||
2364 | tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); | ||
2365 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2366 | return NULL; | ||
2367 | /* In BRE consecutive duplications are not allowed. */ | ||
2368 | if ((syntax & REG_CONTEXT_INVALID_DUP) | ||
2369 | && (token->type == OP_DUP_ASTERISK | ||
2370 | || token->type == OP_OPEN_DUP_NUM)) | ||
2371 | { | ||
2372 | *err = REG_BADRPT; | ||
2373 | return NULL; | ||
2374 | } | ||
2375 | } | ||
2376 | |||
2377 | return tree; | ||
2378 | } | ||
2379 | |||
2380 | /* This function build the following tree, from regular expression | ||
2381 | (<reg_exp>): | ||
2382 | SUBEXP | ||
2383 | | | ||
2384 | <reg_exp> | ||
2385 | */ | ||
2386 | |||
2387 | static bin_tree_t * | ||
2388 | parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2389 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
2390 | { | ||
2391 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
2392 | bin_tree_t *tree; | ||
2393 | size_t cur_nsub; | ||
2394 | cur_nsub = preg->re_nsub++; | ||
2395 | |||
2396 | fetch_token (token, regexp, syntax | REG_CARET_ANCHORS_HERE); | ||
2397 | |||
2398 | /* The subexpression may be a null string. */ | ||
2399 | if (token->type == OP_CLOSE_SUBEXP) | ||
2400 | tree = NULL; | ||
2401 | else | ||
2402 | { | ||
2403 | tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); | ||
2404 | if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) | ||
2405 | *err = REG_EPAREN; | ||
2406 | if (BE (*err != REG_NOERROR, 0)) | ||
2407 | return NULL; | ||
2408 | } | ||
2409 | |||
2410 | if (cur_nsub <= '9' - '1') | ||
2411 | dfa->completed_bkref_map |= 1 << cur_nsub; | ||
2412 | |||
2413 | tree = create_tree (dfa, tree, NULL, SUBEXP); | ||
2414 | if (BE (tree == NULL, 0)) | ||
2415 | { | ||
2416 | *err = REG_ESPACE; | ||
2417 | return NULL; | ||
2418 | } | ||
2419 | tree->token.opr.idx = cur_nsub; | ||
2420 | return tree; | ||
2421 | } | ||
2422 | |||
2423 | /* This function parse repetition operators like "*", "+", "{1,3}" etc. */ | ||
2424 | |||
2425 | static bin_tree_t * | ||
2426 | parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, | ||
2427 | re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) | ||
2428 | { | ||
2429 | bin_tree_t *tree = NULL, *old_tree = NULL; | ||
2430 | Idx i, start, end, start_idx = re_string_cur_idx (regexp); | ||
2431 | re_token_t start_token = *token; | ||
2432 | |||
2433 | if (token->type == OP_OPEN_DUP_NUM) | ||
2434 | { | ||
2435 | end = 0; | ||
2436 | start = fetch_number (regexp, token, syntax); | ||
2437 | if (start == REG_MISSING) | ||
2438 | { | ||
2439 | if (token->type == CHARACTER && token->opr.c == ',') | ||
2440 | start = 0; /* We treat "{,m}" as "{0,m}". */ | ||
2441 | else | ||
2442 | { | ||
2443 | *err = REG_BADBR; /* <re>{} is invalid. */ | ||
2444 | return NULL; | ||
2445 | } | ||
2446 | } | ||
2447 | if (BE (start != REG_ERROR, 1)) | ||
2448 | { | ||
2449 | /* We treat "{n}" as "{n,n}". */ | ||
2450 | end = ((token->type == OP_CLOSE_DUP_NUM) ? start | ||
2451 | : ((token->type == CHARACTER && token->opr.c == ',') | ||
2452 | ? fetch_number (regexp, token, syntax) : REG_ERROR)); | ||
2453 | } | ||
2454 | if (BE (start == REG_ERROR || end == REG_ERROR, 0)) | ||
2455 | { | ||
2456 | /* Invalid sequence. */ | ||
2457 | if (BE (!(syntax & REG_INVALID_INTERVAL_ORD), 0)) | ||
2458 | { | ||
2459 | if (token->type == END_OF_RE) | ||
2460 | *err = REG_EBRACE; | ||
2461 | else | ||
2462 | *err = REG_BADBR; | ||
2463 | |||
2464 | return NULL; | ||
2465 | } | ||
2466 | |||
2467 | /* If the syntax bit is set, rollback. */ | ||
2468 | re_string_set_index (regexp, start_idx); | ||
2469 | *token = start_token; | ||
2470 | token->type = CHARACTER; | ||
2471 | /* mb_partial and word_char bits should be already initialized by | ||
2472 | peek_token. */ | ||
2473 | return elem; | ||
2474 | } | ||
2475 | |||
2476 | if (BE (end != REG_MISSING && start > end, 0)) | ||
2477 | { | ||
2478 | /* First number greater than second. */ | ||
2479 | *err = REG_BADBR; | ||
2480 | return NULL; | ||
2481 | } | ||
2482 | } | ||
2483 | else | ||
2484 | { | ||
2485 | start = (token->type == OP_DUP_PLUS) ? 1 : 0; | ||
2486 | end = (token->type == OP_DUP_QUESTION) ? 1 : REG_MISSING; | ||
2487 | } | ||
2488 | |||
2489 | fetch_token (token, regexp, syntax); | ||
2490 | |||
2491 | if (BE (elem == NULL, 0)) | ||
2492 | return NULL; | ||
2493 | if (BE (start == 0 && end == 0, 0)) | ||
2494 | { | ||
2495 | postorder (elem, free_tree, NULL); | ||
2496 | return NULL; | ||
2497 | } | ||
2498 | |||
2499 | /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */ | ||
2500 | if (BE (start > 0, 0)) | ||
2501 | { | ||
2502 | tree = elem; | ||
2503 | for (i = 2; i <= start; ++i) | ||
2504 | { | ||
2505 | elem = duplicate_tree (elem, dfa); | ||
2506 | tree = create_tree (dfa, tree, elem, CONCAT); | ||
2507 | if (BE (elem == NULL || tree == NULL, 0)) | ||
2508 | goto parse_dup_op_espace; | ||
2509 | } | ||
2510 | |||
2511 | if (start == end) | ||
2512 | return tree; | ||
2513 | |||
2514 | /* Duplicate ELEM before it is marked optional. */ | ||
2515 | elem = duplicate_tree (elem, dfa); | ||
2516 | old_tree = tree; | ||
2517 | } | ||
2518 | else | ||
2519 | old_tree = NULL; | ||
2520 | |||
2521 | if (elem->token.type == SUBEXP) | ||
2522 | postorder (elem, mark_opt_subexp, (void *) (long) elem->token.opr.idx); | ||
2523 | |||
2524 | tree = create_tree (dfa, elem, NULL, | ||
2525 | (end == REG_MISSING ? OP_DUP_ASTERISK : OP_ALT)); | ||
2526 | if (BE (tree == NULL, 0)) | ||
2527 | goto parse_dup_op_espace; | ||
2528 | |||
2529 | /* This loop is actually executed only when end != REG_MISSING, | ||
2530 | to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have | ||
2531 | already created the start+1-th copy. */ | ||
2532 | if ((Idx) -1 < 0 || end != REG_MISSING) | ||
2533 | for (i = start + 2; i <= end; ++i) | ||
2534 | { | ||
2535 | elem = duplicate_tree (elem, dfa); | ||
2536 | tree = create_tree (dfa, tree, elem, CONCAT); | ||
2537 | if (BE (elem == NULL || tree == NULL, 0)) | ||
2538 | goto parse_dup_op_espace; | ||
2539 | |||
2540 | tree = create_tree (dfa, tree, NULL, OP_ALT); | ||
2541 | if (BE (tree == NULL, 0)) | ||
2542 | goto parse_dup_op_espace; | ||
2543 | } | ||
2544 | |||
2545 | if (old_tree) | ||
2546 | tree = create_tree (dfa, old_tree, tree, CONCAT); | ||
2547 | |||
2548 | return tree; | ||
2549 | |||
2550 | parse_dup_op_espace: | ||
2551 | *err = REG_ESPACE; | ||
2552 | return NULL; | ||
2553 | } | ||
2554 | |||
2555 | /* Size of the names for collating symbol/equivalence_class/character_class. | ||
2556 | I'm not sure, but maybe enough. */ | ||
2557 | #define BRACKET_NAME_BUF_SIZE 32 | ||
2558 | |||
2559 | #ifndef _LIBC | ||
2560 | /* Local function for parse_bracket_exp only used in case of NOT _LIBC. | ||
2561 | Build the range expression which starts from START_ELEM, and ends | ||
2562 | at END_ELEM. The result are written to MBCSET and SBCSET. | ||
2563 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | ||
2564 | mbcset->range_ends, is a pointer argument sinse we may | ||
2565 | update it. */ | ||
2566 | |||
2567 | static reg_errcode_t | ||
2568 | build_range_exp (bitset sbcset, | ||
2569 | # ifdef RE_ENABLE_I18N | ||
2570 | re_charset_t *mbcset, Idx *range_alloc, | ||
2571 | # endif | ||
2572 | bracket_elem_t *start_elem, bracket_elem_t *end_elem) | ||
2573 | { | ||
2574 | unsigned int start_ch, end_ch; | ||
2575 | /* Equivalence Classes and Character Classes can't be a range start/end. */ | ||
2576 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | ||
2577 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | ||
2578 | 0)) | ||
2579 | return REG_ERANGE; | ||
2580 | |||
2581 | /* We can handle no multi character collating elements without libc | ||
2582 | support. */ | ||
2583 | if (BE ((start_elem->type == COLL_SYM | ||
2584 | && strlen ((char *) start_elem->opr.name) > 1) | ||
2585 | || (end_elem->type == COLL_SYM | ||
2586 | && strlen ((char *) end_elem->opr.name) > 1), 0)) | ||
2587 | return REG_ECOLLATE; | ||
2588 | |||
2589 | # ifdef RE_ENABLE_I18N | ||
2590 | { | ||
2591 | wchar_t wc; | ||
2592 | wint_t start_wc, end_wc; | ||
2593 | wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | ||
2594 | |||
2595 | start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch | ||
2596 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | ||
2597 | : 0)); | ||
2598 | end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch | ||
2599 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | ||
2600 | : 0)); | ||
2601 | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | ||
2602 | ? __btowc (start_ch) : start_elem->opr.wch); | ||
2603 | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | ||
2604 | ? __btowc (end_ch) : end_elem->opr.wch); | ||
2605 | if (start_wc == WEOF || end_wc == WEOF) | ||
2606 | return REG_ECOLLATE; | ||
2607 | cmp_buf[0] = start_wc; | ||
2608 | cmp_buf[4] = end_wc; | ||
2609 | if (wcscoll (cmp_buf, cmp_buf + 4) > 0) | ||
2610 | return REG_ERANGE; | ||
2611 | |||
2612 | /* Got valid collation sequence values, add them as a new entry. | ||
2613 | However, for !_LIBC we have no collation elements: if the | ||
2614 | character set is single byte, the single byte character set | ||
2615 | that we build below suffices. parse_bracket_exp passes | ||
2616 | no MBCSET if dfa->mb_cur_max == 1. */ | ||
2617 | if (mbcset) | ||
2618 | { | ||
2619 | /* Check the space of the arrays. */ | ||
2620 | if (BE (*range_alloc == mbcset->nranges, 0)) | ||
2621 | { | ||
2622 | /* There is not enough space, need realloc. */ | ||
2623 | wchar_t *new_array_start, *new_array_end; | ||
2624 | Idx new_nranges; | ||
2625 | |||
2626 | new_nranges = mbcset->nranges; | ||
2627 | /* Use realloc since mbcset->range_starts and mbcset->range_ends | ||
2628 | are NULL if *range_alloc == 0. */ | ||
2629 | new_array_start = re_x2realloc (mbcset->range_starts, wchar_t, | ||
2630 | &new_nranges); | ||
2631 | new_array_end = re_realloc (mbcset->range_ends, wchar_t, | ||
2632 | new_nranges); | ||
2633 | |||
2634 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | ||
2635 | return REG_ESPACE; | ||
2636 | |||
2637 | mbcset->range_starts = new_array_start; | ||
2638 | mbcset->range_ends = new_array_end; | ||
2639 | *range_alloc = new_nranges; | ||
2640 | } | ||
2641 | |||
2642 | mbcset->range_starts[mbcset->nranges] = start_wc; | ||
2643 | mbcset->range_ends[mbcset->nranges++] = end_wc; | ||
2644 | } | ||
2645 | |||
2646 | /* Build the table for single byte characters. */ | ||
2647 | for (wc = 0; wc < SBC_MAX; ++wc) | ||
2648 | { | ||
2649 | cmp_buf[2] = wc; | ||
2650 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | ||
2651 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | ||
2652 | bitset_set (sbcset, wc); | ||
2653 | } | ||
2654 | } | ||
2655 | # else /* not RE_ENABLE_I18N */ | ||
2656 | { | ||
2657 | unsigned int ch; | ||
2658 | start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch | ||
2659 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | ||
2660 | : 0)); | ||
2661 | end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch | ||
2662 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | ||
2663 | : 0)); | ||
2664 | if (start_ch > end_ch) | ||
2665 | return REG_ERANGE; | ||
2666 | /* Build the table for single byte characters. */ | ||
2667 | for (ch = 0; ch < SBC_MAX; ++ch) | ||
2668 | if (start_ch <= ch && ch <= end_ch) | ||
2669 | bitset_set (sbcset, ch); | ||
2670 | } | ||
2671 | # endif /* not RE_ENABLE_I18N */ | ||
2672 | return REG_NOERROR; | ||
2673 | } | ||
2674 | #endif /* not _LIBC */ | ||
2675 | |||
2676 | #ifndef _LIBC | ||
2677 | /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. | ||
2678 | Build the collating element which is represented by NAME. | ||
2679 | The result are written to MBCSET and SBCSET. | ||
2680 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | ||
2681 | pointer argument since we may update it. */ | ||
2682 | |||
2683 | static reg_errcode_t | ||
2684 | build_collating_symbol (bitset sbcset, | ||
2685 | # ifdef RE_ENABLE_I18N | ||
2686 | re_charset_t *mbcset, Idx *coll_sym_alloc, | ||
2687 | # endif | ||
2688 | const unsigned char *name) | ||
2689 | { | ||
2690 | size_t name_len = strlen ((const char *) name); | ||
2691 | if (BE (name_len != 1, 0)) | ||
2692 | return REG_ECOLLATE; | ||
2693 | else | ||
2694 | { | ||
2695 | bitset_set (sbcset, name[0]); | ||
2696 | return REG_NOERROR; | ||
2697 | } | ||
2698 | } | ||
2699 | #endif /* not _LIBC */ | ||
2700 | |||
2701 | /* This function parse bracket expression like "[abc]", "[a-c]", | ||
2702 | "[[.a-a.]]" etc. */ | ||
2703 | |||
2704 | static bin_tree_t * | ||
2705 | parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, | ||
2706 | reg_syntax_t syntax, reg_errcode_t *err) | ||
2707 | { | ||
2708 | #ifdef _LIBC | ||
2709 | const unsigned char *collseqmb; | ||
2710 | const char *collseqwc; | ||
2711 | uint32_t nrules; | ||
2712 | int32_t table_size; | ||
2713 | const int32_t *symb_table; | ||
2714 | const unsigned char *extra; | ||
2715 | |||
2716 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
2717 | Seek the collating symbol entry correspondings to NAME. | ||
2718 | Return the index of the symbol in the SYMB_TABLE. */ | ||
2719 | |||
2720 | auto inline int32_t | ||
2721 | __attribute ((always_inline)) | ||
2722 | seek_collating_symbol_entry (const unsigned char *name, size_t name_len) | ||
2723 | { | ||
2724 | int32_t hash = elem_hash ((const char *) name, name_len); | ||
2725 | int32_t elem = hash % table_size; | ||
2726 | int32_t second = hash % (table_size - 2); | ||
2727 | while (symb_table[2 * elem] != 0) | ||
2728 | { | ||
2729 | /* First compare the hashing value. */ | ||
2730 | if (symb_table[2 * elem] == hash | ||
2731 | /* Compare the length of the name. */ | ||
2732 | && name_len == extra[symb_table[2 * elem + 1]] | ||
2733 | /* Compare the name. */ | ||
2734 | && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], | ||
2735 | name_len) == 0) | ||
2736 | { | ||
2737 | /* Yep, this is the entry. */ | ||
2738 | break; | ||
2739 | } | ||
2740 | |||
2741 | /* Next entry. */ | ||
2742 | elem += second; | ||
2743 | } | ||
2744 | return elem; | ||
2745 | } | ||
2746 | |||
2747 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
2748 | Look up the collation sequence value of BR_ELEM. | ||
2749 | Return the value if succeeded, UINT_MAX otherwise. */ | ||
2750 | |||
2751 | auto inline unsigned int | ||
2752 | __attribute ((always_inline)) | ||
2753 | lookup_collation_sequence_value (bracket_elem_t *br_elem) | ||
2754 | { | ||
2755 | if (br_elem->type == SB_CHAR) | ||
2756 | { | ||
2757 | /* | ||
2758 | if (MB_CUR_MAX == 1) | ||
2759 | */ | ||
2760 | if (nrules == 0) | ||
2761 | return collseqmb[br_elem->opr.ch]; | ||
2762 | else | ||
2763 | { | ||
2764 | wint_t wc = __btowc (br_elem->opr.ch); | ||
2765 | return __collseq_table_lookup (collseqwc, wc); | ||
2766 | } | ||
2767 | } | ||
2768 | else if (br_elem->type == MB_CHAR) | ||
2769 | { | ||
2770 | return __collseq_table_lookup (collseqwc, br_elem->opr.wch); | ||
2771 | } | ||
2772 | else if (br_elem->type == COLL_SYM) | ||
2773 | { | ||
2774 | size_t sym_name_len = strlen ((char *) br_elem->opr.name); | ||
2775 | if (nrules != 0) | ||
2776 | { | ||
2777 | int32_t elem, idx; | ||
2778 | elem = seek_collating_symbol_entry (br_elem->opr.name, | ||
2779 | sym_name_len); | ||
2780 | if (symb_table[2 * elem] != 0) | ||
2781 | { | ||
2782 | /* We found the entry. */ | ||
2783 | idx = symb_table[2 * elem + 1]; | ||
2784 | /* Skip the name of collating element name. */ | ||
2785 | idx += 1 + extra[idx]; | ||
2786 | /* Skip the byte sequence of the collating element. */ | ||
2787 | idx += 1 + extra[idx]; | ||
2788 | /* Adjust for the alignment. */ | ||
2789 | idx = (idx + 3) & ~3; | ||
2790 | /* Skip the multibyte collation sequence value. */ | ||
2791 | idx += sizeof (unsigned int); | ||
2792 | /* Skip the wide char sequence of the collating element. */ | ||
2793 | idx += sizeof (unsigned int) * | ||
2794 | (1 + *(unsigned int *) (extra + idx)); | ||
2795 | /* Return the collation sequence value. */ | ||
2796 | return *(unsigned int *) (extra + idx); | ||
2797 | } | ||
2798 | else if (symb_table[2 * elem] == 0 && sym_name_len == 1) | ||
2799 | { | ||
2800 | /* No valid character. Match it as a single byte | ||
2801 | character. */ | ||
2802 | return collseqmb[br_elem->opr.name[0]]; | ||
2803 | } | ||
2804 | } | ||
2805 | else if (sym_name_len == 1) | ||
2806 | return collseqmb[br_elem->opr.name[0]]; | ||
2807 | } | ||
2808 | return UINT_MAX; | ||
2809 | } | ||
2810 | |||
2811 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
2812 | Build the range expression which starts from START_ELEM, and ends | ||
2813 | at END_ELEM. The result are written to MBCSET and SBCSET. | ||
2814 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | ||
2815 | mbcset->range_ends, is a pointer argument sinse we may | ||
2816 | update it. */ | ||
2817 | |||
2818 | auto inline reg_errcode_t | ||
2819 | __attribute ((always_inline)) | ||
2820 | build_range_exp (bitset sbcset, re_charset_t *mbcset, | ||
2821 | Idx *range_alloc, | ||
2822 | bracket_elem_t *start_elem, bracket_elem_t *end_elem) | ||
2823 | { | ||
2824 | unsigned int ch; | ||
2825 | uint32_t start_collseq; | ||
2826 | uint32_t end_collseq; | ||
2827 | |||
2828 | /* Equivalence Classes and Character Classes can't be a range | ||
2829 | start/end. */ | ||
2830 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | ||
2831 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | ||
2832 | 0)) | ||
2833 | return REG_ERANGE; | ||
2834 | |||
2835 | start_collseq = lookup_collation_sequence_value (start_elem); | ||
2836 | end_collseq = lookup_collation_sequence_value (end_elem); | ||
2837 | /* Check start/end collation sequence values. */ | ||
2838 | if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) | ||
2839 | return REG_ECOLLATE; | ||
2840 | if (BE ((syntax & REG_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) | ||
2841 | return REG_ERANGE; | ||
2842 | |||
2843 | /* Got valid collation sequence values, add them as a new entry. | ||
2844 | However, if we have no collation elements, and the character set | ||
2845 | is single byte, the single byte character set that we | ||
2846 | build below suffices. */ | ||
2847 | if (nrules > 0 || dfa->mb_cur_max > 1) | ||
2848 | { | ||
2849 | /* Check the space of the arrays. */ | ||
2850 | if (BE (*range_alloc == mbcset->nranges, 0)) | ||
2851 | { | ||
2852 | /* There is not enough space, need realloc. */ | ||
2853 | uint32_t *new_array_start; | ||
2854 | uint32_t *new_array_end; | ||
2855 | Idx new_nranges; | ||
2856 | |||
2857 | new_nranges = mbcset->nranges; | ||
2858 | new_array_start = re_x2realloc (mbcset->range_starts, uint32_t, | ||
2859 | &new_nranges); | ||
2860 | new_array_end = re_realloc (mbcset->range_ends, uint32_t, | ||
2861 | new_nranges); | ||
2862 | |||
2863 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | ||
2864 | return REG_ESPACE; | ||
2865 | |||
2866 | mbcset->range_starts = new_array_start; | ||
2867 | mbcset->range_ends = new_array_end; | ||
2868 | *range_alloc = new_nranges; | ||
2869 | } | ||
2870 | |||
2871 | mbcset->range_starts[mbcset->nranges] = start_collseq; | ||
2872 | mbcset->range_ends[mbcset->nranges++] = end_collseq; | ||
2873 | } | ||
2874 | |||
2875 | /* Build the table for single byte characters. */ | ||
2876 | for (ch = 0; ch < SBC_MAX; ch++) | ||
2877 | { | ||
2878 | uint32_t ch_collseq; | ||
2879 | /* | ||
2880 | if (MB_CUR_MAX == 1) | ||
2881 | */ | ||
2882 | if (nrules == 0) | ||
2883 | ch_collseq = collseqmb[ch]; | ||
2884 | else | ||
2885 | ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); | ||
2886 | if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) | ||
2887 | bitset_set (sbcset, ch); | ||
2888 | } | ||
2889 | return REG_NOERROR; | ||
2890 | } | ||
2891 | |||
2892 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
2893 | Build the collating element which is represented by NAME. | ||
2894 | The result are written to MBCSET and SBCSET. | ||
2895 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | ||
2896 | pointer argument sinse we may update it. */ | ||
2897 | |||
2898 | auto inline reg_errcode_t | ||
2899 | __attribute ((always_inline)) | ||
2900 | build_collating_symbol (bitset sbcset, re_charset_t *mbcset, | ||
2901 | Idx *coll_sym_alloc, const unsigned char *name) | ||
2902 | { | ||
2903 | int32_t elem, idx; | ||
2904 | size_t name_len = strlen ((const char *) name); | ||
2905 | if (nrules != 0) | ||
2906 | { | ||
2907 | elem = seek_collating_symbol_entry (name, name_len); | ||
2908 | if (symb_table[2 * elem] != 0) | ||
2909 | { | ||
2910 | /* We found the entry. */ | ||
2911 | idx = symb_table[2 * elem + 1]; | ||
2912 | /* Skip the name of collating element name. */ | ||
2913 | idx += 1 + extra[idx]; | ||
2914 | } | ||
2915 | else if (symb_table[2 * elem] == 0 && name_len == 1) | ||
2916 | { | ||
2917 | /* No valid character, treat it as a normal | ||
2918 | character. */ | ||
2919 | bitset_set (sbcset, name[0]); | ||
2920 | return REG_NOERROR; | ||
2921 | } | ||
2922 | else | ||
2923 | return REG_ECOLLATE; | ||
2924 | |||
2925 | /* Got valid collation sequence, add it as a new entry. */ | ||
2926 | /* Check the space of the arrays. */ | ||
2927 | if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) | ||
2928 | { | ||
2929 | /* Not enough, realloc it. */ | ||
2930 | Idx new_coll_sym_alloc = mbcset->ncoll_syms; | ||
2931 | /* Use realloc since mbcset->coll_syms is NULL | ||
2932 | if *alloc == 0. */ | ||
2933 | int32_t *new_coll_syms = re_x2realloc (mbcset->coll_syms, int32_t, | ||
2934 | &new_coll_sym_alloc); | ||
2935 | if (BE (new_coll_syms == NULL, 0)) | ||
2936 | return REG_ESPACE; | ||
2937 | mbcset->coll_syms = new_coll_syms; | ||
2938 | *coll_sym_alloc = new_coll_sym_alloc; | ||
2939 | } | ||
2940 | mbcset->coll_syms[mbcset->ncoll_syms++] = idx; | ||
2941 | return REG_NOERROR; | ||
2942 | } | ||
2943 | else | ||
2944 | { | ||
2945 | if (BE (name_len != 1, 0)) | ||
2946 | return REG_ECOLLATE; | ||
2947 | else | ||
2948 | { | ||
2949 | bitset_set (sbcset, name[0]); | ||
2950 | return REG_NOERROR; | ||
2951 | } | ||
2952 | } | ||
2953 | } | ||
2954 | #endif | ||
2955 | |||
2956 | re_token_t br_token; | ||
2957 | re_bitset_ptr_t sbcset; | ||
2958 | #ifdef RE_ENABLE_I18N | ||
2959 | re_charset_t *mbcset; | ||
2960 | Idx coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; | ||
2961 | Idx equiv_class_alloc = 0, char_class_alloc = 0; | ||
2962 | #endif /* not RE_ENABLE_I18N */ | ||
2963 | bool non_match = false; | ||
2964 | bin_tree_t *work_tree; | ||
2965 | int token_len; | ||
2966 | bool first_round = true; | ||
2967 | #ifdef _LIBC | ||
2968 | collseqmb = (const unsigned char *) | ||
2969 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | ||
2970 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
2971 | if (nrules) | ||
2972 | { | ||
2973 | /* | ||
2974 | if (MB_CUR_MAX > 1) | ||
2975 | */ | ||
2976 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | ||
2977 | table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); | ||
2978 | symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
2979 | _NL_COLLATE_SYMB_TABLEMB); | ||
2980 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
2981 | _NL_COLLATE_SYMB_EXTRAMB); | ||
2982 | } | ||
2983 | #endif | ||
2984 | sbcset = re_calloc (bitset_word, BITSET_WORDS); | ||
2985 | #ifdef RE_ENABLE_I18N | ||
2986 | mbcset = re_calloc (re_charset_t, 1); | ||
2987 | #endif /* RE_ENABLE_I18N */ | ||
2988 | #ifdef RE_ENABLE_I18N | ||
2989 | if (BE (sbcset == NULL || mbcset == NULL, 0)) | ||
2990 | #else | ||
2991 | if (BE (sbcset == NULL, 0)) | ||
2992 | #endif /* RE_ENABLE_I18N */ | ||
2993 | { | ||
2994 | *err = REG_ESPACE; | ||
2995 | return NULL; | ||
2996 | } | ||
2997 | |||
2998 | token_len = peek_token_bracket (token, regexp, syntax); | ||
2999 | if (BE (token->type == END_OF_RE, 0)) | ||
3000 | { | ||
3001 | *err = REG_BADPAT; | ||
3002 | goto parse_bracket_exp_free_return; | ||
3003 | } | ||
3004 | if (token->type == OP_NON_MATCH_LIST) | ||
3005 | { | ||
3006 | #ifdef RE_ENABLE_I18N | ||
3007 | mbcset->non_match = 1; | ||
3008 | #endif /* not RE_ENABLE_I18N */ | ||
3009 | non_match = true; | ||
3010 | if (syntax & REG_HAT_LISTS_NOT_NEWLINE) | ||
3011 | bitset_set (sbcset, '\0'); | ||
3012 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3013 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3014 | if (BE (token->type == END_OF_RE, 0)) | ||
3015 | { | ||
3016 | *err = REG_BADPAT; | ||
3017 | goto parse_bracket_exp_free_return; | ||
3018 | } | ||
3019 | } | ||
3020 | |||
3021 | /* We treat the first ']' as a normal character. */ | ||
3022 | if (token->type == OP_CLOSE_BRACKET) | ||
3023 | token->type = CHARACTER; | ||
3024 | |||
3025 | while (1) | ||
3026 | { | ||
3027 | bracket_elem_t start_elem, end_elem; | ||
3028 | unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; | ||
3029 | unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; | ||
3030 | reg_errcode_t ret; | ||
3031 | int token_len2 = 0; | ||
3032 | bool is_range_exp = false; | ||
3033 | re_token_t token2; | ||
3034 | |||
3035 | start_elem.opr.name = start_name_buf; | ||
3036 | ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, | ||
3037 | syntax, first_round); | ||
3038 | if (BE (ret != REG_NOERROR, 0)) | ||
3039 | { | ||
3040 | *err = ret; | ||
3041 | goto parse_bracket_exp_free_return; | ||
3042 | } | ||
3043 | first_round = false; | ||
3044 | |||
3045 | /* Get information about the next token. We need it in any case. */ | ||
3046 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3047 | |||
3048 | /* Do not check for ranges if we know they are not allowed. */ | ||
3049 | if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) | ||
3050 | { | ||
3051 | if (BE (token->type == END_OF_RE, 0)) | ||
3052 | { | ||
3053 | *err = REG_EBRACK; | ||
3054 | goto parse_bracket_exp_free_return; | ||
3055 | } | ||
3056 | if (token->type == OP_CHARSET_RANGE) | ||
3057 | { | ||
3058 | re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ | ||
3059 | token_len2 = peek_token_bracket (&token2, regexp, syntax); | ||
3060 | if (BE (token2.type == END_OF_RE, 0)) | ||
3061 | { | ||
3062 | *err = REG_EBRACK; | ||
3063 | goto parse_bracket_exp_free_return; | ||
3064 | } | ||
3065 | if (token2.type == OP_CLOSE_BRACKET) | ||
3066 | { | ||
3067 | /* We treat the last '-' as a normal character. */ | ||
3068 | re_string_skip_bytes (regexp, -token_len); | ||
3069 | token->type = CHARACTER; | ||
3070 | } | ||
3071 | else | ||
3072 | is_range_exp = true; | ||
3073 | } | ||
3074 | } | ||
3075 | |||
3076 | if (is_range_exp == true) | ||
3077 | { | ||
3078 | end_elem.opr.name = end_name_buf; | ||
3079 | ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, | ||
3080 | dfa, syntax, true); | ||
3081 | if (BE (ret != REG_NOERROR, 0)) | ||
3082 | { | ||
3083 | *err = ret; | ||
3084 | goto parse_bracket_exp_free_return; | ||
3085 | } | ||
3086 | |||
3087 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3088 | |||
3089 | #ifdef _LIBC | ||
3090 | *err = build_range_exp (sbcset, mbcset, &range_alloc, | ||
3091 | &start_elem, &end_elem); | ||
3092 | #else | ||
3093 | # ifdef RE_ENABLE_I18N | ||
3094 | *err = build_range_exp (sbcset, | ||
3095 | dfa->mb_cur_max > 1 ? mbcset : NULL, | ||
3096 | &range_alloc, &start_elem, &end_elem); | ||
3097 | # else | ||
3098 | *err = build_range_exp (sbcset, &start_elem, &end_elem); | ||
3099 | # endif | ||
3100 | #endif /* RE_ENABLE_I18N */ | ||
3101 | if (BE (*err != REG_NOERROR, 0)) | ||
3102 | goto parse_bracket_exp_free_return; | ||
3103 | } | ||
3104 | else | ||
3105 | { | ||
3106 | switch (start_elem.type) | ||
3107 | { | ||
3108 | case SB_CHAR: | ||
3109 | bitset_set (sbcset, start_elem.opr.ch); | ||
3110 | break; | ||
3111 | #ifdef RE_ENABLE_I18N | ||
3112 | case MB_CHAR: | ||
3113 | /* Check whether the array has enough space. */ | ||
3114 | if (BE (mbchar_alloc == mbcset->nmbchars, 0)) | ||
3115 | { | ||
3116 | wchar_t *new_mbchars; | ||
3117 | /* Not enough, realloc it. */ | ||
3118 | mbchar_alloc = mbcset->nmbchars; | ||
3119 | /* Use realloc since array is NULL if *alloc == 0. */ | ||
3120 | new_mbchars = re_x2realloc (mbcset->mbchars, wchar_t, | ||
3121 | &mbchar_alloc); | ||
3122 | if (BE (new_mbchars == NULL, 0)) | ||
3123 | goto parse_bracket_exp_espace; | ||
3124 | mbcset->mbchars = new_mbchars; | ||
3125 | } | ||
3126 | mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; | ||
3127 | break; | ||
3128 | #endif /* RE_ENABLE_I18N */ | ||
3129 | case EQUIV_CLASS: | ||
3130 | *err = build_equiv_class (sbcset, | ||
3131 | #ifdef RE_ENABLE_I18N | ||
3132 | mbcset, &equiv_class_alloc, | ||
3133 | #endif /* RE_ENABLE_I18N */ | ||
3134 | start_elem.opr.name); | ||
3135 | if (BE (*err != REG_NOERROR, 0)) | ||
3136 | goto parse_bracket_exp_free_return; | ||
3137 | break; | ||
3138 | case COLL_SYM: | ||
3139 | *err = build_collating_symbol (sbcset, | ||
3140 | #ifdef RE_ENABLE_I18N | ||
3141 | mbcset, &coll_sym_alloc, | ||
3142 | #endif /* RE_ENABLE_I18N */ | ||
3143 | start_elem.opr.name); | ||
3144 | if (BE (*err != REG_NOERROR, 0)) | ||
3145 | goto parse_bracket_exp_free_return; | ||
3146 | break; | ||
3147 | case CHAR_CLASS: | ||
3148 | *err = build_charclass (regexp->trans, sbcset, | ||
3149 | #ifdef RE_ENABLE_I18N | ||
3150 | mbcset, &char_class_alloc, | ||
3151 | #endif /* RE_ENABLE_I18N */ | ||
3152 | start_elem.opr.name, syntax); | ||
3153 | if (BE (*err != REG_NOERROR, 0)) | ||
3154 | goto parse_bracket_exp_free_return; | ||
3155 | break; | ||
3156 | default: | ||
3157 | assert (0); | ||
3158 | break; | ||
3159 | } | ||
3160 | } | ||
3161 | if (BE (token->type == END_OF_RE, 0)) | ||
3162 | { | ||
3163 | *err = REG_EBRACK; | ||
3164 | goto parse_bracket_exp_free_return; | ||
3165 | } | ||
3166 | if (token->type == OP_CLOSE_BRACKET) | ||
3167 | break; | ||
3168 | } | ||
3169 | |||
3170 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3171 | |||
3172 | /* If it is non-matching list. */ | ||
3173 | if (non_match) | ||
3174 | bitset_not (sbcset); | ||
3175 | |||
3176 | #ifdef RE_ENABLE_I18N | ||
3177 | /* Ensure only single byte characters are set. */ | ||
3178 | if (dfa->mb_cur_max > 1) | ||
3179 | bitset_mask (sbcset, dfa->sb_char); | ||
3180 | |||
3181 | if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes | ||
3182 | || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes | ||
3183 | || mbcset->non_match))) | ||
3184 | { | ||
3185 | bin_tree_t *mbc_tree; | ||
3186 | int sbc_idx; | ||
3187 | /* Build a tree for complex bracket. */ | ||
3188 | dfa->has_mb_node = 1; | ||
3189 | br_token.type = COMPLEX_BRACKET; | ||
3190 | br_token.opr.mbcset = mbcset; | ||
3191 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3192 | if (BE (mbc_tree == NULL, 0)) | ||
3193 | goto parse_bracket_exp_espace; | ||
3194 | for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) | ||
3195 | if (sbcset[sbc_idx]) | ||
3196 | break; | ||
3197 | /* If there are no bits set in sbcset, there is no point | ||
3198 | of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */ | ||
3199 | if (sbc_idx < BITSET_WORDS) | ||
3200 | { | ||
3201 | /* Build a tree for simple bracket. */ | ||
3202 | br_token.type = SIMPLE_BRACKET; | ||
3203 | br_token.opr.sbcset = sbcset; | ||
3204 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3205 | if (BE (work_tree == NULL, 0)) | ||
3206 | goto parse_bracket_exp_espace; | ||
3207 | |||
3208 | /* Then join them by ALT node. */ | ||
3209 | work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); | ||
3210 | if (BE (work_tree == NULL, 0)) | ||
3211 | goto parse_bracket_exp_espace; | ||
3212 | } | ||
3213 | else | ||
3214 | { | ||
3215 | re_free (sbcset); | ||
3216 | work_tree = mbc_tree; | ||
3217 | } | ||
3218 | } | ||
3219 | else | ||
3220 | #endif /* not RE_ENABLE_I18N */ | ||
3221 | { | ||
3222 | #ifdef RE_ENABLE_I18N | ||
3223 | free_charset (mbcset); | ||
3224 | #endif | ||
3225 | /* Build a tree for simple bracket. */ | ||
3226 | br_token.type = SIMPLE_BRACKET; | ||
3227 | br_token.opr.sbcset = sbcset; | ||
3228 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3229 | if (BE (work_tree == NULL, 0)) | ||
3230 | goto parse_bracket_exp_espace; | ||
3231 | } | ||
3232 | return work_tree; | ||
3233 | |||
3234 | parse_bracket_exp_espace: | ||
3235 | *err = REG_ESPACE; | ||
3236 | parse_bracket_exp_free_return: | ||
3237 | re_free (sbcset); | ||
3238 | #ifdef RE_ENABLE_I18N | ||
3239 | free_charset (mbcset); | ||
3240 | #endif /* RE_ENABLE_I18N */ | ||
3241 | return NULL; | ||
3242 | } | ||
3243 | |||
3244 | /* Parse an element in the bracket expression. */ | ||
3245 | |||
3246 | static reg_errcode_t | ||
3247 | parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, | ||
3248 | re_token_t *token, int token_len, re_dfa_t *dfa, | ||
3249 | reg_syntax_t syntax, bool accept_hyphen) | ||
3250 | { | ||
3251 | #ifdef RE_ENABLE_I18N | ||
3252 | int cur_char_size; | ||
3253 | cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); | ||
3254 | if (cur_char_size > 1) | ||
3255 | { | ||
3256 | elem->type = MB_CHAR; | ||
3257 | elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); | ||
3258 | re_string_skip_bytes (regexp, cur_char_size); | ||
3259 | return REG_NOERROR; | ||
3260 | } | ||
3261 | #endif /* RE_ENABLE_I18N */ | ||
3262 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3263 | if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS | ||
3264 | || token->type == OP_OPEN_EQUIV_CLASS) | ||
3265 | return parse_bracket_symbol (elem, regexp, token); | ||
3266 | if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) | ||
3267 | { | ||
3268 | /* A '-' must only appear as anything but a range indicator before | ||
3269 | the closing bracket. Everything else is an error. */ | ||
3270 | re_token_t token2; | ||
3271 | (void) peek_token_bracket (&token2, regexp, syntax); | ||
3272 | if (token2.type != OP_CLOSE_BRACKET) | ||
3273 | /* The actual error value is not standardized since this whole | ||
3274 | case is undefined. But ERANGE makes good sense. */ | ||
3275 | return REG_ERANGE; | ||
3276 | } | ||
3277 | elem->type = SB_CHAR; | ||
3278 | elem->opr.ch = token->opr.c; | ||
3279 | return REG_NOERROR; | ||
3280 | } | ||
3281 | |||
3282 | /* Parse a bracket symbol in the bracket expression. Bracket symbols are | ||
3283 | such as [:<character_class>:], [.<collating_element>.], and | ||
3284 | [=<equivalent_class>=]. */ | ||
3285 | |||
3286 | static reg_errcode_t | ||
3287 | parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, | ||
3288 | re_token_t *token) | ||
3289 | { | ||
3290 | unsigned char ch, delim = token->opr.c; | ||
3291 | int i = 0; | ||
3292 | if (re_string_eoi(regexp)) | ||
3293 | return REG_EBRACK; | ||
3294 | for (;; ++i) | ||
3295 | { | ||
3296 | if (i >= BRACKET_NAME_BUF_SIZE) | ||
3297 | return REG_EBRACK; | ||
3298 | if (token->type == OP_OPEN_CHAR_CLASS) | ||
3299 | ch = re_string_fetch_byte_case (regexp); | ||
3300 | else | ||
3301 | ch = re_string_fetch_byte (regexp); | ||
3302 | if (re_string_eoi(regexp)) | ||
3303 | return REG_EBRACK; | ||
3304 | if (ch == delim && re_string_peek_byte (regexp, 0) == ']') | ||
3305 | break; | ||
3306 | elem->opr.name[i] = ch; | ||
3307 | } | ||
3308 | re_string_skip_bytes (regexp, 1); | ||
3309 | elem->opr.name[i] = '\0'; | ||
3310 | switch (token->type) | ||
3311 | { | ||
3312 | case OP_OPEN_COLL_ELEM: | ||
3313 | elem->type = COLL_SYM; | ||
3314 | break; | ||
3315 | case OP_OPEN_EQUIV_CLASS: | ||
3316 | elem->type = EQUIV_CLASS; | ||
3317 | break; | ||
3318 | case OP_OPEN_CHAR_CLASS: | ||
3319 | elem->type = CHAR_CLASS; | ||
3320 | break; | ||
3321 | default: | ||
3322 | break; | ||
3323 | } | ||
3324 | return REG_NOERROR; | ||
3325 | } | ||
3326 | |||
3327 | /* Helper function for parse_bracket_exp. | ||
3328 | Build the equivalence class which is represented by NAME. | ||
3329 | The result are written to MBCSET and SBCSET. | ||
3330 | EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, | ||
3331 | is a pointer argument sinse we may update it. */ | ||
3332 | |||
3333 | static reg_errcode_t | ||
3334 | build_equiv_class (bitset sbcset, | ||
3335 | #ifdef RE_ENABLE_I18N | ||
3336 | re_charset_t *mbcset, Idx *equiv_class_alloc, | ||
3337 | #endif | ||
3338 | const unsigned char *name) | ||
3339 | { | ||
3340 | #if defined _LIBC | ||
3341 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3342 | if (nrules != 0) | ||
3343 | { | ||
3344 | const int32_t *table, *indirect; | ||
3345 | const unsigned char *weights, *extra, *cp; | ||
3346 | unsigned char char_buf[2]; | ||
3347 | int32_t idx1, idx2; | ||
3348 | unsigned int ch; | ||
3349 | size_t len; | ||
3350 | /* This #include defines a local function! */ | ||
3351 | # include <locale/weight.h> | ||
3352 | /* Calculate the index for equivalence class. */ | ||
3353 | cp = name; | ||
3354 | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
3355 | weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
3356 | _NL_COLLATE_WEIGHTMB); | ||
3357 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
3358 | _NL_COLLATE_EXTRAMB); | ||
3359 | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
3360 | _NL_COLLATE_INDIRECTMB); | ||
3361 | idx1 = findidx (&cp); | ||
3362 | if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) | ||
3363 | /* This isn't a valid character. */ | ||
3364 | return REG_ECOLLATE; | ||
3365 | |||
3366 | /* Build single byte matcing table for this equivalence class. */ | ||
3367 | char_buf[1] = (unsigned char) '\0'; | ||
3368 | len = weights[idx1]; | ||
3369 | for (ch = 0; ch < SBC_MAX; ++ch) | ||
3370 | { | ||
3371 | char_buf[0] = ch; | ||
3372 | cp = char_buf; | ||
3373 | idx2 = findidx (&cp); | ||
3374 | /* | ||
3375 | idx2 = table[ch]; | ||
3376 | */ | ||
3377 | if (idx2 == 0) | ||
3378 | /* This isn't a valid character. */ | ||
3379 | continue; | ||
3380 | if (len == weights[idx2]) | ||
3381 | { | ||
3382 | int cnt = 0; | ||
3383 | while (cnt <= len && | ||
3384 | weights[idx1 + 1 + cnt] == weights[idx2 + 1 + cnt]) | ||
3385 | ++cnt; | ||
3386 | |||
3387 | if (cnt > len) | ||
3388 | bitset_set (sbcset, ch); | ||
3389 | } | ||
3390 | } | ||
3391 | /* Check whether the array has enough space. */ | ||
3392 | if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) | ||
3393 | { | ||
3394 | /* Not enough, realloc it. */ | ||
3395 | Idx new_equiv_class_alloc = mbcset->nequiv_classes; | ||
3396 | /* Use realloc since the array is NULL if *alloc == 0. */ | ||
3397 | int32_t *new_equiv_classes = re_x2realloc (mbcset->equiv_classes, | ||
3398 | int32_t, | ||
3399 | &new_equiv_class_alloc); | ||
3400 | if (BE (new_equiv_classes == NULL, 0)) | ||
3401 | return REG_ESPACE; | ||
3402 | mbcset->equiv_classes = new_equiv_classes; | ||
3403 | *equiv_class_alloc = new_equiv_class_alloc; | ||
3404 | } | ||
3405 | mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; | ||
3406 | } | ||
3407 | else | ||
3408 | #endif /* _LIBC */ | ||
3409 | { | ||
3410 | if (BE (strlen ((const char *) name) != 1, 0)) | ||
3411 | return REG_ECOLLATE; | ||
3412 | bitset_set (sbcset, *name); | ||
3413 | } | ||
3414 | return REG_NOERROR; | ||
3415 | } | ||
3416 | |||
3417 | /* Helper function for parse_bracket_exp. | ||
3418 | Build the character class which is represented by NAME. | ||
3419 | The result are written to MBCSET and SBCSET. | ||
3420 | CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, | ||
3421 | is a pointer argument sinse we may update it. */ | ||
3422 | |||
3423 | static reg_errcode_t | ||
3424 | build_charclass (unsigned REG_TRANSLATE_TYPE trans, bitset sbcset, | ||
3425 | #ifdef RE_ENABLE_I18N | ||
3426 | re_charset_t *mbcset, Idx *char_class_alloc, | ||
3427 | #endif | ||
3428 | const unsigned char *class_name, reg_syntax_t syntax) | ||
3429 | { | ||
3430 | int i; | ||
3431 | const char *name = (const char *) class_name; | ||
3432 | |||
3433 | /* In case of REG_ICASE "upper" and "lower" match the both of | ||
3434 | upper and lower cases. */ | ||
3435 | if ((syntax & REG_IGNORE_CASE) | ||
3436 | && (strcmp (name, "upper") == 0 || strcmp (name, "lower") == 0)) | ||
3437 | name = "alpha"; | ||
3438 | |||
3439 | #ifdef RE_ENABLE_I18N | ||
3440 | /* Check the space of the arrays. */ | ||
3441 | if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) | ||
3442 | { | ||
3443 | /* Not enough, realloc it. */ | ||
3444 | Idx new_char_class_alloc = mbcset->nchar_classes; | ||
3445 | /* Use realloc since array is NULL if *alloc == 0. */ | ||
3446 | wctype_t *new_char_classes = re_x2realloc (mbcset->char_classes, wctype_t, | ||
3447 | &new_char_class_alloc); | ||
3448 | if (BE (new_char_classes == NULL, 0)) | ||
3449 | return REG_ESPACE; | ||
3450 | mbcset->char_classes = new_char_classes; | ||
3451 | *char_class_alloc = new_char_class_alloc; | ||
3452 | } | ||
3453 | mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name); | ||
3454 | #endif /* RE_ENABLE_I18N */ | ||
3455 | |||
3456 | #define BUILD_CHARCLASS_LOOP(ctype_func) \ | ||
3457 | for (i = 0; i < SBC_MAX; ++i) \ | ||
3458 | { \ | ||
3459 | if (ctype_func (i)) \ | ||
3460 | { \ | ||
3461 | int ch = trans ? trans[i] : i; \ | ||
3462 | bitset_set (sbcset, ch); \ | ||
3463 | } \ | ||
3464 | } | ||
3465 | |||
3466 | if (strcmp (name, "alnum") == 0) | ||
3467 | BUILD_CHARCLASS_LOOP (isalnum) | ||
3468 | else if (strcmp (name, "cntrl") == 0) | ||
3469 | BUILD_CHARCLASS_LOOP (iscntrl) | ||
3470 | else if (strcmp (name, "lower") == 0) | ||
3471 | BUILD_CHARCLASS_LOOP (islower) | ||
3472 | else if (strcmp (name, "space") == 0) | ||
3473 | BUILD_CHARCLASS_LOOP (isspace) | ||
3474 | else if (strcmp (name, "alpha") == 0) | ||
3475 | BUILD_CHARCLASS_LOOP (isalpha) | ||
3476 | else if (strcmp (name, "digit") == 0) | ||
3477 | BUILD_CHARCLASS_LOOP (isdigit) | ||
3478 | else if (strcmp (name, "print") == 0) | ||
3479 | BUILD_CHARCLASS_LOOP (isprint) | ||
3480 | else if (strcmp (name, "upper") == 0) | ||
3481 | BUILD_CHARCLASS_LOOP (isupper) | ||
3482 | else if (strcmp (name, "blank") == 0) | ||
3483 | BUILD_CHARCLASS_LOOP (isblank) | ||
3484 | else if (strcmp (name, "graph") == 0) | ||
3485 | BUILD_CHARCLASS_LOOP (isgraph) | ||
3486 | else if (strcmp (name, "punct") == 0) | ||
3487 | BUILD_CHARCLASS_LOOP (ispunct) | ||
3488 | else if (strcmp (name, "xdigit") == 0) | ||
3489 | BUILD_CHARCLASS_LOOP (isxdigit) | ||
3490 | else | ||
3491 | return REG_ECTYPE; | ||
3492 | |||
3493 | return REG_NOERROR; | ||
3494 | } | ||
3495 | |||
3496 | static bin_tree_t * | ||
3497 | build_charclass_op (re_dfa_t *dfa, unsigned REG_TRANSLATE_TYPE trans, | ||
3498 | const unsigned char *class_name, | ||
3499 | const unsigned char *extra, | ||
3500 | bool non_match, reg_errcode_t *err) | ||
3501 | { | ||
3502 | re_bitset_ptr_t sbcset; | ||
3503 | #ifdef RE_ENABLE_I18N | ||
3504 | re_charset_t *mbcset; | ||
3505 | Idx alloc = 0; | ||
3506 | #endif /* not RE_ENABLE_I18N */ | ||
3507 | reg_errcode_t ret; | ||
3508 | re_token_t br_token; | ||
3509 | bin_tree_t *tree; | ||
3510 | |||
3511 | sbcset = re_calloc (bitset_word, BITSET_WORDS); | ||
3512 | #ifdef RE_ENABLE_I18N | ||
3513 | mbcset = re_calloc (re_charset_t, 1); | ||
3514 | #endif /* RE_ENABLE_I18N */ | ||
3515 | |||
3516 | #ifdef RE_ENABLE_I18N | ||
3517 | if (BE (sbcset == NULL || mbcset == NULL, 0)) | ||
3518 | #else /* not RE_ENABLE_I18N */ | ||
3519 | if (BE (sbcset == NULL, 0)) | ||
3520 | #endif /* not RE_ENABLE_I18N */ | ||
3521 | { | ||
3522 | *err = REG_ESPACE; | ||
3523 | return NULL; | ||
3524 | } | ||
3525 | |||
3526 | if (non_match) | ||
3527 | { | ||
3528 | #ifdef RE_ENABLE_I18N | ||
3529 | /* | ||
3530 | if (syntax & REG_HAT_LISTS_NOT_NEWLINE) | ||
3531 | bitset_set(cset->sbcset, '\0'); | ||
3532 | */ | ||
3533 | mbcset->non_match = 1; | ||
3534 | #endif /* not RE_ENABLE_I18N */ | ||
3535 | } | ||
3536 | |||
3537 | /* We don't care the syntax in this case. */ | ||
3538 | ret = build_charclass (trans, sbcset, | ||
3539 | #ifdef RE_ENABLE_I18N | ||
3540 | mbcset, &alloc, | ||
3541 | #endif /* RE_ENABLE_I18N */ | ||
3542 | class_name, 0); | ||
3543 | |||
3544 | if (BE (ret != REG_NOERROR, 0)) | ||
3545 | { | ||
3546 | re_free (sbcset); | ||
3547 | #ifdef RE_ENABLE_I18N | ||
3548 | free_charset (mbcset); | ||
3549 | #endif /* RE_ENABLE_I18N */ | ||
3550 | *err = ret; | ||
3551 | return NULL; | ||
3552 | } | ||
3553 | /* \w match '_' also. */ | ||
3554 | for (; *extra; extra++) | ||
3555 | bitset_set (sbcset, *extra); | ||
3556 | |||
3557 | /* If it is non-matching list. */ | ||
3558 | if (non_match) | ||
3559 | bitset_not (sbcset); | ||
3560 | |||
3561 | #ifdef RE_ENABLE_I18N | ||
3562 | /* Ensure only single byte characters are set. */ | ||
3563 | if (dfa->mb_cur_max > 1) | ||
3564 | bitset_mask (sbcset, dfa->sb_char); | ||
3565 | #endif | ||
3566 | |||
3567 | /* Build a tree for simple bracket. */ | ||
3568 | br_token.type = SIMPLE_BRACKET; | ||
3569 | br_token.opr.sbcset = sbcset; | ||
3570 | tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3571 | if (BE (tree == NULL, 0)) | ||
3572 | goto build_word_op_espace; | ||
3573 | |||
3574 | #ifdef RE_ENABLE_I18N | ||
3575 | if (dfa->mb_cur_max > 1) | ||
3576 | { | ||
3577 | bin_tree_t *mbc_tree; | ||
3578 | /* Build a tree for complex bracket. */ | ||
3579 | br_token.type = COMPLEX_BRACKET; | ||
3580 | br_token.opr.mbcset = mbcset; | ||
3581 | dfa->has_mb_node = 1; | ||
3582 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3583 | if (BE (mbc_tree == NULL, 0)) | ||
3584 | goto build_word_op_espace; | ||
3585 | /* Then join them by ALT node. */ | ||
3586 | tree = create_tree (dfa, tree, mbc_tree, OP_ALT); | ||
3587 | if (BE (mbc_tree != NULL, 1)) | ||
3588 | return tree; | ||
3589 | } | ||
3590 | else | ||
3591 | { | ||
3592 | free_charset (mbcset); | ||
3593 | return tree; | ||
3594 | } | ||
3595 | #else /* not RE_ENABLE_I18N */ | ||
3596 | return tree; | ||
3597 | #endif /* not RE_ENABLE_I18N */ | ||
3598 | |||
3599 | build_word_op_espace: | ||
3600 | re_free (sbcset); | ||
3601 | #ifdef RE_ENABLE_I18N | ||
3602 | free_charset (mbcset); | ||
3603 | #endif /* RE_ENABLE_I18N */ | ||
3604 | *err = REG_ESPACE; | ||
3605 | return NULL; | ||
3606 | } | ||
3607 | |||
3608 | /* This is intended for the expressions like "a{1,3}". | ||
3609 | Fetch a number from `input', and return the number. | ||
3610 | Return REG_MISSING if the number field is empty like "{,1}". | ||
3611 | Return REG_ERROR if an error occurred. */ | ||
3612 | |||
3613 | static Idx | ||
3614 | fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) | ||
3615 | { | ||
3616 | Idx num = REG_MISSING; | ||
3617 | unsigned char c; | ||
3618 | while (1) | ||
3619 | { | ||
3620 | fetch_token (token, input, syntax); | ||
3621 | c = token->opr.c; | ||
3622 | if (BE (token->type == END_OF_RE, 0)) | ||
3623 | return REG_ERROR; | ||
3624 | if (token->type == OP_CLOSE_DUP_NUM || c == ',') | ||
3625 | break; | ||
3626 | num = ((token->type != CHARACTER || c < '0' || '9' < c | ||
3627 | || num == REG_ERROR) | ||
3628 | ? REG_ERROR | ||
3629 | : ((num == REG_MISSING) ? c - '0' : num * 10 + c - '0')); | ||
3630 | num = (num > REG_DUP_MAX) ? REG_ERROR : num; | ||
3631 | } | ||
3632 | return num; | ||
3633 | } | ||
3634 | |||
3635 | #ifdef RE_ENABLE_I18N | ||
3636 | static void | ||
3637 | free_charset (re_charset_t *cset) | ||
3638 | { | ||
3639 | re_free (cset->mbchars); | ||
3640 | # ifdef _LIBC | ||
3641 | re_free (cset->coll_syms); | ||
3642 | re_free (cset->equiv_classes); | ||
3643 | re_free (cset->range_starts); | ||
3644 | re_free (cset->range_ends); | ||
3645 | # endif | ||
3646 | re_free (cset->char_classes); | ||
3647 | re_free (cset); | ||
3648 | } | ||
3649 | #endif /* RE_ENABLE_I18N */ | ||
3650 | |||
3651 | /* Functions for binary tree operation. */ | ||
3652 | |||
3653 | /* Create a tree node. */ | ||
3654 | |||
3655 | static bin_tree_t * | ||
3656 | create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | ||
3657 | re_token_type_t type) | ||
3658 | { | ||
3659 | re_token_t t; | ||
3660 | t.type = type; | ||
3661 | return create_token_tree (dfa, left, right, &t); | ||
3662 | } | ||
3663 | |||
3664 | static bin_tree_t * | ||
3665 | create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | ||
3666 | const re_token_t *token) | ||
3667 | { | ||
3668 | bin_tree_t *tree; | ||
3669 | if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) | ||
3670 | { | ||
3671 | bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); | ||
3672 | |||
3673 | if (storage == NULL) | ||
3674 | return NULL; | ||
3675 | storage->next = dfa->str_tree_storage; | ||
3676 | dfa->str_tree_storage = storage; | ||
3677 | dfa->str_tree_storage_idx = 0; | ||
3678 | } | ||
3679 | tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; | ||
3680 | |||
3681 | tree->parent = NULL; | ||
3682 | tree->left = left; | ||
3683 | tree->right = right; | ||
3684 | tree->token = *token; | ||
3685 | tree->token.duplicated = 0; | ||
3686 | tree->token.opt_subexp = 0; | ||
3687 | tree->first = NULL; | ||
3688 | tree->next = NULL; | ||
3689 | tree->node_idx = REG_MISSING; | ||
3690 | |||
3691 | if (left != NULL) | ||
3692 | left->parent = tree; | ||
3693 | if (right != NULL) | ||
3694 | right->parent = tree; | ||
3695 | return tree; | ||
3696 | } | ||
3697 | |||
3698 | /* Mark the tree SRC as an optional subexpression. | ||
3699 | To be called from preorder or postorder. */ | ||
3700 | |||
3701 | static reg_errcode_t | ||
3702 | mark_opt_subexp (void *extra, bin_tree_t *node) | ||
3703 | { | ||
3704 | Idx idx = (Idx) (long) extra; | ||
3705 | if (node->token.type == SUBEXP && node->token.opr.idx == idx) | ||
3706 | node->token.opt_subexp = 1; | ||
3707 | |||
3708 | return REG_NOERROR; | ||
3709 | } | ||
3710 | |||
3711 | /* Free the allocated memory inside NODE. */ | ||
3712 | |||
3713 | static void | ||
3714 | free_token (re_token_t *node) | ||
3715 | { | ||
3716 | #ifdef RE_ENABLE_I18N | ||
3717 | if (node->type == COMPLEX_BRACKET && node->duplicated == 0) | ||
3718 | free_charset (node->opr.mbcset); | ||
3719 | else | ||
3720 | #endif /* RE_ENABLE_I18N */ | ||
3721 | if (node->type == SIMPLE_BRACKET && node->duplicated == 0) | ||
3722 | re_free (node->opr.sbcset); | ||
3723 | } | ||
3724 | |||
3725 | /* Worker function for tree walking. Free the allocated memory inside NODE | ||
3726 | and its children. */ | ||
3727 | |||
3728 | static reg_errcode_t | ||
3729 | free_tree (void *extra, bin_tree_t *node) | ||
3730 | { | ||
3731 | free_token (&node->token); | ||
3732 | return REG_NOERROR; | ||
3733 | } | ||
3734 | |||
3735 | |||
3736 | /* Duplicate the node SRC, and return new node. This is a preorder | ||
3737 | visit similar to the one implemented by the generic visitor, but | ||
3738 | we need more infrastructure to maintain two parallel trees --- so, | ||
3739 | it's easier to duplicate. */ | ||
3740 | |||
3741 | static bin_tree_t * | ||
3742 | duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) | ||
3743 | { | ||
3744 | const bin_tree_t *node; | ||
3745 | bin_tree_t *dup_root; | ||
3746 | bin_tree_t **p_new = &dup_root, *dup_node = root->parent; | ||
3747 | |||
3748 | for (node = root; ; ) | ||
3749 | { | ||
3750 | /* Create a new tree and link it back to the current parent. */ | ||
3751 | *p_new = create_token_tree (dfa, NULL, NULL, &node->token); | ||
3752 | if (*p_new == NULL) | ||
3753 | return NULL; | ||
3754 | (*p_new)->parent = dup_node; | ||
3755 | (*p_new)->token.duplicated = 1; | ||
3756 | dup_node = *p_new; | ||
3757 | |||
3758 | /* Go to the left node, or up and to the right. */ | ||
3759 | if (node->left) | ||
3760 | { | ||
3761 | node = node->left; | ||
3762 | p_new = &dup_node->left; | ||
3763 | } | ||
3764 | else | ||
3765 | { | ||
3766 | const bin_tree_t *prev = NULL; | ||
3767 | while (node->right == prev || node->right == NULL) | ||
3768 | { | ||
3769 | prev = node; | ||
3770 | node = node->parent; | ||
3771 | dup_node = dup_node->parent; | ||
3772 | if (!node) | ||
3773 | return dup_root; | ||
3774 | } | ||
3775 | node = node->right; | ||
3776 | p_new = &dup_node->right; | ||
3777 | } | ||
3778 | } | ||
3779 | } | ||
diff --git a/lib/regex.c b/lib/regex.c new file mode 100644 index 00000000..82e76c09 --- /dev/null +++ b/lib/regex.c | |||
@@ -0,0 +1,68 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002, 2003 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | #ifdef HAVE_CONFIG_H | ||
21 | # include <config.h> | ||
22 | #endif | ||
23 | |||
24 | #ifdef _LIBC | ||
25 | /* We have to keep the namespace clean. */ | ||
26 | # define regfree(preg) __regfree (preg) | ||
27 | # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef) | ||
28 | # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags) | ||
29 | # define regerror(errcode, preg, errbuf, errbuf_size) \ | ||
30 | __regerror(errcode, preg, errbuf, errbuf_size) | ||
31 | # define re_set_registers(bu, re, nu, st, en) \ | ||
32 | __re_set_registers (bu, re, nu, st, en) | ||
33 | # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \ | ||
34 | __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | ||
35 | # define re_match(bufp, string, size, pos, regs) \ | ||
36 | __re_match (bufp, string, size, pos, regs) | ||
37 | # define re_search(bufp, string, size, startpos, range, regs) \ | ||
38 | __re_search (bufp, string, size, startpos, range, regs) | ||
39 | # define re_compile_pattern(pattern, length, bufp) \ | ||
40 | __re_compile_pattern (pattern, length, bufp) | ||
41 | # define re_set_syntax(syntax) __re_set_syntax (syntax) | ||
42 | # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \ | ||
43 | __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop) | ||
44 | # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp) | ||
45 | |||
46 | # include "../locale/localeinfo.h" | ||
47 | #endif | ||
48 | |||
49 | /* On some systems, limits.h sets RE_DUP_MAX to a lower value than | ||
50 | GNU regex allows. Include it before <regex.h>, which correctly | ||
51 | #undefs RE_DUP_MAX and sets it to the right value. */ | ||
52 | #include <limits.h> | ||
53 | |||
54 | #include <regex.h> | ||
55 | #include "regex_internal.h" | ||
56 | |||
57 | #include "regex_internal.c" | ||
58 | #include "regcomp.c" | ||
59 | #include "regexec.c" | ||
60 | |||
61 | /* Binary backward compatibility. */ | ||
62 | #if _LIBC | ||
63 | # include <shlib-compat.h> | ||
64 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3) | ||
65 | link_warning (re_max_failures, "the 're_max_failures' variable is obsolete and will go away.") | ||
66 | int re_max_failures = 2000; | ||
67 | # endif | ||
68 | #endif | ||
diff --git a/lib/regex.h b/lib/regex.h new file mode 100644 index 00000000..c06a062c --- /dev/null +++ b/lib/regex.h | |||
@@ -0,0 +1,769 @@ | |||
1 | /* Definitions for data structures and routines for the regular | ||
2 | expression library. | ||
3 | Copyright (C) 1985,1989-93,1995-98,2000,2001,2002,2003,2005 | ||
4 | Free Software Foundation, Inc. | ||
5 | This file is part of the GNU C Library. | ||
6 | |||
7 | This program is free software; you can redistribute it and/or modify | ||
8 | it under the terms of the GNU General Public License as published by | ||
9 | the Free Software Foundation; either version 2, or (at your option) | ||
10 | any later version. | ||
11 | |||
12 | This program is distributed in the hope that it will be useful, | ||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | GNU General Public License for more details. | ||
16 | |||
17 | You should have received a copy of the GNU General Public License along | ||
18 | with this program; if not, write to the Free Software Foundation, | ||
19 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
20 | |||
21 | #ifndef _REGEX_H | ||
22 | #define _REGEX_H 1 | ||
23 | |||
24 | #include <sys/types.h> | ||
25 | |||
26 | /* Allow the use in C++ code. */ | ||
27 | #ifdef __cplusplus | ||
28 | extern "C" { | ||
29 | #endif | ||
30 | |||
31 | /* Define _REGEX_SOURCE to get definitions that are incompatible with | ||
32 | POSIX. */ | ||
33 | #if (!defined _REGEX_SOURCE \ | ||
34 | && (defined _GNU_SOURCE \ | ||
35 | || (!defined _POSIX_C_SOURCE && !defined _POSIX_SOURCE \ | ||
36 | && !defined _XOPEN_SOURCE))) | ||
37 | # define _REGEX_SOURCE 1 | ||
38 | #endif | ||
39 | |||
40 | #if defined _REGEX_SOURCE && defined VMS | ||
41 | /* VMS doesn't have `size_t' in <sys/types.h>, even though POSIX says it | ||
42 | should be there. */ | ||
43 | # include <stddef.h> | ||
44 | #endif | ||
45 | |||
46 | #ifdef _REGEX_LARGE_OFFSETS | ||
47 | |||
48 | /* Use types and values that are wide enough to represent signed and | ||
49 | unsigned byte offsets in memory. This currently works only when | ||
50 | the regex code is used outside of the GNU C library; it is not yet | ||
51 | supported within glibc itself, and glibc users should not define | ||
52 | _REGEX_LARGE_OFFSETS. */ | ||
53 | |||
54 | /* The type of the offset of a byte within a string. | ||
55 | For historical reasons POSIX 1003.1-2004 requires that regoff_t be | ||
56 | at least as wide as off_t. This is a bit odd (and many common | ||
57 | POSIX platforms set it to the more-sensible ssize_t) but we might | ||
58 | as well conform. We don't know of any hosts where ssize_t is wider | ||
59 | than off_t, so off_t is safe. */ | ||
60 | typedef off_t regoff_t; | ||
61 | |||
62 | /* The type of nonnegative object indexes. Traditionally, GNU regex | ||
63 | uses 'int' for these. Code that uses __re_idx_t should work | ||
64 | regardless of whether the type is signed. */ | ||
65 | typedef size_t __re_idx_t; | ||
66 | |||
67 | /* The type of object sizes. */ | ||
68 | typedef size_t __re_size_t; | ||
69 | |||
70 | /* The type of object sizes, in places where the traditional code | ||
71 | uses unsigned long int. */ | ||
72 | typedef size_t __re_long_size_t; | ||
73 | |||
74 | #else | ||
75 | |||
76 | /* Use types that are binary-compatible with the traditional GNU regex | ||
77 | implementation, which mishandles strings longer than INT_MAX. */ | ||
78 | |||
79 | typedef int regoff_t; | ||
80 | typedef int __re_idx_t; | ||
81 | typedef unsigned int __re_size_t; | ||
82 | typedef unsigned long int __re_long_size_t; | ||
83 | |||
84 | #endif | ||
85 | |||
86 | /* The following two types have to be signed and unsigned integer type | ||
87 | wide enough to hold a value of a pointer. For most ANSI compilers | ||
88 | ptrdiff_t and size_t should be likely OK. Still size of these two | ||
89 | types is 2 for Microsoft C. Ugh... */ | ||
90 | typedef long int s_reg_t; | ||
91 | typedef unsigned long int active_reg_t; | ||
92 | |||
93 | /* The following bits are used to determine the regexp syntax we | ||
94 | recognize. The set/not-set meanings are chosen so that Emacs syntax | ||
95 | remains the value 0. The bits are given in alphabetical order, and | ||
96 | the definitions shifted by one from the previous bit; thus, when we | ||
97 | add or remove a bit, only one other definition need change. */ | ||
98 | typedef unsigned long int reg_syntax_t; | ||
99 | |||
100 | /* If this bit is not set, then \ inside a bracket expression is literal. | ||
101 | If set, then such a \ quotes the following character. */ | ||
102 | #define REG_BACKSLASH_ESCAPE_IN_LISTS 1ul | ||
103 | |||
104 | /* If this bit is not set, then + and ? are operators, and \+ and \? are | ||
105 | literals. | ||
106 | If set, then \+ and \? are operators and + and ? are literals. */ | ||
107 | #define REG_BK_PLUS_QM (1ul << 1) | ||
108 | |||
109 | /* If this bit is set, then character classes are supported. They are: | ||
110 | [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:], | ||
111 | [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:]. | ||
112 | If not set, then character classes are not supported. */ | ||
113 | #define REG_CHAR_CLASSES (1ul << 2) | ||
114 | |||
115 | /* If this bit is set, then ^ and $ are always anchors (outside bracket | ||
116 | expressions, of course). | ||
117 | If this bit is not set, then it depends: | ||
118 | ^ is an anchor if it is at the beginning of a regular | ||
119 | expression or after an open-group or an alternation operator; | ||
120 | $ is an anchor if it is at the end of a regular expression, or | ||
121 | before a close-group or an alternation operator. | ||
122 | |||
123 | This bit could be (re)combined with REG_CONTEXT_INDEP_OPS, because | ||
124 | POSIX draft 11.2 says that * etc. in leading positions is undefined. | ||
125 | We already implemented a previous draft which made those constructs | ||
126 | invalid, though, so we haven't changed the code back. */ | ||
127 | #define REG_CONTEXT_INDEP_ANCHORS (1ul << 3) | ||
128 | |||
129 | /* If this bit is set, then special characters are always special | ||
130 | regardless of where they are in the pattern. | ||
131 | If this bit is not set, then special characters are special only in | ||
132 | some contexts; otherwise they are ordinary. Specifically, | ||
133 | * + ? and intervals are only special when not after the beginning, | ||
134 | open-group, or alternation operator. */ | ||
135 | #define REG_CONTEXT_INDEP_OPS (1ul << 4) | ||
136 | |||
137 | /* If this bit is set, then *, +, ?, and { cannot be first in an re or | ||
138 | immediately after an alternation or begin-group operator. */ | ||
139 | #define REG_CONTEXT_INVALID_OPS (1ul << 5) | ||
140 | |||
141 | /* If this bit is set, then . matches newline. | ||
142 | If not set, then it doesn't. */ | ||
143 | #define REG_DOT_NEWLINE (1ul << 6) | ||
144 | |||
145 | /* If this bit is set, then . doesn't match NUL. | ||
146 | If not set, then it does. */ | ||
147 | #define REG_DOT_NOT_NULL (1ul << 7) | ||
148 | |||
149 | /* If this bit is set, nonmatching lists [^...] do not match newline. | ||
150 | If not set, they do. */ | ||
151 | #define REG_HAT_LISTS_NOT_NEWLINE (1ul << 8) | ||
152 | |||
153 | /* If this bit is set, either \{...\} or {...} defines an | ||
154 | interval, depending on REG_NO_BK_BRACES. | ||
155 | If not set, \{, \}, {, and } are literals. */ | ||
156 | #define REG_INTERVALS (1ul << 9) | ||
157 | |||
158 | /* If this bit is set, +, ? and | aren't recognized as operators. | ||
159 | If not set, they are. */ | ||
160 | #define REG_LIMITED_OPS (1ul << 10) | ||
161 | |||
162 | /* If this bit is set, newline is an alternation operator. | ||
163 | If not set, newline is literal. */ | ||
164 | #define REG_NEWLINE_ALT (1ul << 11) | ||
165 | |||
166 | /* If this bit is set, then `{...}' defines an interval, and \{ and \} | ||
167 | are literals. | ||
168 | If not set, then `\{...\}' defines an interval. */ | ||
169 | #define REG_NO_BK_BRACES (1ul << 12) | ||
170 | |||
171 | /* If this bit is set, (...) defines a group, and \( and \) are literals. | ||
172 | If not set, \(...\) defines a group, and ( and ) are literals. */ | ||
173 | #define REG_NO_BK_PARENS (1ul << 13) | ||
174 | |||
175 | /* If this bit is set, then \<digit> matches <digit>. | ||
176 | If not set, then \<digit> is a back-reference. */ | ||
177 | #define REG_NO_BK_REFS (1ul << 14) | ||
178 | |||
179 | /* If this bit is set, then | is an alternation operator, and \| is literal. | ||
180 | If not set, then \| is an alternation operator, and | is literal. */ | ||
181 | #define REG_NO_BK_VBAR (1ul << 15) | ||
182 | |||
183 | /* If this bit is set, then an ending range point collating higher | ||
184 | than the starting range point, as in [z-a], is invalid. | ||
185 | If not set, the containing range is empty and does not match any string. */ | ||
186 | #define REG_NO_EMPTY_RANGES (1ul << 16) | ||
187 | |||
188 | /* If this bit is set, then an unmatched ) is ordinary. | ||
189 | If not set, then an unmatched ) is invalid. */ | ||
190 | #define REG_UNMATCHED_RIGHT_PAREN_ORD (1ul << 17) | ||
191 | |||
192 | /* If this bit is set, succeed as soon as we match the whole pattern, | ||
193 | without further backtracking. */ | ||
194 | #define REG_NO_POSIX_BACKTRACKING (1ul << 18) | ||
195 | |||
196 | /* If this bit is set, do not process the GNU regex operators. | ||
197 | If not set, then the GNU regex operators are recognized. */ | ||
198 | #define REG_NO_GNU_OPS (1ul << 19) | ||
199 | |||
200 | /* If this bit is set, turn on internal regex debugging. | ||
201 | If not set, and debugging was on, turn it off. | ||
202 | This only works if regex.c is compiled -DDEBUG. | ||
203 | We define this bit always, so that all that's needed to turn on | ||
204 | debugging is to recompile regex.c; the calling code can always have | ||
205 | this bit set, and it won't affect anything in the normal case. */ | ||
206 | #define REG_DEBUG (1ul << 20) | ||
207 | |||
208 | /* If this bit is set, a syntactically invalid interval is treated as | ||
209 | a string of ordinary characters. For example, the ERE 'a{1' is | ||
210 | treated as 'a\{1'. */ | ||
211 | #define REG_INVALID_INTERVAL_ORD (1ul << 21) | ||
212 | |||
213 | /* If this bit is set, then ignore case when matching. | ||
214 | If not set, then case is significant. */ | ||
215 | #define REG_IGNORE_CASE (1ul << 22) | ||
216 | |||
217 | /* This bit is used internally like REG_CONTEXT_INDEP_ANCHORS but only | ||
218 | for ^, because it is difficult to scan the regex backwards to find | ||
219 | whether ^ should be special. */ | ||
220 | #define REG_CARET_ANCHORS_HERE (1ul << 23) | ||
221 | |||
222 | /* If this bit is set, then \{ cannot be first in an bre or | ||
223 | immediately after an alternation or begin-group operator. */ | ||
224 | #define REG_CONTEXT_INVALID_DUP (1ul << 24) | ||
225 | |||
226 | /* If this bit is set, then no_sub will be set to 1 during | ||
227 | re_compile_pattern. */ | ||
228 | #define REG_NO_SUB (1ul << 25) | ||
229 | |||
230 | /* This global variable defines the particular regexp syntax to use (for | ||
231 | some interfaces). When a regexp is compiled, the syntax used is | ||
232 | stored in the pattern buffer, so changing this does not affect | ||
233 | already-compiled regexps. */ | ||
234 | extern reg_syntax_t re_syntax_options; | ||
235 | |||
236 | /* Define combinations of the above bits for the standard possibilities. | ||
237 | (The [[[ comments delimit what gets put into the Texinfo file, so | ||
238 | don't delete them!) */ | ||
239 | /* [[[begin syntaxes]]] */ | ||
240 | #define REG_SYNTAX_EMACS 0 | ||
241 | |||
242 | #define REG_SYNTAX_AWK \ | ||
243 | (REG_BACKSLASH_ESCAPE_IN_LISTS | REG_DOT_NOT_NULL \ | ||
244 | | REG_NO_BK_PARENS | REG_NO_BK_REFS \ | ||
245 | | REG_NO_BK_VBAR | REG_NO_EMPTY_RANGES \ | ||
246 | | REG_DOT_NEWLINE | REG_CONTEXT_INDEP_ANCHORS \ | ||
247 | | REG_UNMATCHED_RIGHT_PAREN_ORD | REG_NO_GNU_OPS) | ||
248 | |||
249 | #define REG_SYNTAX_GNU_AWK \ | ||
250 | ((REG_SYNTAX_POSIX_EXTENDED | REG_BACKSLASH_ESCAPE_IN_LISTS \ | ||
251 | | REG_DEBUG) \ | ||
252 | & ~(REG_DOT_NOT_NULL | REG_INTERVALS | REG_CONTEXT_INDEP_OPS \ | ||
253 | | REG_CONTEXT_INVALID_OPS )) | ||
254 | |||
255 | #define REG_SYNTAX_POSIX_AWK \ | ||
256 | (REG_SYNTAX_POSIX_EXTENDED | REG_BACKSLASH_ESCAPE_IN_LISTS \ | ||
257 | | REG_INTERVALS | REG_NO_GNU_OPS) | ||
258 | |||
259 | #define REG_SYNTAX_GREP \ | ||
260 | (REG_BK_PLUS_QM | REG_CHAR_CLASSES \ | ||
261 | | REG_HAT_LISTS_NOT_NEWLINE | REG_INTERVALS \ | ||
262 | | REG_NEWLINE_ALT) | ||
263 | |||
264 | #define REG_SYNTAX_EGREP \ | ||
265 | (REG_CHAR_CLASSES | REG_CONTEXT_INDEP_ANCHORS \ | ||
266 | | REG_CONTEXT_INDEP_OPS | REG_HAT_LISTS_NOT_NEWLINE \ | ||
267 | | REG_NEWLINE_ALT | REG_NO_BK_PARENS \ | ||
268 | | REG_NO_BK_VBAR) | ||
269 | |||
270 | #define REG_SYNTAX_POSIX_EGREP \ | ||
271 | (REG_SYNTAX_EGREP | REG_INTERVALS | REG_NO_BK_BRACES \ | ||
272 | | REG_INVALID_INTERVAL_ORD) | ||
273 | |||
274 | /* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */ | ||
275 | #define REG_SYNTAX_ED REG_SYNTAX_POSIX_BASIC | ||
276 | |||
277 | #define REG_SYNTAX_SED REG_SYNTAX_POSIX_BASIC | ||
278 | |||
279 | /* Syntax bits common to both basic and extended POSIX regex syntax. */ | ||
280 | #define _REG_SYNTAX_POSIX_COMMON \ | ||
281 | (REG_CHAR_CLASSES | REG_DOT_NEWLINE | REG_DOT_NOT_NULL \ | ||
282 | | REG_INTERVALS | REG_NO_EMPTY_RANGES) | ||
283 | |||
284 | #define REG_SYNTAX_POSIX_BASIC \ | ||
285 | (_REG_SYNTAX_POSIX_COMMON | REG_BK_PLUS_QM | REG_CONTEXT_INVALID_DUP) | ||
286 | |||
287 | /* Differs from ..._POSIX_BASIC only in that REG_BK_PLUS_QM becomes | ||
288 | REG_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this | ||
289 | isn't minimal, since other operators, such as \`, aren't disabled. */ | ||
290 | #define REG_SYNTAX_POSIX_MINIMAL_BASIC \ | ||
291 | (_REG_SYNTAX_POSIX_COMMON | REG_LIMITED_OPS) | ||
292 | |||
293 | #define REG_SYNTAX_POSIX_EXTENDED \ | ||
294 | (_REG_SYNTAX_POSIX_COMMON | REG_CONTEXT_INDEP_ANCHORS \ | ||
295 | | REG_CONTEXT_INDEP_OPS | REG_NO_BK_BRACES \ | ||
296 | | REG_NO_BK_PARENS | REG_NO_BK_VBAR \ | ||
297 | | REG_CONTEXT_INVALID_OPS | REG_UNMATCHED_RIGHT_PAREN_ORD) | ||
298 | |||
299 | /* Differs from ..._POSIX_EXTENDED in that REG_CONTEXT_INDEP_OPS is | ||
300 | removed and REG_NO_BK_REFS is added. */ | ||
301 | #define REG_SYNTAX_POSIX_MINIMAL_EXTENDED \ | ||
302 | (_REG_SYNTAX_POSIX_COMMON | REG_CONTEXT_INDEP_ANCHORS \ | ||
303 | | REG_CONTEXT_INVALID_OPS | REG_NO_BK_BRACES \ | ||
304 | | REG_NO_BK_PARENS | REG_NO_BK_REFS \ | ||
305 | | REG_NO_BK_VBAR | REG_UNMATCHED_RIGHT_PAREN_ORD) | ||
306 | /* [[[end syntaxes]]] */ | ||
307 | |||
308 | /* Maximum number of duplicates an interval can allow. This is | ||
309 | distinct from RE_DUP_MAX, to conform to POSIX name space rules and | ||
310 | to avoid collisions with <limits.h>. */ | ||
311 | #define REG_DUP_MAX 32767 | ||
312 | |||
313 | |||
314 | /* POSIX `cflags' bits (i.e., information for `regcomp'). */ | ||
315 | |||
316 | /* If this bit is set, then use extended regular expression syntax. | ||
317 | If not set, then use basic regular expression syntax. */ | ||
318 | #define REG_EXTENDED 1 | ||
319 | |||
320 | /* If this bit is set, then ignore case when matching. | ||
321 | If not set, then case is significant. */ | ||
322 | #define REG_ICASE (1 << 1) | ||
323 | |||
324 | /* If this bit is set, then anchors do not match at newline | ||
325 | characters in the string. | ||
326 | If not set, then anchors do match at newlines. */ | ||
327 | #define REG_NEWLINE (1 << 2) | ||
328 | |||
329 | /* If this bit is set, then report only success or fail in regexec. | ||
330 | If not set, then returns differ between not matching and errors. */ | ||
331 | #define REG_NOSUB (1 << 3) | ||
332 | |||
333 | |||
334 | /* POSIX `eflags' bits (i.e., information for regexec). */ | ||
335 | |||
336 | /* If this bit is set, then the beginning-of-line operator doesn't match | ||
337 | the beginning of the string (presumably because it's not the | ||
338 | beginning of a line). | ||
339 | If not set, then the beginning-of-line operator does match the | ||
340 | beginning of the string. */ | ||
341 | #define REG_NOTBOL 1 | ||
342 | |||
343 | /* Like REG_NOTBOL, except for the end-of-line. */ | ||
344 | #define REG_NOTEOL (1 << 1) | ||
345 | |||
346 | /* Use PMATCH[0] to delimit the start and end of the search in the | ||
347 | buffer. */ | ||
348 | #define REG_STARTEND (1 << 2) | ||
349 | |||
350 | |||
351 | /* If any error codes are removed, changed, or added, update the | ||
352 | `__re_error_msgid' table in regcomp.c. */ | ||
353 | |||
354 | typedef enum | ||
355 | { | ||
356 | _REG_ENOSYS = -1, /* This will never happen for this implementation. */ | ||
357 | #define REG_ENOSYS _REG_ENOSYS | ||
358 | |||
359 | _REG_NOERROR, /* Success. */ | ||
360 | #define REG_NOERROR _REG_NOERROR | ||
361 | |||
362 | _REG_NOMATCH, /* Didn't find a match (for regexec). */ | ||
363 | #define REG_NOMATCH _REG_NOMATCH | ||
364 | |||
365 | /* POSIX regcomp return error codes. (In the order listed in the | ||
366 | standard.) */ | ||
367 | |||
368 | _REG_BADPAT, /* Invalid pattern. */ | ||
369 | #define REG_BADPAT _REG_BADPAT | ||
370 | |||
371 | _REG_ECOLLATE, /* Inalid collating element. */ | ||
372 | #define REG_ECOLLATE _REG_ECOLLATE | ||
373 | |||
374 | _REG_ECTYPE, /* Invalid character class name. */ | ||
375 | #define REG_ECTYPE _REG_ECTYPE | ||
376 | |||
377 | _REG_EESCAPE, /* Trailing backslash. */ | ||
378 | #define REG_EESCAPE _REG_EESCAPE | ||
379 | |||
380 | _REG_ESUBREG, /* Invalid back reference. */ | ||
381 | #define REG_ESUBREG _REG_ESUBREG | ||
382 | |||
383 | _REG_EBRACK, /* Unmatched left bracket. */ | ||
384 | #define REG_EBRACK _REG_EBRACK | ||
385 | |||
386 | _REG_EPAREN, /* Parenthesis imbalance. */ | ||
387 | #define REG_EPAREN _REG_EPAREN | ||
388 | |||
389 | _REG_EBRACE, /* Unmatched \{. */ | ||
390 | #define REG_EBRACE _REG_EBRACE | ||
391 | |||
392 | _REG_BADBR, /* Invalid contents of \{\}. */ | ||
393 | #define REG_BADBR _REG_BADBR | ||
394 | |||
395 | _REG_ERANGE, /* Invalid range end. */ | ||
396 | #define REG_ERANGE _REG_ERANGE | ||
397 | |||
398 | _REG_ESPACE, /* Ran out of memory. */ | ||
399 | #define REG_ESPACE _REG_ESPACE | ||
400 | |||
401 | _REG_BADRPT, /* No preceding re for repetition op. */ | ||
402 | #define REG_BADRPT _REG_BADRPT | ||
403 | |||
404 | /* Error codes we've added. */ | ||
405 | |||
406 | _REG_EEND, /* Premature end. */ | ||
407 | #define REG_EEND _REG_EEND | ||
408 | |||
409 | _REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */ | ||
410 | #define REG_ESIZE _REG_ESIZE | ||
411 | |||
412 | _REG_ERPAREN /* Unmatched ) or \); not returned from regcomp. */ | ||
413 | #define REG_ERPAREN _REG_ERPAREN | ||
414 | |||
415 | } reg_errcode_t; | ||
416 | |||
417 | /* In the traditional GNU implementation, regex.h defined member names | ||
418 | like `buffer' that POSIX does not allow. These members now have | ||
419 | names with leading `re_' (e.g., `re_buffer'). Support the old | ||
420 | names only if _REGEX_SOURCE is defined. New programs should use | ||
421 | the new names. */ | ||
422 | #ifdef _REGEX_SOURCE | ||
423 | # define _REG_RE_NAME(id) id | ||
424 | # define _REG_RM_NAME(id) id | ||
425 | #else | ||
426 | # define _REG_RE_NAME(id) re_##id | ||
427 | # define _REG_RM_NAME(id) rm_##id | ||
428 | #endif | ||
429 | |||
430 | /* The user can specify the type of the re_translate member by | ||
431 | defining the macro REG_TRANSLATE_TYPE. In the traditional GNU | ||
432 | implementation, this macro was named RE_TRANSLATE_TYPE, but POSIX | ||
433 | does not allow this. Support the old name only if _REGEX_SOURCE | ||
434 | and if the new name is not defined. New programs should use the new | ||
435 | name. */ | ||
436 | #ifndef REG_TRANSLATE_TYPE | ||
437 | # if defined _REGEX_SOURCE && defined RE_TRANSLATE_TYPE | ||
438 | # define REG_TRANSLATE_TYPE RE_TRANSLATE_TYPE | ||
439 | # else | ||
440 | # define REG_TRANSLATE_TYPE char * | ||
441 | # endif | ||
442 | #endif | ||
443 | |||
444 | /* This data structure represents a compiled pattern. Before calling | ||
445 | the pattern compiler), the fields `re_buffer', `re_allocated', `re_fastmap', | ||
446 | `re_translate', and `re_no_sub' can be set. After the pattern has been | ||
447 | compiled, the `re_nsub' field is available. All other fields are | ||
448 | private to the regex routines. */ | ||
449 | |||
450 | struct re_pattern_buffer | ||
451 | { | ||
452 | /* [[[begin pattern_buffer]]] */ | ||
453 | /* Space that holds the compiled pattern. It is declared as | ||
454 | `unsigned char *' because its elements are | ||
455 | sometimes used as array indexes. */ | ||
456 | unsigned char *_REG_RE_NAME (buffer); | ||
457 | |||
458 | /* Number of bytes to which `re_buffer' points. */ | ||
459 | __re_long_size_t _REG_RE_NAME (allocated); | ||
460 | |||
461 | /* Number of bytes actually used in `re_buffer'. */ | ||
462 | __re_long_size_t _REG_RE_NAME (used); | ||
463 | |||
464 | /* Syntax setting with which the pattern was compiled. */ | ||
465 | reg_syntax_t _REG_RE_NAME (syntax); | ||
466 | |||
467 | /* Pointer to a fastmap, if any, otherwise zero. re_search uses | ||
468 | the fastmap, if there is one, to skip over impossible | ||
469 | starting points for matches. */ | ||
470 | char *_REG_RE_NAME (fastmap); | ||
471 | |||
472 | /* Either a translate table to apply to all characters before | ||
473 | comparing them, or zero for no translation. The translation | ||
474 | is applied to a pattern when it is compiled and to a string | ||
475 | when it is matched. */ | ||
476 | REG_TRANSLATE_TYPE _REG_RE_NAME (translate); | ||
477 | |||
478 | /* Number of subexpressions found by the compiler. */ | ||
479 | size_t re_nsub; | ||
480 | |||
481 | /* Zero if this pattern cannot match the empty string, one else. | ||
482 | Well, in truth it's used only in `re_search_2', to see | ||
483 | whether or not we should use the fastmap, so we don't set | ||
484 | this absolutely perfectly; see `re_compile_fastmap' (the | ||
485 | `duplicate' case). */ | ||
486 | unsigned int _REG_RE_NAME (can_be_null) : 1; | ||
487 | |||
488 | /* If REG_UNALLOCATED, allocate space in the `regs' structure | ||
489 | for `max (REG_NREGS, re_nsub + 1)' groups. | ||
490 | If REG_REALLOCATE, reallocate space if necessary. | ||
491 | If REG_FIXED, use what's there. */ | ||
492 | #define REG_UNALLOCATED 0 | ||
493 | #define REG_REALLOCATE 1 | ||
494 | #define REG_FIXED 2 | ||
495 | unsigned int _REG_RE_NAME (regs_allocated) : 2; | ||
496 | |||
497 | /* Set to zero when `regex_compile' compiles a pattern; set to one | ||
498 | by `re_compile_fastmap' if it updates the fastmap. */ | ||
499 | unsigned int _REG_RE_NAME (fastmap_accurate) : 1; | ||
500 | |||
501 | /* If set, `re_match_2' does not return information about | ||
502 | subexpressions. */ | ||
503 | unsigned int _REG_RE_NAME (no_sub) : 1; | ||
504 | |||
505 | /* If set, a beginning-of-line anchor doesn't match at the | ||
506 | beginning of the string. */ | ||
507 | unsigned int _REG_RE_NAME (not_bol) : 1; | ||
508 | |||
509 | /* Similarly for an end-of-line anchor. */ | ||
510 | unsigned int _REG_RE_NAME (not_eol) : 1; | ||
511 | |||
512 | /* If true, an anchor at a newline matches. */ | ||
513 | unsigned int _REG_RE_NAME (newline_anchor) : 1; | ||
514 | |||
515 | /* [[[end pattern_buffer]]] */ | ||
516 | }; | ||
517 | |||
518 | typedef struct re_pattern_buffer regex_t; | ||
519 | |||
520 | /* This is the structure we store register match data in. See | ||
521 | regex.texinfo for a full description of what registers match. */ | ||
522 | struct re_registers | ||
523 | { | ||
524 | __re_size_t _REG_RM_NAME (num_regs); | ||
525 | regoff_t *_REG_RM_NAME (start); | ||
526 | regoff_t *_REG_RM_NAME (end); | ||
527 | }; | ||
528 | |||
529 | |||
530 | /* If `regs_allocated' is REG_UNALLOCATED in the pattern buffer, | ||
531 | `re_match_2' returns information about at least this many registers | ||
532 | the first time a `regs' structure is passed. */ | ||
533 | #ifndef REG_NREGS | ||
534 | # define REG_NREGS 30 | ||
535 | #endif | ||
536 | |||
537 | |||
538 | /* POSIX specification for registers. Aside from the different names than | ||
539 | `re_registers', POSIX uses an array of structures, instead of a | ||
540 | structure of arrays. */ | ||
541 | typedef struct | ||
542 | { | ||
543 | regoff_t rm_so; /* Byte offset from string's start to substring's start. */ | ||
544 | regoff_t rm_eo; /* Byte offset from string's start to substring's end. */ | ||
545 | } regmatch_t; | ||
546 | |||
547 | /* Declarations for routines. */ | ||
548 | |||
549 | /* Sets the current default syntax to SYNTAX, and return the old syntax. | ||
550 | You can also simply assign to the `re_syntax_options' variable. */ | ||
551 | extern reg_syntax_t re_set_syntax (reg_syntax_t __syntax); | ||
552 | |||
553 | /* Compile the regular expression PATTERN, with length LENGTH | ||
554 | and syntax given by the global `re_syntax_options', into the buffer | ||
555 | BUFFER. Return NULL if successful, and an error string if not. */ | ||
556 | extern const char *re_compile_pattern (const char *__pattern, size_t __length, | ||
557 | struct re_pattern_buffer *__buffer); | ||
558 | |||
559 | |||
560 | /* Compile a fastmap for the compiled pattern in BUFFER; used to | ||
561 | accelerate searches. Return 0 if successful and -2 if was an | ||
562 | internal error. */ | ||
563 | extern int re_compile_fastmap (struct re_pattern_buffer *__buffer); | ||
564 | |||
565 | |||
566 | /* Search in the string STRING (with length LENGTH) for the pattern | ||
567 | compiled into BUFFER. Start searching at position START, for RANGE | ||
568 | characters. Return the starting position of the match, -1 for no | ||
569 | match, or -2 for an internal error. Also return register | ||
570 | information in REGS (if REGS and BUFFER->re_no_sub are nonzero). */ | ||
571 | extern regoff_t re_search (struct re_pattern_buffer *__buffer, | ||
572 | const char *__string, __re_idx_t __length, | ||
573 | __re_idx_t __start, regoff_t __range, | ||
574 | struct re_registers *__regs); | ||
575 | |||
576 | |||
577 | /* Like `re_search', but search in the concatenation of STRING1 and | ||
578 | STRING2. Also, stop searching at index START + STOP. */ | ||
579 | extern regoff_t re_search_2 (struct re_pattern_buffer *__buffer, | ||
580 | const char *__string1, __re_idx_t __length1, | ||
581 | const char *__string2, __re_idx_t __length2, | ||
582 | __re_idx_t __start, regoff_t __range, | ||
583 | struct re_registers *__regs, | ||
584 | __re_idx_t __stop); | ||
585 | |||
586 | |||
587 | /* Like `re_search', but return how many characters in STRING the regexp | ||
588 | in BUFFER matched, starting at position START. */ | ||
589 | extern regoff_t re_match (struct re_pattern_buffer *__buffer, | ||
590 | const char *__string, __re_idx_t __length, | ||
591 | __re_idx_t __start, struct re_registers *__regs); | ||
592 | |||
593 | |||
594 | /* Relates to `re_match' as `re_search_2' relates to `re_search'. */ | ||
595 | extern regoff_t re_match_2 (struct re_pattern_buffer *__buffer, | ||
596 | const char *__string1, __re_idx_t __length1, | ||
597 | const char *__string2, __re_idx_t __length2, | ||
598 | __re_idx_t __start, struct re_registers *__regs, | ||
599 | __re_idx_t __stop); | ||
600 | |||
601 | |||
602 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
603 | ENDS. Subsequent matches using BUFFER and REGS will use this memory | ||
604 | for recording register information. STARTS and ENDS must be | ||
605 | allocated with malloc, and must each be at least `NUM_REGS * sizeof | ||
606 | (regoff_t)' bytes long. | ||
607 | |||
608 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
609 | register data. | ||
610 | |||
611 | Unless this function is called, the first search or match using | ||
612 | PATTERN_BUFFER will allocate its own register data, without | ||
613 | freeing the old data. */ | ||
614 | extern void re_set_registers (struct re_pattern_buffer *__buffer, | ||
615 | struct re_registers *__regs, | ||
616 | __re_size_t __num_regs, | ||
617 | regoff_t *__starts, regoff_t *__ends); | ||
618 | |||
619 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
620 | # ifndef _CRAY | ||
621 | /* 4.2 bsd compatibility. */ | ||
622 | extern char *re_comp (const char *); | ||
623 | extern int re_exec (const char *); | ||
624 | # endif | ||
625 | #endif | ||
626 | |||
627 | /* GCC 2.95 and later have "__restrict"; C99 compilers have | ||
628 | "restrict", and "configure" may have defined "restrict". */ | ||
629 | #ifndef __restrict | ||
630 | # if ! (2 < __GNUC__ || (2 == __GNUC__ && 95 <= __GNUC_MINOR__)) | ||
631 | # if defined restrict || 199901L <= __STDC_VERSION__ | ||
632 | # define __restrict restrict | ||
633 | # else | ||
634 | # define __restrict | ||
635 | # endif | ||
636 | # endif | ||
637 | #endif | ||
638 | /* gcc 3.1 and up support the [restrict] syntax, but g++ doesn't. */ | ||
639 | #ifndef __restrict_arr | ||
640 | # if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) && !defined __cplusplus | ||
641 | # define __restrict_arr __restrict | ||
642 | # else | ||
643 | # define __restrict_arr | ||
644 | # endif | ||
645 | #endif | ||
646 | |||
647 | /* POSIX compatibility. */ | ||
648 | extern int regcomp (regex_t *__restrict __preg, | ||
649 | const char *__restrict __pattern, | ||
650 | int __cflags); | ||
651 | |||
652 | extern int regexec (const regex_t *__restrict __preg, | ||
653 | const char *__restrict __string, size_t __nmatch, | ||
654 | regmatch_t __pmatch[__restrict_arr], | ||
655 | int __eflags); | ||
656 | |||
657 | extern size_t regerror (int __errcode, const regex_t *__restrict __preg, | ||
658 | char *__restrict __errbuf, size_t __errbuf_size); | ||
659 | |||
660 | extern void regfree (regex_t *__preg); | ||
661 | |||
662 | |||
663 | #ifdef _REGEX_SOURCE | ||
664 | |||
665 | /* Define the POSIX-compatible member names in terms of the | ||
666 | incompatible (and deprecated) names established by _REG_RE_NAME. | ||
667 | New programs should use the re_* names. */ | ||
668 | |||
669 | # define re_allocated allocated | ||
670 | # define re_buffer buffer | ||
671 | # define re_can_be_null can_be_null | ||
672 | # define re_fastmap fastmap | ||
673 | # define re_fastmap_accurate fastmap_accurate | ||
674 | # define re_newline_anchor newline_anchor | ||
675 | # define re_no_sub no_sub | ||
676 | # define re_not_bol not_bol | ||
677 | # define re_not_eol not_eol | ||
678 | # define re_regs_allocated regs_allocated | ||
679 | # define re_syntax syntax | ||
680 | # define re_translate translate | ||
681 | # define re_used used | ||
682 | |||
683 | /* Similarly for _REG_RM_NAME. */ | ||
684 | |||
685 | # define rm_end end | ||
686 | # define rm_num_regs num_regs | ||
687 | # define rm_start start | ||
688 | |||
689 | /* Undef RE_DUP_MAX first, in case the user has already included a | ||
690 | <limits.h> with an incompatible definition. | ||
691 | |||
692 | On GNU systems, the most common spelling for RE_DUP_MAX's value in | ||
693 | <limits.h> is (0x7ffff), so define RE_DUP_MAX to that, not to | ||
694 | REG_DUP_MAX. This avoid some duplicate-macro-definition warnings | ||
695 | with programs that include <limits.h> after this file. | ||
696 | |||
697 | New programs should not assume that regex.h defines RE_DUP_MAX; to | ||
698 | get the value of RE_DUP_MAX, they should instead include <limits.h> | ||
699 | and possibly invoke the sysconf function. */ | ||
700 | |||
701 | # undef RE_DUP_MAX | ||
702 | # define RE_DUP_MAX (0x7fff) | ||
703 | |||
704 | /* Define the following symbols for backward source compatibility. | ||
705 | These symbols violate the POSIX name space rules, and new programs | ||
706 | should avoid them. */ | ||
707 | |||
708 | # define REGS_FIXED REG_FIXED | ||
709 | # define REGS_REALLOCATE REG_REALLOCATE | ||
710 | # define REGS_UNALLOCATED REG_UNALLOCATED | ||
711 | # define RE_BACKSLASH_ESCAPE_IN_LISTS REG_BACKSLASH_ESCAPE_IN_LISTS | ||
712 | # define RE_BK_PLUS_QM REG_BK_PLUS_QM | ||
713 | # define RE_CARET_ANCHORS_HERE REG_CARET_ANCHORS_HERE | ||
714 | # define RE_CHAR_CLASSES REG_CHAR_CLASSES | ||
715 | # define RE_CONTEXT_INDEP_ANCHORS REG_CONTEXT_INDEP_ANCHORS | ||
716 | # define RE_CONTEXT_INDEP_OPS REG_CONTEXT_INDEP_OPS | ||
717 | # define RE_CONTEXT_INVALID_DUP REG_CONTEXT_INVALID_DUP | ||
718 | # define RE_CONTEXT_INVALID_OPS REG_CONTEXT_INVALID_OPS | ||
719 | # define RE_DEBUG REG_DEBUG | ||
720 | # define RE_DOT_NEWLINE REG_DOT_NEWLINE | ||
721 | # define RE_DOT_NOT_NULL REG_DOT_NOT_NULL | ||
722 | # define RE_HAT_LISTS_NOT_NEWLINE REG_HAT_LISTS_NOT_NEWLINE | ||
723 | # define RE_ICASE REG_IGNORE_CASE /* avoid collision with REG_ICASE */ | ||
724 | # define RE_INTERVALS REG_INTERVALS | ||
725 | # define RE_INVALID_INTERVAL_ORD REG_INVALID_INTERVAL_ORD | ||
726 | # define RE_LIMITED_OPS REG_LIMITED_OPS | ||
727 | # define RE_NEWLINE_ALT REG_NEWLINE_ALT | ||
728 | # define RE_NO_BK_BRACES REG_NO_BK_BRACES | ||
729 | # define RE_NO_BK_PARENS REG_NO_BK_PARENS | ||
730 | # define RE_NO_BK_REFS REG_NO_BK_REFS | ||
731 | # define RE_NO_BK_VBAR REG_NO_BK_VBAR | ||
732 | # define RE_NO_EMPTY_RANGES REG_NO_EMPTY_RANGES | ||
733 | # define RE_NO_GNU_OPS REG_NO_GNU_OPS | ||
734 | # define RE_NO_POSIX_BACKTRACKING REG_NO_POSIX_BACKTRACKING | ||
735 | # define RE_NO_SUB REG_NO_SUB | ||
736 | # define RE_NREGS REG_NREGS | ||
737 | # define RE_SYNTAX_AWK REG_SYNTAX_AWK | ||
738 | # define RE_SYNTAX_ED REG_SYNTAX_ED | ||
739 | # define RE_SYNTAX_EGREP REG_SYNTAX_EGREP | ||
740 | # define RE_SYNTAX_EMACS REG_SYNTAX_EMACS | ||
741 | # define RE_SYNTAX_GNU_AWK REG_SYNTAX_GNU_AWK | ||
742 | # define RE_SYNTAX_GREP REG_SYNTAX_GREP | ||
743 | # define RE_SYNTAX_POSIX_AWK REG_SYNTAX_POSIX_AWK | ||
744 | # define RE_SYNTAX_POSIX_BASIC REG_SYNTAX_POSIX_BASIC | ||
745 | # define RE_SYNTAX_POSIX_EGREP REG_SYNTAX_POSIX_EGREP | ||
746 | # define RE_SYNTAX_POSIX_EXTENDED REG_SYNTAX_POSIX_EXTENDED | ||
747 | # define RE_SYNTAX_POSIX_MINIMAL_BASIC REG_SYNTAX_POSIX_MINIMAL_BASIC | ||
748 | # define RE_SYNTAX_POSIX_MINIMAL_EXTENDED REG_SYNTAX_POSIX_MINIMAL_EXTENDED | ||
749 | # define RE_SYNTAX_SED REG_SYNTAX_SED | ||
750 | # define RE_UNMATCHED_RIGHT_PAREN_ORD REG_UNMATCHED_RIGHT_PAREN_ORD | ||
751 | # ifndef RE_TRANSLATE_TYPE | ||
752 | # define RE_TRANSLATE_TYPE REG_TRANSLATE_TYPE | ||
753 | # endif | ||
754 | |||
755 | #endif /* defined _REGEX_SOURCE */ | ||
756 | |||
757 | #ifdef __cplusplus | ||
758 | } | ||
759 | #endif /* C++ */ | ||
760 | |||
761 | #endif /* regex.h */ | ||
762 | |||
763 | /* | ||
764 | Local variables: | ||
765 | make-backup-files: t | ||
766 | version-control: t | ||
767 | trim-versions-without-asking: nil | ||
768 | End: | ||
769 | */ | ||
diff --git a/lib/regex.o b/lib/regex.o new file mode 100644 index 00000000..746448c4 --- /dev/null +++ b/lib/regex.o | |||
Binary files differ | |||
diff --git a/lib/regex_internal.c b/lib/regex_internal.c new file mode 100644 index 00000000..ad618cf6 --- /dev/null +++ b/lib/regex_internal.c | |||
@@ -0,0 +1,1656 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | static void re_string_construct_common (const char *str, Idx len, | ||
21 | re_string_t *pstr, | ||
22 | REG_TRANSLATE_TYPE trans, bool icase, | ||
23 | const re_dfa_t *dfa) internal_function; | ||
24 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, | ||
25 | const re_node_set *nodes, | ||
26 | re_hashval_t hash) internal_function; | ||
27 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, | ||
28 | const re_node_set *nodes, | ||
29 | unsigned int context, | ||
30 | re_hashval_t hash) internal_function; | ||
31 | |||
32 | /* Functions for string operation. */ | ||
33 | |||
34 | /* This function allocate the buffers. It is necessary to call | ||
35 | re_string_reconstruct before using the object. */ | ||
36 | |||
37 | static reg_errcode_t | ||
38 | internal_function | ||
39 | re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len, | ||
40 | REG_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) | ||
41 | { | ||
42 | reg_errcode_t ret; | ||
43 | Idx init_buf_len; | ||
44 | |||
45 | /* Ensure at least one character fits into the buffers. */ | ||
46 | if (init_len < dfa->mb_cur_max) | ||
47 | init_len = dfa->mb_cur_max; | ||
48 | init_buf_len = (len + 1 < init_len) ? len + 1: init_len; | ||
49 | re_string_construct_common (str, len, pstr, trans, icase, dfa); | ||
50 | |||
51 | ret = re_string_realloc_buffers (pstr, init_buf_len); | ||
52 | if (BE (ret != REG_NOERROR, 0)) | ||
53 | return ret; | ||
54 | |||
55 | pstr->word_char = dfa->word_char; | ||
56 | pstr->word_ops_used = dfa->word_ops_used; | ||
57 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | ||
58 | pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; | ||
59 | pstr->valid_raw_len = pstr->valid_len; | ||
60 | return REG_NOERROR; | ||
61 | } | ||
62 | |||
63 | /* This function allocate the buffers, and initialize them. */ | ||
64 | |||
65 | static reg_errcode_t | ||
66 | internal_function | ||
67 | re_string_construct (re_string_t *pstr, const char *str, Idx len, | ||
68 | REG_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) | ||
69 | { | ||
70 | reg_errcode_t ret; | ||
71 | memset (pstr, '\0', sizeof (re_string_t)); | ||
72 | re_string_construct_common (str, len, pstr, trans, icase, dfa); | ||
73 | |||
74 | if (len > 0) | ||
75 | { | ||
76 | ret = re_string_realloc_buffers (pstr, len + 1); | ||
77 | if (BE (ret != REG_NOERROR, 0)) | ||
78 | return ret; | ||
79 | } | ||
80 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | ||
81 | |||
82 | if (icase) | ||
83 | { | ||
84 | #ifdef RE_ENABLE_I18N | ||
85 | if (dfa->mb_cur_max > 1) | ||
86 | { | ||
87 | while (1) | ||
88 | { | ||
89 | ret = build_wcs_upper_buffer (pstr); | ||
90 | if (BE (ret != REG_NOERROR, 0)) | ||
91 | return ret; | ||
92 | if (pstr->valid_raw_len >= len) | ||
93 | break; | ||
94 | if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) | ||
95 | break; | ||
96 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | ||
97 | if (BE (ret != REG_NOERROR, 0)) | ||
98 | return ret; | ||
99 | } | ||
100 | } | ||
101 | else | ||
102 | #endif /* RE_ENABLE_I18N */ | ||
103 | build_upper_buffer (pstr); | ||
104 | } | ||
105 | else | ||
106 | { | ||
107 | #ifdef RE_ENABLE_I18N | ||
108 | if (dfa->mb_cur_max > 1) | ||
109 | build_wcs_buffer (pstr); | ||
110 | else | ||
111 | #endif /* RE_ENABLE_I18N */ | ||
112 | { | ||
113 | if (trans != NULL) | ||
114 | re_string_translate_buffer (pstr); | ||
115 | else | ||
116 | { | ||
117 | pstr->valid_len = pstr->bufs_len; | ||
118 | pstr->valid_raw_len = pstr->bufs_len; | ||
119 | } | ||
120 | } | ||
121 | } | ||
122 | |||
123 | return REG_NOERROR; | ||
124 | } | ||
125 | |||
126 | /* Helper functions for re_string_allocate, and re_string_construct. */ | ||
127 | |||
128 | static reg_errcode_t | ||
129 | internal_function | ||
130 | re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len) | ||
131 | { | ||
132 | #ifdef RE_ENABLE_I18N | ||
133 | if (pstr->mb_cur_max > 1) | ||
134 | { | ||
135 | wint_t *new_wcs = re_xrealloc (pstr->wcs, wint_t, new_buf_len); | ||
136 | if (BE (new_wcs == NULL, 0)) | ||
137 | return REG_ESPACE; | ||
138 | pstr->wcs = new_wcs; | ||
139 | if (pstr->offsets != NULL) | ||
140 | { | ||
141 | Idx *new_offsets = re_xrealloc (pstr->offsets, Idx, new_buf_len); | ||
142 | if (BE (new_offsets == NULL, 0)) | ||
143 | return REG_ESPACE; | ||
144 | pstr->offsets = new_offsets; | ||
145 | } | ||
146 | } | ||
147 | #endif /* RE_ENABLE_I18N */ | ||
148 | if (pstr->mbs_allocated) | ||
149 | { | ||
150 | unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, | ||
151 | new_buf_len); | ||
152 | if (BE (new_mbs == NULL, 0)) | ||
153 | return REG_ESPACE; | ||
154 | pstr->mbs = new_mbs; | ||
155 | } | ||
156 | pstr->bufs_len = new_buf_len; | ||
157 | return REG_NOERROR; | ||
158 | } | ||
159 | |||
160 | |||
161 | static void | ||
162 | internal_function | ||
163 | re_string_construct_common (const char *str, Idx len, re_string_t *pstr, | ||
164 | REG_TRANSLATE_TYPE trans, bool icase, | ||
165 | const re_dfa_t *dfa) | ||
166 | { | ||
167 | pstr->raw_mbs = (const unsigned char *) str; | ||
168 | pstr->len = len; | ||
169 | pstr->raw_len = len; | ||
170 | pstr->trans = (unsigned REG_TRANSLATE_TYPE) trans; | ||
171 | pstr->icase = icase; | ||
172 | pstr->mbs_allocated = (trans != NULL || icase); | ||
173 | pstr->mb_cur_max = dfa->mb_cur_max; | ||
174 | pstr->is_utf8 = dfa->is_utf8; | ||
175 | pstr->map_notascii = dfa->map_notascii; | ||
176 | pstr->stop = pstr->len; | ||
177 | pstr->raw_stop = pstr->stop; | ||
178 | } | ||
179 | |||
180 | #ifdef RE_ENABLE_I18N | ||
181 | |||
182 | /* Build wide character buffer PSTR->WCS. | ||
183 | If the byte sequence of the string are: | ||
184 | <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> | ||
185 | Then wide character buffer will be: | ||
186 | <wc1> , WEOF , <wc2> , WEOF , <wc3> | ||
187 | We use WEOF for padding, they indicate that the position isn't | ||
188 | a first byte of a multibyte character. | ||
189 | |||
190 | Note that this function assumes PSTR->VALID_LEN elements are already | ||
191 | built and starts from PSTR->VALID_LEN. */ | ||
192 | |||
193 | static void | ||
194 | internal_function | ||
195 | build_wcs_buffer (re_string_t *pstr) | ||
196 | { | ||
197 | #ifdef _LIBC | ||
198 | unsigned char buf[MB_LEN_MAX]; | ||
199 | assert (MB_LEN_MAX >= pstr->mb_cur_max); | ||
200 | #else | ||
201 | unsigned char buf[64]; | ||
202 | #endif | ||
203 | mbstate_t prev_st; | ||
204 | Idx byte_idx, end_idx, remain_len; | ||
205 | size_t mbclen; | ||
206 | |||
207 | /* Build the buffers from pstr->valid_len to either pstr->len or | ||
208 | pstr->bufs_len. */ | ||
209 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
210 | for (byte_idx = pstr->valid_len; byte_idx < end_idx;) | ||
211 | { | ||
212 | wchar_t wc; | ||
213 | const char *p; | ||
214 | |||
215 | remain_len = end_idx - byte_idx; | ||
216 | prev_st = pstr->cur_state; | ||
217 | /* Apply the translation if we need. */ | ||
218 | if (BE (pstr->trans != NULL, 0)) | ||
219 | { | ||
220 | int i, ch; | ||
221 | |||
222 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | ||
223 | { | ||
224 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; | ||
225 | buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; | ||
226 | } | ||
227 | p = (const char *) buf; | ||
228 | } | ||
229 | else | ||
230 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; | ||
231 | mbclen = mbrtowc (&wc, p, remain_len, &pstr->cur_state); | ||
232 | if (BE (mbclen == (size_t) -2, 0)) | ||
233 | { | ||
234 | /* The buffer doesn't have enough space, finish to build. */ | ||
235 | pstr->cur_state = prev_st; | ||
236 | break; | ||
237 | } | ||
238 | else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0)) | ||
239 | { | ||
240 | /* We treat these cases as a singlebyte character. */ | ||
241 | mbclen = 1; | ||
242 | wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | ||
243 | if (BE (pstr->trans != NULL, 0)) | ||
244 | wc = pstr->trans[wc]; | ||
245 | pstr->cur_state = prev_st; | ||
246 | } | ||
247 | |||
248 | /* Write wide character and padding. */ | ||
249 | pstr->wcs[byte_idx++] = wc; | ||
250 | /* Write paddings. */ | ||
251 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
252 | pstr->wcs[byte_idx++] = WEOF; | ||
253 | } | ||
254 | pstr->valid_len = byte_idx; | ||
255 | pstr->valid_raw_len = byte_idx; | ||
256 | } | ||
257 | |||
258 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, | ||
259 | but for REG_ICASE. */ | ||
260 | |||
261 | static reg_errcode_t | ||
262 | internal_function | ||
263 | build_wcs_upper_buffer (re_string_t *pstr) | ||
264 | { | ||
265 | mbstate_t prev_st; | ||
266 | Idx src_idx, byte_idx, end_idx, remain_len; | ||
267 | size_t mbclen; | ||
268 | #ifdef _LIBC | ||
269 | char buf[MB_LEN_MAX]; | ||
270 | assert (MB_LEN_MAX >= pstr->mb_cur_max); | ||
271 | #else | ||
272 | char buf[64]; | ||
273 | #endif | ||
274 | |||
275 | byte_idx = pstr->valid_len; | ||
276 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
277 | |||
278 | /* The following optimization assumes that ASCII characters can be | ||
279 | mapped to wide characters with a simple cast. */ | ||
280 | if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) | ||
281 | { | ||
282 | while (byte_idx < end_idx) | ||
283 | { | ||
284 | wchar_t wc; | ||
285 | |||
286 | if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) | ||
287 | && mbsinit (&pstr->cur_state)) | ||
288 | { | ||
289 | /* In case of a singlebyte character. */ | ||
290 | pstr->mbs[byte_idx] | ||
291 | = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); | ||
292 | /* The next step uses the assumption that wchar_t is encoded | ||
293 | ASCII-safe: all ASCII values can be converted like this. */ | ||
294 | pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; | ||
295 | ++byte_idx; | ||
296 | continue; | ||
297 | } | ||
298 | |||
299 | remain_len = end_idx - byte_idx; | ||
300 | prev_st = pstr->cur_state; | ||
301 | mbclen = mbrtowc (&wc, | ||
302 | ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx | ||
303 | + byte_idx), remain_len, &pstr->cur_state); | ||
304 | if (BE ((size_t) (mbclen + 2) > 2, 1)) | ||
305 | { | ||
306 | wchar_t wcu = wc; | ||
307 | if (iswlower (wc)) | ||
308 | { | ||
309 | size_t mbcdlen; | ||
310 | |||
311 | wcu = towupper (wc); | ||
312 | mbcdlen = wcrtomb (buf, wcu, &prev_st); | ||
313 | if (BE (mbclen == mbcdlen, 1)) | ||
314 | memcpy (pstr->mbs + byte_idx, buf, mbclen); | ||
315 | else | ||
316 | { | ||
317 | src_idx = byte_idx; | ||
318 | goto offsets_needed; | ||
319 | } | ||
320 | } | ||
321 | else | ||
322 | memcpy (pstr->mbs + byte_idx, | ||
323 | pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); | ||
324 | pstr->wcs[byte_idx++] = wcu; | ||
325 | /* Write paddings. */ | ||
326 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
327 | pstr->wcs[byte_idx++] = WEOF; | ||
328 | } | ||
329 | else if (mbclen == (size_t) -1 || mbclen == 0) | ||
330 | { | ||
331 | /* It is an invalid character or '\0'. Just use the byte. */ | ||
332 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | ||
333 | pstr->mbs[byte_idx] = ch; | ||
334 | /* And also cast it to wide char. */ | ||
335 | pstr->wcs[byte_idx++] = (wchar_t) ch; | ||
336 | if (BE (mbclen == (size_t) -1, 0)) | ||
337 | pstr->cur_state = prev_st; | ||
338 | } | ||
339 | else | ||
340 | { | ||
341 | /* The buffer doesn't have enough space, finish to build. */ | ||
342 | pstr->cur_state = prev_st; | ||
343 | break; | ||
344 | } | ||
345 | } | ||
346 | pstr->valid_len = byte_idx; | ||
347 | pstr->valid_raw_len = byte_idx; | ||
348 | return REG_NOERROR; | ||
349 | } | ||
350 | else | ||
351 | for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) | ||
352 | { | ||
353 | wchar_t wc; | ||
354 | const char *p; | ||
355 | offsets_needed: | ||
356 | remain_len = end_idx - byte_idx; | ||
357 | prev_st = pstr->cur_state; | ||
358 | if (BE (pstr->trans != NULL, 0)) | ||
359 | { | ||
360 | int i, ch; | ||
361 | |||
362 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | ||
363 | { | ||
364 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; | ||
365 | buf[i] = pstr->trans[ch]; | ||
366 | } | ||
367 | p = (const char *) buf; | ||
368 | } | ||
369 | else | ||
370 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; | ||
371 | mbclen = mbrtowc (&wc, p, remain_len, &pstr->cur_state); | ||
372 | if (BE ((size_t) (mbclen + 2) > 2, 1)) | ||
373 | { | ||
374 | wchar_t wcu = wc; | ||
375 | if (iswlower (wc)) | ||
376 | { | ||
377 | size_t mbcdlen; | ||
378 | |||
379 | wcu = towupper (wc); | ||
380 | mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st); | ||
381 | if (BE (mbclen == mbcdlen, 1)) | ||
382 | memcpy (pstr->mbs + byte_idx, buf, mbclen); | ||
383 | else if (mbcdlen != (size_t) -1) | ||
384 | { | ||
385 | size_t i; | ||
386 | |||
387 | if (byte_idx + mbcdlen > pstr->bufs_len) | ||
388 | { | ||
389 | pstr->cur_state = prev_st; | ||
390 | break; | ||
391 | } | ||
392 | |||
393 | if (pstr->offsets == NULL) | ||
394 | { | ||
395 | pstr->offsets = re_xmalloc (Idx, pstr->bufs_len); | ||
396 | |||
397 | if (pstr->offsets == NULL) | ||
398 | return REG_ESPACE; | ||
399 | } | ||
400 | if (!pstr->offsets_needed) | ||
401 | { | ||
402 | for (i = 0; i < (size_t) byte_idx; ++i) | ||
403 | pstr->offsets[i] = i; | ||
404 | pstr->offsets_needed = 1; | ||
405 | } | ||
406 | |||
407 | memcpy (pstr->mbs + byte_idx, buf, mbcdlen); | ||
408 | pstr->wcs[byte_idx] = wcu; | ||
409 | pstr->offsets[byte_idx] = src_idx; | ||
410 | for (i = 1; i < mbcdlen; ++i) | ||
411 | { | ||
412 | pstr->offsets[byte_idx + i] | ||
413 | = src_idx + (i < mbclen ? i : mbclen - 1); | ||
414 | pstr->wcs[byte_idx + i] = WEOF; | ||
415 | } | ||
416 | pstr->len += mbcdlen - mbclen; | ||
417 | if (pstr->raw_stop > src_idx) | ||
418 | pstr->stop += mbcdlen - mbclen; | ||
419 | end_idx = (pstr->bufs_len > pstr->len) | ||
420 | ? pstr->len : pstr->bufs_len; | ||
421 | byte_idx += mbcdlen; | ||
422 | src_idx += mbclen; | ||
423 | continue; | ||
424 | } | ||
425 | else | ||
426 | memcpy (pstr->mbs + byte_idx, p, mbclen); | ||
427 | } | ||
428 | else | ||
429 | memcpy (pstr->mbs + byte_idx, p, mbclen); | ||
430 | |||
431 | if (BE (pstr->offsets_needed != 0, 0)) | ||
432 | { | ||
433 | size_t i; | ||
434 | for (i = 0; i < mbclen; ++i) | ||
435 | pstr->offsets[byte_idx + i] = src_idx + i; | ||
436 | } | ||
437 | src_idx += mbclen; | ||
438 | |||
439 | pstr->wcs[byte_idx++] = wcu; | ||
440 | /* Write paddings. */ | ||
441 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
442 | pstr->wcs[byte_idx++] = WEOF; | ||
443 | } | ||
444 | else if (mbclen == (size_t) -1 || mbclen == 0) | ||
445 | { | ||
446 | /* It is an invalid character or '\0'. Just use the byte. */ | ||
447 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; | ||
448 | |||
449 | if (BE (pstr->trans != NULL, 0)) | ||
450 | ch = pstr->trans [ch]; | ||
451 | pstr->mbs[byte_idx] = ch; | ||
452 | |||
453 | if (BE (pstr->offsets_needed != 0, 0)) | ||
454 | pstr->offsets[byte_idx] = src_idx; | ||
455 | ++src_idx; | ||
456 | |||
457 | /* And also cast it to wide char. */ | ||
458 | pstr->wcs[byte_idx++] = (wchar_t) ch; | ||
459 | if (BE (mbclen == (size_t) -1, 0)) | ||
460 | pstr->cur_state = prev_st; | ||
461 | } | ||
462 | else | ||
463 | { | ||
464 | /* The buffer doesn't have enough space, finish to build. */ | ||
465 | pstr->cur_state = prev_st; | ||
466 | break; | ||
467 | } | ||
468 | } | ||
469 | pstr->valid_len = byte_idx; | ||
470 | pstr->valid_raw_len = src_idx; | ||
471 | return REG_NOERROR; | ||
472 | } | ||
473 | |||
474 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. | ||
475 | Return the index. */ | ||
476 | |||
477 | static Idx | ||
478 | internal_function | ||
479 | re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc) | ||
480 | { | ||
481 | mbstate_t prev_st; | ||
482 | Idx rawbuf_idx; | ||
483 | size_t mbclen; | ||
484 | wchar_t wc = 0; | ||
485 | |||
486 | /* Skip the characters which are not necessary to check. */ | ||
487 | for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; | ||
488 | rawbuf_idx < new_raw_idx;) | ||
489 | { | ||
490 | Idx remain_len; | ||
491 | remain_len = pstr->len - rawbuf_idx; | ||
492 | prev_st = pstr->cur_state; | ||
493 | mbclen = mbrtowc (&wc, (const char *) pstr->raw_mbs + rawbuf_idx, | ||
494 | remain_len, &pstr->cur_state); | ||
495 | if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) | ||
496 | { | ||
497 | /* We treat these cases as a singlebyte character. */ | ||
498 | mbclen = 1; | ||
499 | pstr->cur_state = prev_st; | ||
500 | } | ||
501 | /* Then proceed the next character. */ | ||
502 | rawbuf_idx += mbclen; | ||
503 | } | ||
504 | *last_wc = (wint_t) wc; | ||
505 | return rawbuf_idx; | ||
506 | } | ||
507 | #endif /* RE_ENABLE_I18N */ | ||
508 | |||
509 | /* Build the buffer PSTR->MBS, and apply the translation if we need. | ||
510 | This function is used in case of REG_ICASE. */ | ||
511 | |||
512 | static void | ||
513 | internal_function | ||
514 | build_upper_buffer (re_string_t *pstr) | ||
515 | { | ||
516 | Idx char_idx, end_idx; | ||
517 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
518 | |||
519 | for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) | ||
520 | { | ||
521 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; | ||
522 | if (BE (pstr->trans != NULL, 0)) | ||
523 | ch = pstr->trans[ch]; | ||
524 | if (islower (ch)) | ||
525 | pstr->mbs[char_idx] = toupper (ch); | ||
526 | else | ||
527 | pstr->mbs[char_idx] = ch; | ||
528 | } | ||
529 | pstr->valid_len = char_idx; | ||
530 | pstr->valid_raw_len = char_idx; | ||
531 | } | ||
532 | |||
533 | /* Apply TRANS to the buffer in PSTR. */ | ||
534 | |||
535 | static void | ||
536 | internal_function | ||
537 | re_string_translate_buffer (re_string_t *pstr) | ||
538 | { | ||
539 | Idx buf_idx, end_idx; | ||
540 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
541 | |||
542 | for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) | ||
543 | { | ||
544 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; | ||
545 | pstr->mbs[buf_idx] = pstr->trans[ch]; | ||
546 | } | ||
547 | |||
548 | pstr->valid_len = buf_idx; | ||
549 | pstr->valid_raw_len = buf_idx; | ||
550 | } | ||
551 | |||
552 | /* This function re-construct the buffers. | ||
553 | Concretely, convert to wide character in case of pstr->mb_cur_max > 1, | ||
554 | convert to upper case in case of REG_ICASE, apply translation. */ | ||
555 | |||
556 | static reg_errcode_t | ||
557 | internal_function | ||
558 | re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags) | ||
559 | { | ||
560 | Idx offset; | ||
561 | |||
562 | if (BE (pstr->raw_mbs_idx <= idx, 0)) | ||
563 | offset = idx - pstr->raw_mbs_idx; | ||
564 | else | ||
565 | { | ||
566 | /* Reset buffer. */ | ||
567 | #ifdef RE_ENABLE_I18N | ||
568 | if (pstr->mb_cur_max > 1) | ||
569 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | ||
570 | #endif /* RE_ENABLE_I18N */ | ||
571 | pstr->len = pstr->raw_len; | ||
572 | pstr->stop = pstr->raw_stop; | ||
573 | pstr->valid_len = 0; | ||
574 | pstr->raw_mbs_idx = 0; | ||
575 | pstr->valid_raw_len = 0; | ||
576 | pstr->offsets_needed = 0; | ||
577 | pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | ||
578 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF); | ||
579 | if (!pstr->mbs_allocated) | ||
580 | pstr->mbs = (unsigned char *) pstr->raw_mbs; | ||
581 | offset = idx; | ||
582 | } | ||
583 | |||
584 | if (BE (offset != 0, 1)) | ||
585 | { | ||
586 | /* Are the characters which are already checked remain? */ | ||
587 | if (BE (offset < pstr->valid_raw_len, 1) | ||
588 | #ifdef RE_ENABLE_I18N | ||
589 | /* Handling this would enlarge the code too much. | ||
590 | Accept a slowdown in that case. */ | ||
591 | && pstr->offsets_needed == 0 | ||
592 | #endif | ||
593 | ) | ||
594 | { | ||
595 | /* Yes, move them to the front of the buffer. */ | ||
596 | pstr->tip_context = re_string_context_at (pstr, offset - 1, eflags); | ||
597 | #ifdef RE_ENABLE_I18N | ||
598 | if (pstr->mb_cur_max > 1) | ||
599 | memmove (pstr->wcs, pstr->wcs + offset, | ||
600 | (pstr->valid_len - offset) * sizeof (wint_t)); | ||
601 | #endif /* RE_ENABLE_I18N */ | ||
602 | if (BE (pstr->mbs_allocated, 0)) | ||
603 | memmove (pstr->mbs, pstr->mbs + offset, | ||
604 | pstr->valid_len - offset); | ||
605 | pstr->valid_len -= offset; | ||
606 | pstr->valid_raw_len -= offset; | ||
607 | #if DEBUG | ||
608 | assert (pstr->valid_len > 0); | ||
609 | #endif | ||
610 | } | ||
611 | else | ||
612 | { | ||
613 | /* No, skip all characters until IDX. */ | ||
614 | #ifdef RE_ENABLE_I18N | ||
615 | if (BE (pstr->offsets_needed, 0)) | ||
616 | { | ||
617 | pstr->len = pstr->raw_len - idx + offset; | ||
618 | pstr->stop = pstr->raw_stop - idx + offset; | ||
619 | pstr->offsets_needed = 0; | ||
620 | } | ||
621 | #endif | ||
622 | pstr->valid_len = 0; | ||
623 | pstr->valid_raw_len = 0; | ||
624 | #ifdef RE_ENABLE_I18N | ||
625 | if (pstr->mb_cur_max > 1) | ||
626 | { | ||
627 | Idx wcs_idx; | ||
628 | wint_t wc = WEOF; | ||
629 | |||
630 | if (pstr->is_utf8) | ||
631 | { | ||
632 | const unsigned char *raw, *p, *q, *end; | ||
633 | |||
634 | /* Special case UTF-8. Multi-byte chars start with any | ||
635 | byte other than 0x80 - 0xbf. */ | ||
636 | raw = pstr->raw_mbs + pstr->raw_mbs_idx; | ||
637 | end = raw + (offset - pstr->mb_cur_max); | ||
638 | for (p = raw + offset - 1; p >= end; --p) | ||
639 | if ((*p & 0xc0) != 0x80) | ||
640 | { | ||
641 | mbstate_t cur_state; | ||
642 | wchar_t wc2; | ||
643 | Idx mlen = raw + pstr->len - p; | ||
644 | unsigned char buf[6]; | ||
645 | size_t mbclen; | ||
646 | |||
647 | q = p; | ||
648 | if (BE (pstr->trans != NULL, 0)) | ||
649 | { | ||
650 | int i = mlen < 6 ? mlen : 6; | ||
651 | while (--i >= 0) | ||
652 | buf[i] = pstr->trans[p[i]]; | ||
653 | q = buf; | ||
654 | } | ||
655 | /* XXX Don't use mbrtowc, we know which conversion | ||
656 | to use (UTF-8 -> UCS4). */ | ||
657 | memset (&cur_state, 0, sizeof (cur_state)); | ||
658 | mbclen = mbrtowc (&wc2, (const char *) p, mlen, | ||
659 | &cur_state); | ||
660 | if (raw + offset - p <= mbclen && mbclen < (size_t) -2) | ||
661 | { | ||
662 | memset (&pstr->cur_state, '\0', | ||
663 | sizeof (mbstate_t)); | ||
664 | pstr->valid_len = mbclen - (raw + offset - p); | ||
665 | wc = wc2; | ||
666 | } | ||
667 | break; | ||
668 | } | ||
669 | } | ||
670 | |||
671 | if (wc == WEOF) | ||
672 | pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; | ||
673 | if (BE (pstr->valid_len, 0)) | ||
674 | { | ||
675 | for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) | ||
676 | pstr->wcs[wcs_idx] = WEOF; | ||
677 | if (pstr->mbs_allocated) | ||
678 | memset (pstr->mbs, -1, pstr->valid_len); | ||
679 | } | ||
680 | pstr->valid_raw_len = pstr->valid_len; | ||
681 | pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) | ||
682 | && IS_WIDE_WORD_CHAR (wc)) | ||
683 | ? CONTEXT_WORD | ||
684 | : ((IS_WIDE_NEWLINE (wc) | ||
685 | && pstr->newline_anchor) | ||
686 | ? CONTEXT_NEWLINE : 0)); | ||
687 | } | ||
688 | else | ||
689 | #endif /* RE_ENABLE_I18N */ | ||
690 | { | ||
691 | int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; | ||
692 | if (pstr->trans) | ||
693 | c = pstr->trans[c]; | ||
694 | pstr->tip_context = (bitset_contain (pstr->word_char, c) | ||
695 | ? CONTEXT_WORD | ||
696 | : ((IS_NEWLINE (c) && pstr->newline_anchor) | ||
697 | ? CONTEXT_NEWLINE : 0)); | ||
698 | } | ||
699 | } | ||
700 | if (!BE (pstr->mbs_allocated, 0)) | ||
701 | pstr->mbs += offset; | ||
702 | } | ||
703 | pstr->raw_mbs_idx = idx; | ||
704 | pstr->len -= offset; | ||
705 | pstr->stop -= offset; | ||
706 | |||
707 | /* Then build the buffers. */ | ||
708 | #ifdef RE_ENABLE_I18N | ||
709 | if (pstr->mb_cur_max > 1) | ||
710 | { | ||
711 | if (pstr->icase) | ||
712 | { | ||
713 | reg_errcode_t ret = build_wcs_upper_buffer (pstr); | ||
714 | if (BE (ret != REG_NOERROR, 0)) | ||
715 | return ret; | ||
716 | } | ||
717 | else | ||
718 | build_wcs_buffer (pstr); | ||
719 | } | ||
720 | else | ||
721 | #endif /* RE_ENABLE_I18N */ | ||
722 | if (BE (pstr->mbs_allocated, 0)) | ||
723 | { | ||
724 | if (pstr->icase) | ||
725 | build_upper_buffer (pstr); | ||
726 | else if (pstr->trans != NULL) | ||
727 | re_string_translate_buffer (pstr); | ||
728 | } | ||
729 | else | ||
730 | pstr->valid_len = pstr->len; | ||
731 | |||
732 | pstr->cur_idx = 0; | ||
733 | return REG_NOERROR; | ||
734 | } | ||
735 | |||
736 | static unsigned char | ||
737 | internal_function __attribute ((pure)) | ||
738 | re_string_peek_byte_case (const re_string_t *pstr, Idx idx) | ||
739 | { | ||
740 | int ch; | ||
741 | Idx off; | ||
742 | |||
743 | /* Handle the common (easiest) cases first. */ | ||
744 | if (BE (!pstr->mbs_allocated, 1)) | ||
745 | return re_string_peek_byte (pstr, idx); | ||
746 | |||
747 | #ifdef RE_ENABLE_I18N | ||
748 | if (pstr->mb_cur_max > 1 | ||
749 | && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) | ||
750 | return re_string_peek_byte (pstr, idx); | ||
751 | #endif | ||
752 | |||
753 | off = pstr->cur_idx + idx; | ||
754 | #ifdef RE_ENABLE_I18N | ||
755 | if (pstr->offsets_needed) | ||
756 | off = pstr->offsets[off]; | ||
757 | #endif | ||
758 | |||
759 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | ||
760 | |||
761 | #ifdef RE_ENABLE_I18N | ||
762 | /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I | ||
763 | this function returns CAPITAL LETTER I instead of first byte of | ||
764 | DOTLESS SMALL LETTER I. The latter would confuse the parser, | ||
765 | since peek_byte_case doesn't advance cur_idx in any way. */ | ||
766 | if (pstr->offsets_needed && !isascii (ch)) | ||
767 | return re_string_peek_byte (pstr, idx); | ||
768 | #endif | ||
769 | |||
770 | return ch; | ||
771 | } | ||
772 | |||
773 | static unsigned char | ||
774 | internal_function __attribute ((pure)) | ||
775 | re_string_fetch_byte_case (re_string_t *pstr) | ||
776 | { | ||
777 | if (BE (!pstr->mbs_allocated, 1)) | ||
778 | return re_string_fetch_byte (pstr); | ||
779 | |||
780 | #ifdef RE_ENABLE_I18N | ||
781 | if (pstr->offsets_needed) | ||
782 | { | ||
783 | Idx off; | ||
784 | int ch; | ||
785 | |||
786 | /* For tr_TR.UTF-8 [[:islower:]] there is | ||
787 | [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip | ||
788 | in that case the whole multi-byte character and return | ||
789 | the original letter. On the other side, with | ||
790 | [[: DOTLESS SMALL LETTER I return [[:I, as doing | ||
791 | anything else would complicate things too much. */ | ||
792 | |||
793 | if (!re_string_first_byte (pstr, pstr->cur_idx)) | ||
794 | return re_string_fetch_byte (pstr); | ||
795 | |||
796 | off = pstr->offsets[pstr->cur_idx]; | ||
797 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | ||
798 | |||
799 | if (! isascii (ch)) | ||
800 | return re_string_fetch_byte (pstr); | ||
801 | |||
802 | re_string_skip_bytes (pstr, | ||
803 | re_string_char_size_at (pstr, pstr->cur_idx)); | ||
804 | return ch; | ||
805 | } | ||
806 | #endif | ||
807 | |||
808 | return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; | ||
809 | } | ||
810 | |||
811 | static void | ||
812 | internal_function | ||
813 | re_string_destruct (re_string_t *pstr) | ||
814 | { | ||
815 | #ifdef RE_ENABLE_I18N | ||
816 | re_free (pstr->wcs); | ||
817 | re_free (pstr->offsets); | ||
818 | #endif /* RE_ENABLE_I18N */ | ||
819 | if (pstr->mbs_allocated) | ||
820 | re_free (pstr->mbs); | ||
821 | } | ||
822 | |||
823 | /* Return the context at IDX in INPUT. */ | ||
824 | |||
825 | static unsigned int | ||
826 | internal_function | ||
827 | re_string_context_at (const re_string_t *input, Idx idx, int eflags) | ||
828 | { | ||
829 | int c; | ||
830 | if (BE (! REG_VALID_INDEX (idx), 0)) | ||
831 | /* In this case, we use the value stored in input->tip_context, | ||
832 | since we can't know the character in input->mbs[-1] here. */ | ||
833 | return input->tip_context; | ||
834 | if (BE (idx == input->len, 0)) | ||
835 | return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF | ||
836 | : CONTEXT_NEWLINE | CONTEXT_ENDBUF); | ||
837 | #ifdef RE_ENABLE_I18N | ||
838 | if (input->mb_cur_max > 1) | ||
839 | { | ||
840 | wint_t wc; | ||
841 | Idx wc_idx = idx; | ||
842 | while(input->wcs[wc_idx] == WEOF) | ||
843 | { | ||
844 | #ifdef DEBUG | ||
845 | /* It must not happen. */ | ||
846 | assert (REG_VALID_INDEX (wc_idx)); | ||
847 | #endif | ||
848 | --wc_idx; | ||
849 | if (! REG_VALID_INDEX (wc_idx)) | ||
850 | return input->tip_context; | ||
851 | } | ||
852 | wc = input->wcs[wc_idx]; | ||
853 | if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) | ||
854 | return CONTEXT_WORD; | ||
855 | return (IS_WIDE_NEWLINE (wc) && input->newline_anchor | ||
856 | ? CONTEXT_NEWLINE : 0); | ||
857 | } | ||
858 | else | ||
859 | #endif | ||
860 | { | ||
861 | c = re_string_byte_at (input, idx); | ||
862 | if (bitset_contain (input->word_char, c)) | ||
863 | return CONTEXT_WORD; | ||
864 | return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; | ||
865 | } | ||
866 | } | ||
867 | |||
868 | /* Functions for set operation. */ | ||
869 | |||
870 | static reg_errcode_t | ||
871 | internal_function | ||
872 | re_node_set_alloc (re_node_set *set, Idx size) | ||
873 | { | ||
874 | set->alloc = size; | ||
875 | set->nelem = 0; | ||
876 | set->elems = re_xmalloc (Idx, size); | ||
877 | if (BE (set->elems == NULL, 0)) | ||
878 | return REG_ESPACE; | ||
879 | return REG_NOERROR; | ||
880 | } | ||
881 | |||
882 | static reg_errcode_t | ||
883 | internal_function | ||
884 | re_node_set_init_1 (re_node_set *set, Idx elem) | ||
885 | { | ||
886 | set->alloc = 1; | ||
887 | set->nelem = 1; | ||
888 | set->elems = re_malloc (Idx, 1); | ||
889 | if (BE (set->elems == NULL, 0)) | ||
890 | { | ||
891 | set->alloc = set->nelem = 0; | ||
892 | return REG_ESPACE; | ||
893 | } | ||
894 | set->elems[0] = elem; | ||
895 | return REG_NOERROR; | ||
896 | } | ||
897 | |||
898 | static reg_errcode_t | ||
899 | internal_function | ||
900 | re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2) | ||
901 | { | ||
902 | set->alloc = 2; | ||
903 | set->elems = re_malloc (Idx, 2); | ||
904 | if (BE (set->elems == NULL, 0)) | ||
905 | return REG_ESPACE; | ||
906 | if (elem1 == elem2) | ||
907 | { | ||
908 | set->nelem = 1; | ||
909 | set->elems[0] = elem1; | ||
910 | } | ||
911 | else | ||
912 | { | ||
913 | set->nelem = 2; | ||
914 | if (elem1 < elem2) | ||
915 | { | ||
916 | set->elems[0] = elem1; | ||
917 | set->elems[1] = elem2; | ||
918 | } | ||
919 | else | ||
920 | { | ||
921 | set->elems[0] = elem2; | ||
922 | set->elems[1] = elem1; | ||
923 | } | ||
924 | } | ||
925 | return REG_NOERROR; | ||
926 | } | ||
927 | |||
928 | static reg_errcode_t | ||
929 | internal_function | ||
930 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) | ||
931 | { | ||
932 | dest->nelem = src->nelem; | ||
933 | if (src->nelem > 0) | ||
934 | { | ||
935 | dest->alloc = dest->nelem; | ||
936 | dest->elems = re_malloc (Idx, dest->alloc); | ||
937 | if (BE (dest->elems == NULL, 0)) | ||
938 | { | ||
939 | dest->alloc = dest->nelem = 0; | ||
940 | return REG_ESPACE; | ||
941 | } | ||
942 | memcpy (dest->elems, src->elems, src->nelem * sizeof dest->elems[0]); | ||
943 | } | ||
944 | else | ||
945 | re_node_set_init_empty (dest); | ||
946 | return REG_NOERROR; | ||
947 | } | ||
948 | |||
949 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to | ||
950 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. | ||
951 | Note: We assume dest->elems is NULL, when dest->alloc is 0. */ | ||
952 | |||
953 | static reg_errcode_t | ||
954 | internal_function | ||
955 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, | ||
956 | const re_node_set *src2) | ||
957 | { | ||
958 | Idx i1, i2, is, id, delta, sbase; | ||
959 | if (src1->nelem == 0 || src2->nelem == 0) | ||
960 | return REG_NOERROR; | ||
961 | |||
962 | /* We need dest->nelem + 2 * elems_in_intersection; this is a | ||
963 | conservative estimate. */ | ||
964 | if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) | ||
965 | { | ||
966 | Idx new_alloc = src1->nelem + src2->nelem + dest->alloc; | ||
967 | Idx *new_elems; | ||
968 | if (sizeof (Idx) < 3 | ||
969 | && (new_alloc < dest->alloc | ||
970 | || ((Idx) (src1->nelem + src2->nelem) < src1->nelem))) | ||
971 | return REG_ESPACE; | ||
972 | new_elems = re_xrealloc (dest->elems, Idx, new_alloc); | ||
973 | if (BE (new_elems == NULL, 0)) | ||
974 | return REG_ESPACE; | ||
975 | dest->elems = new_elems; | ||
976 | dest->alloc = new_alloc; | ||
977 | } | ||
978 | |||
979 | /* Find the items in the intersection of SRC1 and SRC2, and copy | ||
980 | into the top of DEST those that are not already in DEST itself. */ | ||
981 | sbase = dest->nelem + src1->nelem + src2->nelem; | ||
982 | i1 = src1->nelem - 1; | ||
983 | i2 = src2->nelem - 1; | ||
984 | id = dest->nelem - 1; | ||
985 | for (;;) | ||
986 | { | ||
987 | if (src1->elems[i1] == src2->elems[i2]) | ||
988 | { | ||
989 | /* Try to find the item in DEST. Maybe we could binary search? */ | ||
990 | while (REG_VALID_INDEX (id) && dest->elems[id] > src1->elems[i1]) | ||
991 | --id; | ||
992 | |||
993 | if (! REG_VALID_INDEX (id) || dest->elems[id] != src1->elems[i1]) | ||
994 | dest->elems[--sbase] = src1->elems[i1]; | ||
995 | |||
996 | if (! REG_VALID_INDEX (--i1) || ! REG_VALID_INDEX (--i2)) | ||
997 | break; | ||
998 | } | ||
999 | |||
1000 | /* Lower the highest of the two items. */ | ||
1001 | else if (src1->elems[i1] < src2->elems[i2]) | ||
1002 | { | ||
1003 | if (! REG_VALID_INDEX (--i2)) | ||
1004 | break; | ||
1005 | } | ||
1006 | else | ||
1007 | { | ||
1008 | if (! REG_VALID_INDEX (--i1)) | ||
1009 | break; | ||
1010 | } | ||
1011 | } | ||
1012 | |||
1013 | id = dest->nelem - 1; | ||
1014 | is = dest->nelem + src1->nelem + src2->nelem - 1; | ||
1015 | delta = is - sbase + 1; | ||
1016 | |||
1017 | /* Now copy. When DELTA becomes zero, the remaining | ||
1018 | DEST elements are already in place; this is more or | ||
1019 | less the same loop that is in re_node_set_merge. */ | ||
1020 | dest->nelem += delta; | ||
1021 | if (delta > 0 && REG_VALID_INDEX (id)) | ||
1022 | for (;;) | ||
1023 | { | ||
1024 | if (dest->elems[is] > dest->elems[id]) | ||
1025 | { | ||
1026 | /* Copy from the top. */ | ||
1027 | dest->elems[id + delta--] = dest->elems[is--]; | ||
1028 | if (delta == 0) | ||
1029 | break; | ||
1030 | } | ||
1031 | else | ||
1032 | { | ||
1033 | /* Slide from the bottom. */ | ||
1034 | dest->elems[id + delta] = dest->elems[id]; | ||
1035 | if (! REG_VALID_INDEX (--id)) | ||
1036 | break; | ||
1037 | } | ||
1038 | } | ||
1039 | |||
1040 | /* Copy remaining SRC elements. */ | ||
1041 | memcpy (dest->elems, dest->elems + sbase, delta * sizeof dest->elems[0]); | ||
1042 | |||
1043 | return REG_NOERROR; | ||
1044 | } | ||
1045 | |||
1046 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to | ||
1047 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ | ||
1048 | |||
1049 | static reg_errcode_t | ||
1050 | internal_function | ||
1051 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, | ||
1052 | const re_node_set *src2) | ||
1053 | { | ||
1054 | Idx i1, i2, id; | ||
1055 | if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) | ||
1056 | { | ||
1057 | dest->alloc = src1->nelem + src2->nelem; | ||
1058 | if (sizeof (Idx) < 2 && dest->alloc < src1->nelem) | ||
1059 | return REG_ESPACE; | ||
1060 | dest->elems = re_xmalloc (Idx, dest->alloc); | ||
1061 | if (BE (dest->elems == NULL, 0)) | ||
1062 | return REG_ESPACE; | ||
1063 | } | ||
1064 | else | ||
1065 | { | ||
1066 | if (src1 != NULL && src1->nelem > 0) | ||
1067 | return re_node_set_init_copy (dest, src1); | ||
1068 | else if (src2 != NULL && src2->nelem > 0) | ||
1069 | return re_node_set_init_copy (dest, src2); | ||
1070 | else | ||
1071 | re_node_set_init_empty (dest); | ||
1072 | return REG_NOERROR; | ||
1073 | } | ||
1074 | for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) | ||
1075 | { | ||
1076 | if (src1->elems[i1] > src2->elems[i2]) | ||
1077 | { | ||
1078 | dest->elems[id++] = src2->elems[i2++]; | ||
1079 | continue; | ||
1080 | } | ||
1081 | if (src1->elems[i1] == src2->elems[i2]) | ||
1082 | ++i2; | ||
1083 | dest->elems[id++] = src1->elems[i1++]; | ||
1084 | } | ||
1085 | if (i1 < src1->nelem) | ||
1086 | { | ||
1087 | memcpy (dest->elems + id, src1->elems + i1, | ||
1088 | (src1->nelem - i1) * sizeof dest->elems[0]); | ||
1089 | id += src1->nelem - i1; | ||
1090 | } | ||
1091 | else if (i2 < src2->nelem) | ||
1092 | { | ||
1093 | memcpy (dest->elems + id, src2->elems + i2, | ||
1094 | (src2->nelem - i2) * sizeof dest->elems[0]); | ||
1095 | id += src2->nelem - i2; | ||
1096 | } | ||
1097 | dest->nelem = id; | ||
1098 | return REG_NOERROR; | ||
1099 | } | ||
1100 | |||
1101 | /* Calculate the union set of the sets DEST and SRC. And store it to | ||
1102 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ | ||
1103 | |||
1104 | static reg_errcode_t | ||
1105 | internal_function | ||
1106 | re_node_set_merge (re_node_set *dest, const re_node_set *src) | ||
1107 | { | ||
1108 | Idx is, id, sbase, delta; | ||
1109 | if (src == NULL || src->nelem == 0) | ||
1110 | return REG_NOERROR; | ||
1111 | if (sizeof (Idx) < 3 | ||
1112 | && ((Idx) (2 * src->nelem) < src->nelem | ||
1113 | || (Idx) (2 * src->nelem + dest->nelem) < dest->nelem)) | ||
1114 | return REG_ESPACE; | ||
1115 | if (dest->alloc < 2 * src->nelem + dest->nelem) | ||
1116 | { | ||
1117 | Idx new_alloc = src->nelem + dest->alloc; | ||
1118 | Idx *new_buffer; | ||
1119 | if (sizeof (Idx) < 4 && new_alloc < dest->alloc) | ||
1120 | return REG_ESPACE; | ||
1121 | new_buffer = re_x2realloc (dest->elems, Idx, &new_alloc); | ||
1122 | if (BE (new_buffer == NULL, 0)) | ||
1123 | return REG_ESPACE; | ||
1124 | dest->elems = new_buffer; | ||
1125 | dest->alloc = new_alloc; | ||
1126 | } | ||
1127 | |||
1128 | if (BE (dest->nelem == 0, 0)) | ||
1129 | { | ||
1130 | dest->nelem = src->nelem; | ||
1131 | memcpy (dest->elems, src->elems, src->nelem * sizeof dest->elems[0]); | ||
1132 | return REG_NOERROR; | ||
1133 | } | ||
1134 | |||
1135 | /* Copy into the top of DEST the items of SRC that are not | ||
1136 | found in DEST. Maybe we could binary search in DEST? */ | ||
1137 | for (sbase = dest->nelem + 2 * src->nelem, | ||
1138 | is = src->nelem - 1, id = dest->nelem - 1; | ||
1139 | REG_VALID_INDEX (is) && REG_VALID_INDEX (id); ) | ||
1140 | { | ||
1141 | if (dest->elems[id] == src->elems[is]) | ||
1142 | is--, id--; | ||
1143 | else if (dest->elems[id] < src->elems[is]) | ||
1144 | dest->elems[--sbase] = src->elems[is--]; | ||
1145 | else /* if (dest->elems[id] > src->elems[is]) */ | ||
1146 | --id; | ||
1147 | } | ||
1148 | |||
1149 | if (REG_VALID_INDEX (is)) | ||
1150 | { | ||
1151 | /* If DEST is exhausted, the remaining items of SRC must be unique. */ | ||
1152 | sbase -= is + 1; | ||
1153 | memcpy (dest->elems + sbase, src->elems, | ||
1154 | (is + 1) * sizeof dest->elems[0]); | ||
1155 | } | ||
1156 | |||
1157 | id = dest->nelem - 1; | ||
1158 | is = dest->nelem + 2 * src->nelem - 1; | ||
1159 | delta = is - sbase + 1; | ||
1160 | if (delta == 0) | ||
1161 | return REG_NOERROR; | ||
1162 | |||
1163 | /* Now copy. When DELTA becomes zero, the remaining | ||
1164 | DEST elements are already in place. */ | ||
1165 | dest->nelem += delta; | ||
1166 | for (;;) | ||
1167 | { | ||
1168 | if (dest->elems[is] > dest->elems[id]) | ||
1169 | { | ||
1170 | /* Copy from the top. */ | ||
1171 | dest->elems[id + delta--] = dest->elems[is--]; | ||
1172 | if (delta == 0) | ||
1173 | break; | ||
1174 | } | ||
1175 | else | ||
1176 | { | ||
1177 | /* Slide from the bottom. */ | ||
1178 | dest->elems[id + delta] = dest->elems[id]; | ||
1179 | if (! REG_VALID_INDEX (--id)) | ||
1180 | { | ||
1181 | /* Copy remaining SRC elements. */ | ||
1182 | memcpy (dest->elems, dest->elems + sbase, | ||
1183 | delta * sizeof dest->elems[0]); | ||
1184 | break; | ||
1185 | } | ||
1186 | } | ||
1187 | } | ||
1188 | |||
1189 | return REG_NOERROR; | ||
1190 | } | ||
1191 | |||
1192 | /* Insert the new element ELEM to the re_node_set* SET. | ||
1193 | SET should not already have ELEM. | ||
1194 | Return true if successful. */ | ||
1195 | |||
1196 | static bool | ||
1197 | internal_function | ||
1198 | re_node_set_insert (re_node_set *set, Idx elem) | ||
1199 | { | ||
1200 | Idx idx; | ||
1201 | /* In case the set is empty. */ | ||
1202 | if (set->alloc == 0) | ||
1203 | return re_node_set_init_1 (set, elem) == REG_NOERROR; | ||
1204 | |||
1205 | if (BE (set->nelem, 0) == 0) | ||
1206 | { | ||
1207 | /* We already guaranteed above that set->alloc != 0. */ | ||
1208 | set->elems[0] = elem; | ||
1209 | ++set->nelem; | ||
1210 | return true; | ||
1211 | } | ||
1212 | |||
1213 | /* Realloc if we need. */ | ||
1214 | if (set->alloc == set->nelem) | ||
1215 | { | ||
1216 | Idx *new_elems = re_x2realloc (set->elems, Idx, &set->alloc); | ||
1217 | if (BE (new_elems == NULL, 0)) | ||
1218 | return false; | ||
1219 | set->elems = new_elems; | ||
1220 | } | ||
1221 | |||
1222 | /* Move the elements which follows the new element. Test the | ||
1223 | first element separately to skip a check in the inner loop. */ | ||
1224 | if (elem < set->elems[0]) | ||
1225 | { | ||
1226 | idx = 0; | ||
1227 | for (idx = set->nelem; idx > 0; idx--) | ||
1228 | set->elems[idx] = set->elems[idx - 1]; | ||
1229 | } | ||
1230 | else | ||
1231 | { | ||
1232 | for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) | ||
1233 | set->elems[idx] = set->elems[idx - 1]; | ||
1234 | } | ||
1235 | |||
1236 | /* Insert the new element. */ | ||
1237 | set->elems[idx] = elem; | ||
1238 | ++set->nelem; | ||
1239 | return true; | ||
1240 | } | ||
1241 | |||
1242 | /* Insert the new element ELEM to the re_node_set* SET. | ||
1243 | SET should not already have any element greater than or equal to ELEM. | ||
1244 | Return true if successful. */ | ||
1245 | |||
1246 | static bool | ||
1247 | internal_function | ||
1248 | re_node_set_insert_last (re_node_set *set, Idx elem) | ||
1249 | { | ||
1250 | /* Realloc if we need. */ | ||
1251 | if (set->alloc == set->nelem) | ||
1252 | { | ||
1253 | Idx *new_elems; | ||
1254 | new_elems = re_x2realloc (set->elems, Idx, &set->alloc); | ||
1255 | if (BE (new_elems == NULL, 0)) | ||
1256 | return false; | ||
1257 | set->elems = new_elems; | ||
1258 | } | ||
1259 | |||
1260 | /* Insert the new element. */ | ||
1261 | set->elems[set->nelem++] = elem; | ||
1262 | return true; | ||
1263 | } | ||
1264 | |||
1265 | /* Compare two node sets SET1 and SET2. | ||
1266 | Return true if SET1 and SET2 are equivalent. */ | ||
1267 | |||
1268 | static bool | ||
1269 | internal_function __attribute ((pure)) | ||
1270 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) | ||
1271 | { | ||
1272 | Idx i; | ||
1273 | if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) | ||
1274 | return false; | ||
1275 | for (i = set1->nelem ; REG_VALID_INDEX (--i) ; ) | ||
1276 | if (set1->elems[i] != set2->elems[i]) | ||
1277 | return false; | ||
1278 | return true; | ||
1279 | } | ||
1280 | |||
1281 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ | ||
1282 | |||
1283 | static Idx | ||
1284 | internal_function __attribute ((pure)) | ||
1285 | re_node_set_contains (const re_node_set *set, Idx elem) | ||
1286 | { | ||
1287 | __re_size_t idx, right, mid; | ||
1288 | if (! REG_VALID_NONZERO_INDEX (set->nelem)) | ||
1289 | return 0; | ||
1290 | |||
1291 | /* Binary search the element. */ | ||
1292 | idx = 0; | ||
1293 | right = set->nelem - 1; | ||
1294 | while (idx < right) | ||
1295 | { | ||
1296 | mid = (idx + right) / 2; | ||
1297 | if (set->elems[mid] < elem) | ||
1298 | idx = mid + 1; | ||
1299 | else | ||
1300 | right = mid; | ||
1301 | } | ||
1302 | return set->elems[idx] == elem ? idx + 1 : 0; | ||
1303 | } | ||
1304 | |||
1305 | static void | ||
1306 | internal_function | ||
1307 | re_node_set_remove_at (re_node_set *set, Idx idx) | ||
1308 | { | ||
1309 | if (idx < 0 || idx >= set->nelem) | ||
1310 | return; | ||
1311 | --set->nelem; | ||
1312 | for (; idx < set->nelem; idx++) | ||
1313 | set->elems[idx] = set->elems[idx + 1]; | ||
1314 | } | ||
1315 | |||
1316 | |||
1317 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. | ||
1318 | Or return REG_MISSING if an error occurred. */ | ||
1319 | |||
1320 | static Idx | ||
1321 | internal_function | ||
1322 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) | ||
1323 | { | ||
1324 | int type = token.type; | ||
1325 | if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) | ||
1326 | { | ||
1327 | Idx new_nodes_alloc = dfa->nodes_alloc; | ||
1328 | Idx *new_nexts, *new_indices; | ||
1329 | re_node_set *new_edests, *new_eclosures; | ||
1330 | |||
1331 | re_token_t *new_nodes = re_x2realloc (dfa->nodes, re_token_t, | ||
1332 | &new_nodes_alloc); | ||
1333 | if (BE (new_nodes == NULL, 0)) | ||
1334 | return REG_MISSING; | ||
1335 | dfa->nodes = new_nodes; | ||
1336 | new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc); | ||
1337 | new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc); | ||
1338 | new_edests = re_xrealloc (dfa->edests, re_node_set, new_nodes_alloc); | ||
1339 | new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); | ||
1340 | if (BE (new_nexts == NULL || new_indices == NULL | ||
1341 | || new_edests == NULL || new_eclosures == NULL, 0)) | ||
1342 | return REG_MISSING; | ||
1343 | dfa->nexts = new_nexts; | ||
1344 | dfa->org_indices = new_indices; | ||
1345 | dfa->edests = new_edests; | ||
1346 | dfa->eclosures = new_eclosures; | ||
1347 | dfa->nodes_alloc = new_nodes_alloc; | ||
1348 | } | ||
1349 | dfa->nodes[dfa->nodes_len] = token; | ||
1350 | dfa->nodes[dfa->nodes_len].constraint = 0; | ||
1351 | #ifdef RE_ENABLE_I18N | ||
1352 | dfa->nodes[dfa->nodes_len].accept_mb = | ||
1353 | (type == OP_PERIOD && dfa->mb_cur_max > 1) || type == COMPLEX_BRACKET; | ||
1354 | #endif | ||
1355 | dfa->nexts[dfa->nodes_len] = REG_MISSING; | ||
1356 | re_node_set_init_empty (dfa->edests + dfa->nodes_len); | ||
1357 | re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); | ||
1358 | return dfa->nodes_len++; | ||
1359 | } | ||
1360 | |||
1361 | static inline re_hashval_t | ||
1362 | internal_function | ||
1363 | calc_state_hash (const re_node_set *nodes, unsigned int context) | ||
1364 | { | ||
1365 | re_hashval_t hash = nodes->nelem + context; | ||
1366 | Idx i; | ||
1367 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1368 | hash += nodes->elems[i]; | ||
1369 | return hash; | ||
1370 | } | ||
1371 | |||
1372 | /* Search for the state whose node_set is equivalent to NODES. | ||
1373 | Return the pointer to the state, if we found it in the DFA. | ||
1374 | Otherwise create the new one and return it. In case of an error | ||
1375 | return NULL and set the error code in ERR. | ||
1376 | Note: - We assume NULL as the invalid state, then it is possible that | ||
1377 | return value is NULL and ERR is REG_NOERROR. | ||
1378 | - We never return non-NULL value in case of any errors, it is for | ||
1379 | optimization. */ | ||
1380 | |||
1381 | static re_dfastate_t* | ||
1382 | internal_function | ||
1383 | re_acquire_state (reg_errcode_t *err, re_dfa_t *dfa, const re_node_set *nodes) | ||
1384 | { | ||
1385 | re_hashval_t hash; | ||
1386 | re_dfastate_t *new_state; | ||
1387 | struct re_state_table_entry *spot; | ||
1388 | Idx i; | ||
1389 | #ifdef lint | ||
1390 | /* Suppress bogus uninitialized-variable warnings. */ | ||
1391 | *err = REG_NOERROR; | ||
1392 | #endif | ||
1393 | if (BE (nodes->nelem == 0, 0)) | ||
1394 | { | ||
1395 | *err = REG_NOERROR; | ||
1396 | return NULL; | ||
1397 | } | ||
1398 | hash = calc_state_hash (nodes, 0); | ||
1399 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1400 | |||
1401 | for (i = 0 ; i < spot->num ; i++) | ||
1402 | { | ||
1403 | re_dfastate_t *state = spot->array[i]; | ||
1404 | if (hash != state->hash) | ||
1405 | continue; | ||
1406 | if (re_node_set_compare (&state->nodes, nodes)) | ||
1407 | return state; | ||
1408 | } | ||
1409 | |||
1410 | /* There are no appropriate state in the dfa, create the new one. */ | ||
1411 | new_state = create_ci_newstate (dfa, nodes, hash); | ||
1412 | if (BE (new_state != NULL, 1)) | ||
1413 | return new_state; | ||
1414 | else | ||
1415 | { | ||
1416 | *err = REG_ESPACE; | ||
1417 | return NULL; | ||
1418 | } | ||
1419 | } | ||
1420 | |||
1421 | /* Search for the state whose node_set is equivalent to NODES and | ||
1422 | whose context is equivalent to CONTEXT. | ||
1423 | Return the pointer to the state, if we found it in the DFA. | ||
1424 | Otherwise create the new one and return it. In case of an error | ||
1425 | return NULL and set the error code in ERR. | ||
1426 | Note: - We assume NULL as the invalid state, then it is possible that | ||
1427 | return value is NULL and ERR is REG_NOERROR. | ||
1428 | - We never return non-NULL value in case of any errors, it is for | ||
1429 | optimization. */ | ||
1430 | |||
1431 | static re_dfastate_t* | ||
1432 | internal_function | ||
1433 | re_acquire_state_context (reg_errcode_t *err, re_dfa_t *dfa, | ||
1434 | const re_node_set *nodes, unsigned int context) | ||
1435 | { | ||
1436 | re_hashval_t hash; | ||
1437 | re_dfastate_t *new_state; | ||
1438 | struct re_state_table_entry *spot; | ||
1439 | Idx i; | ||
1440 | #ifdef lint | ||
1441 | /* Suppress bogus uninitialized-variable warnings. */ | ||
1442 | *err = REG_NOERROR; | ||
1443 | #endif | ||
1444 | if (nodes->nelem == 0) | ||
1445 | { | ||
1446 | *err = REG_NOERROR; | ||
1447 | return NULL; | ||
1448 | } | ||
1449 | hash = calc_state_hash (nodes, context); | ||
1450 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1451 | |||
1452 | for (i = 0 ; i < spot->num ; i++) | ||
1453 | { | ||
1454 | re_dfastate_t *state = spot->array[i]; | ||
1455 | if (state->hash == hash | ||
1456 | && state->context == context | ||
1457 | && re_node_set_compare (state->entrance_nodes, nodes)) | ||
1458 | return state; | ||
1459 | } | ||
1460 | /* There are no appropriate state in `dfa', create the new one. */ | ||
1461 | new_state = create_cd_newstate (dfa, nodes, context, hash); | ||
1462 | if (BE (new_state != NULL, 1)) | ||
1463 | return new_state; | ||
1464 | else | ||
1465 | { | ||
1466 | *err = REG_ESPACE; | ||
1467 | return NULL; | ||
1468 | } | ||
1469 | } | ||
1470 | |||
1471 | /* Finish initialization of the new state NEWSTATE, and using its hash value | ||
1472 | HASH put in the appropriate bucket of DFA's state table. Return value | ||
1473 | indicates the error code if failed. */ | ||
1474 | |||
1475 | static reg_errcode_t | ||
1476 | internal_function | ||
1477 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, re_hashval_t hash) | ||
1478 | { | ||
1479 | struct re_state_table_entry *spot; | ||
1480 | reg_errcode_t err; | ||
1481 | Idx i; | ||
1482 | |||
1483 | newstate->hash = hash; | ||
1484 | err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); | ||
1485 | if (BE (err != REG_NOERROR, 0)) | ||
1486 | return REG_ESPACE; | ||
1487 | for (i = 0; i < newstate->nodes.nelem; i++) | ||
1488 | { | ||
1489 | Idx elem = newstate->nodes.elems[i]; | ||
1490 | if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) | ||
1491 | { | ||
1492 | bool ok = re_node_set_insert_last (&newstate->non_eps_nodes, elem); | ||
1493 | if (BE (! ok, 0)) | ||
1494 | return REG_ESPACE; | ||
1495 | } | ||
1496 | } | ||
1497 | |||
1498 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1499 | if (BE (spot->alloc <= spot->num, 0)) | ||
1500 | { | ||
1501 | Idx new_alloc = spot->num; | ||
1502 | re_dfastate_t **new_array = re_x2realloc (spot->array, re_dfastate_t *, | ||
1503 | &new_alloc); | ||
1504 | if (BE (new_array == NULL, 0)) | ||
1505 | return REG_ESPACE; | ||
1506 | spot->array = new_array; | ||
1507 | spot->alloc = new_alloc; | ||
1508 | } | ||
1509 | spot->array[spot->num++] = newstate; | ||
1510 | return REG_NOERROR; | ||
1511 | } | ||
1512 | |||
1513 | /* Create the new state which is independ of contexts. | ||
1514 | Return the new state if succeeded, otherwise return NULL. */ | ||
1515 | |||
1516 | static re_dfastate_t * | ||
1517 | internal_function | ||
1518 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | ||
1519 | re_hashval_t hash) | ||
1520 | { | ||
1521 | Idx i; | ||
1522 | reg_errcode_t err; | ||
1523 | re_dfastate_t *newstate; | ||
1524 | |||
1525 | newstate = re_calloc (re_dfastate_t, 1); | ||
1526 | if (BE (newstate == NULL, 0)) | ||
1527 | return NULL; | ||
1528 | err = re_node_set_init_copy (&newstate->nodes, nodes); | ||
1529 | if (BE (err != REG_NOERROR, 0)) | ||
1530 | { | ||
1531 | re_free (newstate); | ||
1532 | return NULL; | ||
1533 | } | ||
1534 | |||
1535 | newstate->entrance_nodes = &newstate->nodes; | ||
1536 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1537 | { | ||
1538 | re_token_t *node = dfa->nodes + nodes->elems[i]; | ||
1539 | re_token_type_t type = node->type; | ||
1540 | if (type == CHARACTER && !node->constraint) | ||
1541 | continue; | ||
1542 | #ifdef RE_ENABLE_I18N | ||
1543 | newstate->accept_mb |= node->accept_mb; | ||
1544 | #endif /* RE_ENABLE_I18N */ | ||
1545 | |||
1546 | /* If the state has the halt node, the state is a halt state. */ | ||
1547 | if (type == END_OF_RE) | ||
1548 | newstate->halt = 1; | ||
1549 | else if (type == OP_BACK_REF) | ||
1550 | newstate->has_backref = 1; | ||
1551 | else if (type == ANCHOR || node->constraint) | ||
1552 | newstate->has_constraint = 1; | ||
1553 | } | ||
1554 | err = register_state (dfa, newstate, hash); | ||
1555 | if (BE (err != REG_NOERROR, 0)) | ||
1556 | { | ||
1557 | free_state (newstate); | ||
1558 | newstate = NULL; | ||
1559 | } | ||
1560 | return newstate; | ||
1561 | } | ||
1562 | |||
1563 | /* Create the new state which is depend on the context CONTEXT. | ||
1564 | Return the new state if succeeded, otherwise return NULL. */ | ||
1565 | |||
1566 | static re_dfastate_t * | ||
1567 | internal_function | ||
1568 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | ||
1569 | unsigned int context, re_hashval_t hash) | ||
1570 | { | ||
1571 | Idx i, nctx_nodes = 0; | ||
1572 | reg_errcode_t err; | ||
1573 | re_dfastate_t *newstate; | ||
1574 | |||
1575 | newstate = re_calloc (re_dfastate_t, 1); | ||
1576 | if (BE (newstate == NULL, 0)) | ||
1577 | return NULL; | ||
1578 | err = re_node_set_init_copy (&newstate->nodes, nodes); | ||
1579 | if (BE (err != REG_NOERROR, 0)) | ||
1580 | { | ||
1581 | re_free (newstate); | ||
1582 | return NULL; | ||
1583 | } | ||
1584 | |||
1585 | newstate->context = context; | ||
1586 | newstate->entrance_nodes = &newstate->nodes; | ||
1587 | |||
1588 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1589 | { | ||
1590 | unsigned int constraint = 0; | ||
1591 | re_token_t *node = dfa->nodes + nodes->elems[i]; | ||
1592 | re_token_type_t type = node->type; | ||
1593 | if (node->constraint) | ||
1594 | constraint = node->constraint; | ||
1595 | |||
1596 | if (type == CHARACTER && !constraint) | ||
1597 | continue; | ||
1598 | #ifdef RE_ENABLE_I18N | ||
1599 | newstate->accept_mb |= node->accept_mb; | ||
1600 | #endif /* RE_ENABLE_I18N */ | ||
1601 | |||
1602 | /* If the state has the halt node, the state is a halt state. */ | ||
1603 | if (type == END_OF_RE) | ||
1604 | newstate->halt = 1; | ||
1605 | else if (type == OP_BACK_REF) | ||
1606 | newstate->has_backref = 1; | ||
1607 | else if (type == ANCHOR) | ||
1608 | constraint = node->opr.ctx_type; | ||
1609 | |||
1610 | if (constraint) | ||
1611 | { | ||
1612 | if (newstate->entrance_nodes == &newstate->nodes) | ||
1613 | { | ||
1614 | newstate->entrance_nodes = re_malloc (re_node_set, 1); | ||
1615 | if (BE (newstate->entrance_nodes == NULL, 0)) | ||
1616 | { | ||
1617 | free_state (newstate); | ||
1618 | return NULL; | ||
1619 | } | ||
1620 | re_node_set_init_copy (newstate->entrance_nodes, nodes); | ||
1621 | nctx_nodes = 0; | ||
1622 | newstate->has_constraint = 1; | ||
1623 | } | ||
1624 | |||
1625 | if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) | ||
1626 | { | ||
1627 | re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); | ||
1628 | ++nctx_nodes; | ||
1629 | } | ||
1630 | } | ||
1631 | } | ||
1632 | err = register_state (dfa, newstate, hash); | ||
1633 | if (BE (err != REG_NOERROR, 0)) | ||
1634 | { | ||
1635 | free_state (newstate); | ||
1636 | newstate = NULL; | ||
1637 | } | ||
1638 | return newstate; | ||
1639 | } | ||
1640 | |||
1641 | static void | ||
1642 | internal_function | ||
1643 | free_state (re_dfastate_t *state) | ||
1644 | { | ||
1645 | re_node_set_free (&state->non_eps_nodes); | ||
1646 | re_node_set_free (&state->inveclosure); | ||
1647 | if (state->entrance_nodes != &state->nodes) | ||
1648 | { | ||
1649 | re_node_set_free (state->entrance_nodes); | ||
1650 | re_free (state->entrance_nodes); | ||
1651 | } | ||
1652 | re_node_set_free (&state->nodes); | ||
1653 | re_free (state->word_trtable); | ||
1654 | re_free (state->trtable); | ||
1655 | re_free (state); | ||
1656 | } | ||
diff --git a/lib/regex_internal.h b/lib/regex_internal.h new file mode 100644 index 00000000..a36ae4c8 --- /dev/null +++ b/lib/regex_internal.h | |||
@@ -0,0 +1,911 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | #ifndef _REGEX_INTERNAL_H | ||
21 | #define _REGEX_INTERNAL_H 1 | ||
22 | |||
23 | #include <assert.h> | ||
24 | #include <ctype.h> | ||
25 | #include <stdbool.h> | ||
26 | #include <stdio.h> | ||
27 | #include <stdlib.h> | ||
28 | #include <string.h> | ||
29 | |||
30 | #ifndef _LIBC | ||
31 | # include "strcase.h" | ||
32 | #endif | ||
33 | |||
34 | #if defined HAVE_LANGINFO_H || defined HAVE_LANGINFO_CODESET || defined _LIBC | ||
35 | # include <langinfo.h> | ||
36 | #endif | ||
37 | #if defined HAVE_LOCALE_H || defined _LIBC | ||
38 | # include <locale.h> | ||
39 | #endif | ||
40 | #if defined HAVE_WCHAR_H || defined _LIBC | ||
41 | # include <wchar.h> | ||
42 | #endif /* HAVE_WCHAR_H || _LIBC */ | ||
43 | #if defined HAVE_WCTYPE_H || defined _LIBC | ||
44 | # include <wctype.h> | ||
45 | #endif /* HAVE_WCTYPE_H || _LIBC */ | ||
46 | #if defined _LIBC | ||
47 | # include <bits/libc-lock.h> | ||
48 | #else | ||
49 | # define __libc_lock_define(CLASS,NAME) | ||
50 | # define __libc_lock_init(NAME) do { } while (0) | ||
51 | # define __libc_lock_lock(NAME) do { } while (0) | ||
52 | # define __libc_lock_unlock(NAME) do { } while (0) | ||
53 | #endif | ||
54 | |||
55 | /* In case that the system doesn't have isblank(). */ | ||
56 | #if !defined _LIBC && !defined HAVE_ISBLANK && !defined isblank | ||
57 | # define isblank(ch) ((ch) == ' ' || (ch) == '\t') | ||
58 | #endif | ||
59 | |||
60 | #ifdef _LIBC | ||
61 | # ifndef _RE_DEFINE_LOCALE_FUNCTIONS | ||
62 | # define _RE_DEFINE_LOCALE_FUNCTIONS 1 | ||
63 | # include <locale/localeinfo.h> | ||
64 | # include <locale/elem-hash.h> | ||
65 | # include <locale/coll-lookup.h> | ||
66 | # endif | ||
67 | #endif | ||
68 | |||
69 | /* This is for other GNU distributions with internationalized messages. */ | ||
70 | #if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC | ||
71 | # include <libintl.h> | ||
72 | # ifdef _LIBC | ||
73 | # undef gettext | ||
74 | # define gettext(msgid) \ | ||
75 | INTUSE(__dcgettext) (_libc_intl_domainname, msgid, LC_MESSAGES) | ||
76 | # endif | ||
77 | #else | ||
78 | # define gettext(msgid) (msgid) | ||
79 | #endif | ||
80 | |||
81 | #ifndef gettext_noop | ||
82 | /* This define is so xgettext can find the internationalizable | ||
83 | strings. */ | ||
84 | # define gettext_noop(String) String | ||
85 | #endif | ||
86 | |||
87 | #if (defined MB_CUR_MAX && HAVE_LOCALE_H && HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_WCRTOMB && HAVE_MBRTOWC && HAVE_WCSCOLL) || _LIBC | ||
88 | # define RE_ENABLE_I18N | ||
89 | #endif | ||
90 | |||
91 | #if __GNUC__ >= 3 | ||
92 | # define BE(expr, val) __builtin_expect (expr, val) | ||
93 | #else | ||
94 | # define BE(expr, val) (expr) | ||
95 | #endif | ||
96 | |||
97 | /* Number of single byte character. */ | ||
98 | #define SBC_MAX 256 | ||
99 | |||
100 | #define COLL_ELEM_LEN_MAX 8 | ||
101 | |||
102 | /* The character which represents newline. */ | ||
103 | #define NEWLINE_CHAR '\n' | ||
104 | #define WIDE_NEWLINE_CHAR L'\n' | ||
105 | |||
106 | /* Rename to standard API for using out of glibc. */ | ||
107 | #ifndef _LIBC | ||
108 | # define __wctype wctype | ||
109 | # define __iswctype iswctype | ||
110 | # define __btowc btowc | ||
111 | # ifndef __mempcpy | ||
112 | # define __mempcpy mempcpy | ||
113 | # endif | ||
114 | # define __wcrtomb wcrtomb | ||
115 | # define __regfree regfree | ||
116 | # define attribute_hidden | ||
117 | #endif /* not _LIBC */ | ||
118 | |||
119 | #if __GNUC__ >= 4 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1) | ||
120 | # define __attribute(arg) __attribute__ (arg) | ||
121 | #else | ||
122 | # define __attribute(arg) | ||
123 | #endif | ||
124 | |||
125 | extern const char __re_error_msgid[] attribute_hidden; | ||
126 | extern const size_t __re_error_msgid_idx[] attribute_hidden; | ||
127 | |||
128 | typedef __re_idx_t Idx; | ||
129 | |||
130 | /* Special return value for failure to match. */ | ||
131 | #define REG_MISSING ((Idx) -1) | ||
132 | |||
133 | /* Special return value for internal error. */ | ||
134 | #define REG_ERROR ((Idx) -2) | ||
135 | |||
136 | /* Test whether N is a valid index, and is not one of the above. */ | ||
137 | #ifdef _REGEX_LARGE_OFFSETS | ||
138 | # define REG_VALID_INDEX(n) ((Idx) (n) < REG_ERROR) | ||
139 | #else | ||
140 | # define REG_VALID_INDEX(n) (0 <= (n)) | ||
141 | #endif | ||
142 | |||
143 | /* Test whether N is a valid nonzero index. */ | ||
144 | #ifdef _REGEX_LARGE_OFFSETS | ||
145 | # define REG_VALID_NONZERO_INDEX(n) ((Idx) ((n) - 1) < (Idx) (REG_ERROR - 1)) | ||
146 | #else | ||
147 | # define REG_VALID_NONZERO_INDEX(n) (0 < (n)) | ||
148 | #endif | ||
149 | |||
150 | /* A hash value, suitable for computing hash tables. */ | ||
151 | typedef __re_size_t re_hashval_t; | ||
152 | |||
153 | /* An integer used to represent a set of bits. It must be unsigned, | ||
154 | and must be at least as wide as unsigned int. */ | ||
155 | typedef unsigned long int bitset_word; | ||
156 | |||
157 | /* Maximum value of a bitset word. It must be useful in preprocessor | ||
158 | contexts, and must be consistent with bitset_word. */ | ||
159 | #define BITSET_WORD_MAX ULONG_MAX | ||
160 | |||
161 | /* Number of bits in a bitset word. Avoid greater-than-32-bit | ||
162 | integers and unconditional shifts by more than 31 bits, as they're | ||
163 | not portable. */ | ||
164 | #if BITSET_WORD_MAX == 0xffffffff | ||
165 | # define BITSET_WORD_BITS 32 | ||
166 | #elif BITSET_WORD_MAX >> 31 >> 5 == 1 | ||
167 | # define BITSET_WORD_BITS 36 | ||
168 | #elif BITSET_WORD_MAX >> 31 >> 16 == 1 | ||
169 | # define BITSET_WORD_BITS 48 | ||
170 | #elif BITSET_WORD_MAX >> 31 >> 28 == 1 | ||
171 | # define BITSET_WORD_BITS 60 | ||
172 | #elif BITSET_WORD_MAX >> 31 >> 31 >> 1 == 1 | ||
173 | # define BITSET_WORD_BITS 64 | ||
174 | #elif BITSET_WORD_MAX >> 31 >> 31 >> 9 == 1 | ||
175 | # define BITSET_WORD_BITS 72 | ||
176 | #elif BITSET_WORD_MAX >> 31 >> 31 >> 31 >> 31 >> 3 == 1 | ||
177 | # define BITSET_WORD_BITS 128 | ||
178 | #elif BITSET_WORD_MAX >> 31 >> 31 >> 31 >> 31 >> 31 >> 31 >> 31 >> 31 >> 7 == 1 | ||
179 | # define BITSET_WORD_BITS 256 | ||
180 | #elif BITSET_WORD_MAX >> 31 >> 31 >> 31 >> 31 >> 31 >> 31 >> 31 >> 31 >> 7 > 1 | ||
181 | # define BITSET_WORD_BITS 257 /* any value > SBC_MAX will do here */ | ||
182 | # if BITSET_WORD_BITS <= SBC_MAX | ||
183 | # error "Invalid SBC_MAX" | ||
184 | # endif | ||
185 | #else | ||
186 | # error "Add case for new bitset_word size" | ||
187 | #endif | ||
188 | |||
189 | /* Number of bitset words in a bitset. */ | ||
190 | #define BITSET_WORDS ((SBC_MAX + BITSET_WORD_BITS - 1) / BITSET_WORD_BITS) | ||
191 | |||
192 | typedef bitset_word bitset[BITSET_WORDS]; | ||
193 | typedef bitset_word *re_bitset_ptr_t; | ||
194 | typedef const bitset_word *re_const_bitset_ptr_t; | ||
195 | |||
196 | #define PREV_WORD_CONSTRAINT 0x0001 | ||
197 | #define PREV_NOTWORD_CONSTRAINT 0x0002 | ||
198 | #define NEXT_WORD_CONSTRAINT 0x0004 | ||
199 | #define NEXT_NOTWORD_CONSTRAINT 0x0008 | ||
200 | #define PREV_NEWLINE_CONSTRAINT 0x0010 | ||
201 | #define NEXT_NEWLINE_CONSTRAINT 0x0020 | ||
202 | #define PREV_BEGBUF_CONSTRAINT 0x0040 | ||
203 | #define NEXT_ENDBUF_CONSTRAINT 0x0080 | ||
204 | #define WORD_DELIM_CONSTRAINT 0x0100 | ||
205 | #define NOT_WORD_DELIM_CONSTRAINT 0x0200 | ||
206 | |||
207 | typedef enum | ||
208 | { | ||
209 | INSIDE_WORD = PREV_WORD_CONSTRAINT | NEXT_WORD_CONSTRAINT, | ||
210 | WORD_FIRST = PREV_NOTWORD_CONSTRAINT | NEXT_WORD_CONSTRAINT, | ||
211 | WORD_LAST = PREV_WORD_CONSTRAINT | NEXT_NOTWORD_CONSTRAINT, | ||
212 | INSIDE_NOTWORD = PREV_NOTWORD_CONSTRAINT | NEXT_NOTWORD_CONSTRAINT, | ||
213 | LINE_FIRST = PREV_NEWLINE_CONSTRAINT, | ||
214 | LINE_LAST = NEXT_NEWLINE_CONSTRAINT, | ||
215 | BUF_FIRST = PREV_BEGBUF_CONSTRAINT, | ||
216 | BUF_LAST = NEXT_ENDBUF_CONSTRAINT, | ||
217 | WORD_DELIM = WORD_DELIM_CONSTRAINT, | ||
218 | NOT_WORD_DELIM = NOT_WORD_DELIM_CONSTRAINT | ||
219 | } re_context_type; | ||
220 | |||
221 | typedef struct | ||
222 | { | ||
223 | Idx alloc; | ||
224 | Idx nelem; | ||
225 | Idx *elems; | ||
226 | } re_node_set; | ||
227 | |||
228 | typedef enum | ||
229 | { | ||
230 | NON_TYPE = 0, | ||
231 | |||
232 | /* Node type, These are used by token, node, tree. */ | ||
233 | CHARACTER = 1, | ||
234 | END_OF_RE = 2, | ||
235 | SIMPLE_BRACKET = 3, | ||
236 | OP_BACK_REF = 4, | ||
237 | OP_PERIOD = 5, | ||
238 | #ifdef RE_ENABLE_I18N | ||
239 | COMPLEX_BRACKET = 6, | ||
240 | OP_UTF8_PERIOD = 7, | ||
241 | #endif /* RE_ENABLE_I18N */ | ||
242 | |||
243 | /* We define EPSILON_BIT as a macro so that OP_OPEN_SUBEXP is used | ||
244 | when the debugger shows values of this enum type. */ | ||
245 | #define EPSILON_BIT 8 | ||
246 | OP_OPEN_SUBEXP = EPSILON_BIT | 0, | ||
247 | OP_CLOSE_SUBEXP = EPSILON_BIT | 1, | ||
248 | OP_ALT = EPSILON_BIT | 2, | ||
249 | OP_DUP_ASTERISK = EPSILON_BIT | 3, | ||
250 | ANCHOR = EPSILON_BIT | 4, | ||
251 | |||
252 | /* Tree type, these are used only by tree. */ | ||
253 | CONCAT = 16, | ||
254 | SUBEXP = 17, | ||
255 | |||
256 | /* Token type, these are used only by token. */ | ||
257 | OP_DUP_PLUS = 18, | ||
258 | OP_DUP_QUESTION, | ||
259 | OP_OPEN_BRACKET, | ||
260 | OP_CLOSE_BRACKET, | ||
261 | OP_CHARSET_RANGE, | ||
262 | OP_OPEN_DUP_NUM, | ||
263 | OP_CLOSE_DUP_NUM, | ||
264 | OP_NON_MATCH_LIST, | ||
265 | OP_OPEN_COLL_ELEM, | ||
266 | OP_CLOSE_COLL_ELEM, | ||
267 | OP_OPEN_EQUIV_CLASS, | ||
268 | OP_CLOSE_EQUIV_CLASS, | ||
269 | OP_OPEN_CHAR_CLASS, | ||
270 | OP_CLOSE_CHAR_CLASS, | ||
271 | OP_WORD, | ||
272 | OP_NOTWORD, | ||
273 | OP_SPACE, | ||
274 | OP_NOTSPACE, | ||
275 | BACK_SLASH | ||
276 | |||
277 | } re_token_type_t; | ||
278 | |||
279 | #ifdef RE_ENABLE_I18N | ||
280 | typedef struct | ||
281 | { | ||
282 | /* Multibyte characters. */ | ||
283 | wchar_t *mbchars; | ||
284 | |||
285 | /* Collating symbols. */ | ||
286 | # ifdef _LIBC | ||
287 | int32_t *coll_syms; | ||
288 | # endif | ||
289 | |||
290 | /* Equivalence classes. */ | ||
291 | # ifdef _LIBC | ||
292 | int32_t *equiv_classes; | ||
293 | # endif | ||
294 | |||
295 | /* Range expressions. */ | ||
296 | # ifdef _LIBC | ||
297 | uint32_t *range_starts; | ||
298 | uint32_t *range_ends; | ||
299 | # else /* not _LIBC */ | ||
300 | wchar_t *range_starts; | ||
301 | wchar_t *range_ends; | ||
302 | # endif /* not _LIBC */ | ||
303 | |||
304 | /* Character classes. */ | ||
305 | wctype_t *char_classes; | ||
306 | |||
307 | /* If this character set is the non-matching list. */ | ||
308 | unsigned int non_match : 1; | ||
309 | |||
310 | /* # of multibyte characters. */ | ||
311 | Idx nmbchars; | ||
312 | |||
313 | /* # of collating symbols. */ | ||
314 | Idx ncoll_syms; | ||
315 | |||
316 | /* # of equivalence classes. */ | ||
317 | Idx nequiv_classes; | ||
318 | |||
319 | /* # of range expressions. */ | ||
320 | Idx nranges; | ||
321 | |||
322 | /* # of character classes. */ | ||
323 | Idx nchar_classes; | ||
324 | } re_charset_t; | ||
325 | #endif /* RE_ENABLE_I18N */ | ||
326 | |||
327 | typedef struct | ||
328 | { | ||
329 | union | ||
330 | { | ||
331 | unsigned char c; /* for CHARACTER */ | ||
332 | re_bitset_ptr_t sbcset; /* for SIMPLE_BRACKET */ | ||
333 | #ifdef RE_ENABLE_I18N | ||
334 | re_charset_t *mbcset; /* for COMPLEX_BRACKET */ | ||
335 | #endif /* RE_ENABLE_I18N */ | ||
336 | Idx idx; /* for BACK_REF */ | ||
337 | re_context_type ctx_type; /* for ANCHOR */ | ||
338 | } opr; | ||
339 | #if __GNUC__ >= 2 | ||
340 | re_token_type_t type : 8; | ||
341 | #else | ||
342 | re_token_type_t type; | ||
343 | #endif | ||
344 | unsigned int constraint : 10; /* context constraint */ | ||
345 | unsigned int duplicated : 1; | ||
346 | unsigned int opt_subexp : 1; | ||
347 | #ifdef RE_ENABLE_I18N | ||
348 | unsigned int accept_mb : 1; | ||
349 | /* These 2 bits can be moved into the union if needed (e.g. if running out | ||
350 | of bits; move opr.c to opr.c.c and move the flags to opr.c.flags). */ | ||
351 | unsigned int mb_partial : 1; | ||
352 | #endif | ||
353 | unsigned int word_char : 1; | ||
354 | } re_token_t; | ||
355 | |||
356 | #define IS_EPSILON_NODE(type) ((type) & EPSILON_BIT) | ||
357 | |||
358 | struct re_string_t | ||
359 | { | ||
360 | /* Indicate the raw buffer which is the original string passed as an | ||
361 | argument of regexec(), re_search(), etc.. */ | ||
362 | const unsigned char *raw_mbs; | ||
363 | /* Store the multibyte string. In case of "case insensitive mode" like | ||
364 | REG_ICASE, upper cases of the string are stored, otherwise MBS points | ||
365 | the same address that RAW_MBS points. */ | ||
366 | unsigned char *mbs; | ||
367 | #ifdef RE_ENABLE_I18N | ||
368 | /* Store the wide character string which is corresponding to MBS. */ | ||
369 | wint_t *wcs; | ||
370 | Idx *offsets; | ||
371 | mbstate_t cur_state; | ||
372 | #endif | ||
373 | /* Index in RAW_MBS. Each character mbs[i] corresponds to | ||
374 | raw_mbs[raw_mbs_idx + i]. */ | ||
375 | Idx raw_mbs_idx; | ||
376 | /* The length of the valid characters in the buffers. */ | ||
377 | Idx valid_len; | ||
378 | /* The corresponding number of bytes in raw_mbs array. */ | ||
379 | Idx valid_raw_len; | ||
380 | /* The length of the buffers MBS and WCS. */ | ||
381 | Idx bufs_len; | ||
382 | /* The index in MBS, which is updated by re_string_fetch_byte. */ | ||
383 | Idx cur_idx; | ||
384 | /* length of RAW_MBS array. */ | ||
385 | Idx raw_len; | ||
386 | /* This is RAW_LEN - RAW_MBS_IDX + VALID_LEN - VALID_RAW_LEN. */ | ||
387 | Idx len; | ||
388 | /* End of the buffer may be shorter than its length in the cases such | ||
389 | as re_match_2, re_search_2. Then, we use STOP for end of the buffer | ||
390 | instead of LEN. */ | ||
391 | Idx raw_stop; | ||
392 | /* This is RAW_STOP - RAW_MBS_IDX adjusted through OFFSETS. */ | ||
393 | Idx stop; | ||
394 | |||
395 | /* The context of mbs[0]. We store the context independently, since | ||
396 | the context of mbs[0] may be different from raw_mbs[0], which is | ||
397 | the beginning of the input string. */ | ||
398 | unsigned int tip_context; | ||
399 | /* The translation passed as a part of an argument of re_compile_pattern. */ | ||
400 | unsigned REG_TRANSLATE_TYPE trans; | ||
401 | /* Copy of re_dfa_t's word_char. */ | ||
402 | re_const_bitset_ptr_t word_char; | ||
403 | /* true if REG_ICASE. */ | ||
404 | unsigned char icase; | ||
405 | unsigned char is_utf8; | ||
406 | unsigned char map_notascii; | ||
407 | unsigned char mbs_allocated; | ||
408 | unsigned char offsets_needed; | ||
409 | unsigned char newline_anchor; | ||
410 | unsigned char word_ops_used; | ||
411 | int mb_cur_max; | ||
412 | }; | ||
413 | typedef struct re_string_t re_string_t; | ||
414 | |||
415 | |||
416 | struct re_dfa_t; | ||
417 | typedef struct re_dfa_t re_dfa_t; | ||
418 | |||
419 | #ifndef _LIBC | ||
420 | # ifdef __i386__ | ||
421 | # define internal_function __attribute ((regparm (3), stdcall)) | ||
422 | # else | ||
423 | # define internal_function | ||
424 | # endif | ||
425 | #endif | ||
426 | |||
427 | static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr, | ||
428 | Idx new_buf_len) | ||
429 | internal_function; | ||
430 | #ifdef RE_ENABLE_I18N | ||
431 | static void build_wcs_buffer (re_string_t *pstr) internal_function; | ||
432 | static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr) | ||
433 | internal_function; | ||
434 | #endif /* RE_ENABLE_I18N */ | ||
435 | static void build_upper_buffer (re_string_t *pstr) internal_function; | ||
436 | static void re_string_translate_buffer (re_string_t *pstr) internal_function; | ||
437 | static unsigned int re_string_context_at (const re_string_t *input, | ||
438 | Idx idx, int eflags) | ||
439 | internal_function __attribute ((pure)); | ||
440 | |||
441 | #define re_string_peek_byte(pstr, offset) \ | ||
442 | ((pstr)->mbs[(pstr)->cur_idx + offset]) | ||
443 | #define re_string_fetch_byte(pstr) \ | ||
444 | ((pstr)->mbs[(pstr)->cur_idx++]) | ||
445 | #define re_string_first_byte(pstr, idx) \ | ||
446 | ((idx) == (pstr)->valid_len || (pstr)->wcs[idx] != WEOF) | ||
447 | #define re_string_is_single_byte_char(pstr, idx) \ | ||
448 | ((pstr)->wcs[idx] != WEOF && ((pstr)->valid_len == (idx) + 1 \ | ||
449 | || (pstr)->wcs[(idx) + 1] != WEOF)) | ||
450 | #define re_string_eoi(pstr) ((pstr)->stop <= (pstr)->cur_idx) | ||
451 | #define re_string_cur_idx(pstr) ((pstr)->cur_idx) | ||
452 | #define re_string_get_buffer(pstr) ((pstr)->mbs) | ||
453 | #define re_string_length(pstr) ((pstr)->len) | ||
454 | #define re_string_byte_at(pstr,idx) ((pstr)->mbs[idx]) | ||
455 | #define re_string_skip_bytes(pstr,idx) ((pstr)->cur_idx += (idx)) | ||
456 | #define re_string_set_index(pstr,idx) ((pstr)->cur_idx = (idx)) | ||
457 | |||
458 | #include <alloca.h> | ||
459 | |||
460 | #ifndef _LIBC | ||
461 | # if HAVE_ALLOCA | ||
462 | /* The OS usually guarantees only one guard page at the bottom of the stack, | ||
463 | and a page size can be as small as 4096 bytes. So we cannot safely | ||
464 | allocate anything larger than 4096 bytes. Also care for the possibility | ||
465 | of a few compiler-allocated temporary stack slots. */ | ||
466 | # define __libc_use_alloca(n) ((n) < 4032) | ||
467 | # else | ||
468 | /* alloca is implemented with malloc, so just use malloc. */ | ||
469 | # define __libc_use_alloca(n) 0 | ||
470 | # endif | ||
471 | #endif | ||
472 | |||
473 | #define re_malloc(t,n) ((t *) malloc ((n) * sizeof (t))) | ||
474 | #define re_xmalloc(t,n) ((t *) re_xnmalloc (n, sizeof (t))) | ||
475 | #define re_calloc(t,n) ((t *) calloc (n, sizeof (t))) | ||
476 | #define re_realloc(p,t,n) ((t *) realloc (p, (n) * sizeof (t))) | ||
477 | #define re_xrealloc(p,t,n) ((t *) re_xnrealloc (p, n, sizeof (t))) | ||
478 | #define re_x2realloc(p,t,pn) ((t *) re_x2nrealloc (p, pn, sizeof (t))) | ||
479 | #define re_free(p) free (p) | ||
480 | |||
481 | #ifndef SIZE_MAX | ||
482 | # define SIZE_MAX ((size_t) -1) | ||
483 | #endif | ||
484 | |||
485 | /* Return true if an array of N objects, each of size S, cannot exist | ||
486 | due to size arithmetic overflow. S must be nonzero. */ | ||
487 | static inline bool | ||
488 | re_alloc_oversized (size_t n, size_t s) | ||
489 | { | ||
490 | return BE (SIZE_MAX / s < n, 0); | ||
491 | } | ||
492 | |||
493 | /* Return true if an array of (2 * N + 1) objects, each of size S, | ||
494 | cannot exist due to size arithmetic overflow. S must be nonzero. */ | ||
495 | static inline bool | ||
496 | re_x2alloc_oversized (size_t n, size_t s) | ||
497 | { | ||
498 | return BE ((SIZE_MAX / s - 1) / 2 < n, 0); | ||
499 | } | ||
500 | |||
501 | /* Allocate an array of N objects, each with S bytes of memory, | ||
502 | dynamically, with error checking. S must be nonzero. */ | ||
503 | static inline void * | ||
504 | re_xnmalloc (size_t n, size_t s) | ||
505 | { | ||
506 | return re_alloc_oversized (n, s) ? NULL : malloc (n * s); | ||
507 | } | ||
508 | |||
509 | /* Change the size of an allocated block of memory P to an array of N | ||
510 | objects each of S bytes, with error checking. S must be nonzero. */ | ||
511 | static inline void * | ||
512 | re_xnrealloc (void *p, size_t n, size_t s) | ||
513 | { | ||
514 | return re_alloc_oversized (n, s) ? NULL : realloc (p, n * s); | ||
515 | } | ||
516 | |||
517 | /* Reallocate a block of memory P to an array of (2 * (*PN) + 1) | ||
518 | objects each of S bytes, with error checking. S must be nonzero. | ||
519 | If the allocation is successful, set *PN to the new allocation | ||
520 | count and return the resulting pointer. Otherwise, return | ||
521 | NULL. */ | ||
522 | static inline void * | ||
523 | re_x2nrealloc (void *p, size_t *pn, size_t s) | ||
524 | { | ||
525 | if (re_x2alloc_oversized (*pn, s)) | ||
526 | return NULL; | ||
527 | else | ||
528 | { | ||
529 | /* Add 1 in case *PN is zero. */ | ||
530 | size_t n1 = 2 * *pn + 1; | ||
531 | p = realloc (p, n1 * s); | ||
532 | if (BE (p != NULL, 1)) | ||
533 | *pn = n1; | ||
534 | return p; | ||
535 | } | ||
536 | } | ||
537 | |||
538 | struct bin_tree_t | ||
539 | { | ||
540 | struct bin_tree_t *parent; | ||
541 | struct bin_tree_t *left; | ||
542 | struct bin_tree_t *right; | ||
543 | struct bin_tree_t *first; | ||
544 | struct bin_tree_t *next; | ||
545 | |||
546 | re_token_t token; | ||
547 | |||
548 | /* `node_idx' is the index in dfa->nodes, if `type' == 0. | ||
549 | Otherwise `type' indicate the type of this node. */ | ||
550 | Idx node_idx; | ||
551 | }; | ||
552 | typedef struct bin_tree_t bin_tree_t; | ||
553 | |||
554 | #define BIN_TREE_STORAGE_SIZE \ | ||
555 | ((1024 - sizeof (void *)) / sizeof (bin_tree_t)) | ||
556 | |||
557 | struct bin_tree_storage_t | ||
558 | { | ||
559 | struct bin_tree_storage_t *next; | ||
560 | bin_tree_t data[BIN_TREE_STORAGE_SIZE]; | ||
561 | }; | ||
562 | typedef struct bin_tree_storage_t bin_tree_storage_t; | ||
563 | |||
564 | #define CONTEXT_WORD 1 | ||
565 | #define CONTEXT_NEWLINE (CONTEXT_WORD << 1) | ||
566 | #define CONTEXT_BEGBUF (CONTEXT_NEWLINE << 1) | ||
567 | #define CONTEXT_ENDBUF (CONTEXT_BEGBUF << 1) | ||
568 | |||
569 | #define IS_WORD_CONTEXT(c) ((c) & CONTEXT_WORD) | ||
570 | #define IS_NEWLINE_CONTEXT(c) ((c) & CONTEXT_NEWLINE) | ||
571 | #define IS_BEGBUF_CONTEXT(c) ((c) & CONTEXT_BEGBUF) | ||
572 | #define IS_ENDBUF_CONTEXT(c) ((c) & CONTEXT_ENDBUF) | ||
573 | #define IS_ORDINARY_CONTEXT(c) ((c) == 0) | ||
574 | |||
575 | #define IS_WORD_CHAR(ch) (isalnum (ch) || (ch) == '_') | ||
576 | #define IS_NEWLINE(ch) ((ch) == NEWLINE_CHAR) | ||
577 | #define IS_WIDE_WORD_CHAR(ch) (iswalnum (ch) || (ch) == L'_') | ||
578 | #define IS_WIDE_NEWLINE(ch) ((ch) == WIDE_NEWLINE_CHAR) | ||
579 | |||
580 | #define NOT_SATISFY_PREV_CONSTRAINT(constraint,context) \ | ||
581 | ((((constraint) & PREV_WORD_CONSTRAINT) && !IS_WORD_CONTEXT (context)) \ | ||
582 | || ((constraint & PREV_NOTWORD_CONSTRAINT) && IS_WORD_CONTEXT (context)) \ | ||
583 | || ((constraint & PREV_NEWLINE_CONSTRAINT) && !IS_NEWLINE_CONTEXT (context))\ | ||
584 | || ((constraint & PREV_BEGBUF_CONSTRAINT) && !IS_BEGBUF_CONTEXT (context))) | ||
585 | |||
586 | #define NOT_SATISFY_NEXT_CONSTRAINT(constraint,context) \ | ||
587 | ((((constraint) & NEXT_WORD_CONSTRAINT) && !IS_WORD_CONTEXT (context)) \ | ||
588 | || (((constraint) & NEXT_NOTWORD_CONSTRAINT) && IS_WORD_CONTEXT (context)) \ | ||
589 | || (((constraint) & NEXT_NEWLINE_CONSTRAINT) && !IS_NEWLINE_CONTEXT (context)) \ | ||
590 | || (((constraint) & NEXT_ENDBUF_CONSTRAINT) && !IS_ENDBUF_CONTEXT (context))) | ||
591 | |||
592 | struct re_dfastate_t | ||
593 | { | ||
594 | re_hashval_t hash; | ||
595 | re_node_set nodes; | ||
596 | re_node_set non_eps_nodes; | ||
597 | re_node_set inveclosure; | ||
598 | re_node_set *entrance_nodes; | ||
599 | struct re_dfastate_t **trtable, **word_trtable; | ||
600 | unsigned int context : 4; | ||
601 | unsigned int halt : 1; | ||
602 | /* If this state can accept `multi byte'. | ||
603 | Note that we refer to multibyte characters, and multi character | ||
604 | collating elements as `multi byte'. */ | ||
605 | unsigned int accept_mb : 1; | ||
606 | /* If this state has backreference node(s). */ | ||
607 | unsigned int has_backref : 1; | ||
608 | unsigned int has_constraint : 1; | ||
609 | }; | ||
610 | typedef struct re_dfastate_t re_dfastate_t; | ||
611 | |||
612 | struct re_state_table_entry | ||
613 | { | ||
614 | Idx num; | ||
615 | Idx alloc; | ||
616 | re_dfastate_t **array; | ||
617 | }; | ||
618 | |||
619 | /* Array type used in re_sub_match_last_t and re_sub_match_top_t. */ | ||
620 | |||
621 | typedef struct | ||
622 | { | ||
623 | Idx next_idx; | ||
624 | Idx alloc; | ||
625 | re_dfastate_t **array; | ||
626 | } state_array_t; | ||
627 | |||
628 | /* Store information about the node NODE whose type is OP_CLOSE_SUBEXP. */ | ||
629 | |||
630 | typedef struct | ||
631 | { | ||
632 | Idx node; | ||
633 | Idx str_idx; /* The position NODE match at. */ | ||
634 | state_array_t path; | ||
635 | } re_sub_match_last_t; | ||
636 | |||
637 | /* Store information about the node NODE whose type is OP_OPEN_SUBEXP. | ||
638 | And information about the node, whose type is OP_CLOSE_SUBEXP, | ||
639 | corresponding to NODE is stored in LASTS. */ | ||
640 | |||
641 | typedef struct | ||
642 | { | ||
643 | Idx str_idx; | ||
644 | Idx node; | ||
645 | state_array_t *path; | ||
646 | Idx alasts; /* Allocation size of LASTS. */ | ||
647 | Idx nlasts; /* The number of LASTS. */ | ||
648 | re_sub_match_last_t **lasts; | ||
649 | } re_sub_match_top_t; | ||
650 | |||
651 | struct re_backref_cache_entry | ||
652 | { | ||
653 | Idx node; | ||
654 | Idx str_idx; | ||
655 | Idx subexp_from; | ||
656 | Idx subexp_to; | ||
657 | char more; | ||
658 | char unused; | ||
659 | unsigned short int eps_reachable_subexps_map; | ||
660 | }; | ||
661 | |||
662 | typedef struct | ||
663 | { | ||
664 | /* The string object corresponding to the input string. */ | ||
665 | re_string_t input; | ||
666 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) | ||
667 | re_dfa_t *const dfa; | ||
668 | #else | ||
669 | re_dfa_t *dfa; | ||
670 | #endif | ||
671 | /* EFLAGS of the argument of regexec. */ | ||
672 | int eflags; | ||
673 | /* Where the matching ends. */ | ||
674 | Idx match_last; | ||
675 | Idx last_node; | ||
676 | /* The state log used by the matcher. */ | ||
677 | re_dfastate_t **state_log; | ||
678 | Idx state_log_top; | ||
679 | /* Back reference cache. */ | ||
680 | Idx nbkref_ents; | ||
681 | Idx abkref_ents; | ||
682 | struct re_backref_cache_entry *bkref_ents; | ||
683 | int max_mb_elem_len; | ||
684 | Idx nsub_tops; | ||
685 | Idx asub_tops; | ||
686 | re_sub_match_top_t **sub_tops; | ||
687 | } re_match_context_t; | ||
688 | |||
689 | typedef struct | ||
690 | { | ||
691 | re_dfastate_t **sifted_states; | ||
692 | re_dfastate_t **limited_states; | ||
693 | Idx last_node; | ||
694 | Idx last_str_idx; | ||
695 | re_node_set limits; | ||
696 | } re_sift_context_t; | ||
697 | |||
698 | struct re_fail_stack_ent_t | ||
699 | { | ||
700 | Idx idx; | ||
701 | Idx node; | ||
702 | regmatch_t *regs; | ||
703 | re_node_set eps_via_nodes; | ||
704 | }; | ||
705 | |||
706 | struct re_fail_stack_t | ||
707 | { | ||
708 | Idx num; | ||
709 | Idx alloc; | ||
710 | struct re_fail_stack_ent_t *stack; | ||
711 | }; | ||
712 | |||
713 | struct re_dfa_t | ||
714 | { | ||
715 | re_token_t *nodes; | ||
716 | Idx nodes_alloc; | ||
717 | Idx nodes_len; | ||
718 | Idx *nexts; | ||
719 | Idx *org_indices; | ||
720 | re_node_set *edests; | ||
721 | re_node_set *eclosures; | ||
722 | re_node_set *inveclosures; | ||
723 | struct re_state_table_entry *state_table; | ||
724 | re_dfastate_t *init_state; | ||
725 | re_dfastate_t *init_state_word; | ||
726 | re_dfastate_t *init_state_nl; | ||
727 | re_dfastate_t *init_state_begbuf; | ||
728 | bin_tree_t *str_tree; | ||
729 | bin_tree_storage_t *str_tree_storage; | ||
730 | re_bitset_ptr_t sb_char; | ||
731 | int str_tree_storage_idx; | ||
732 | |||
733 | /* number of subexpressions `re_nsub' is in regex_t. */ | ||
734 | re_hashval_t state_hash_mask; | ||
735 | Idx init_node; | ||
736 | Idx nbackref; /* The number of backreference in this dfa. */ | ||
737 | |||
738 | /* Bitmap expressing which backreference is used. */ | ||
739 | bitset_word used_bkref_map; | ||
740 | bitset_word completed_bkref_map; | ||
741 | |||
742 | unsigned int has_plural_match : 1; | ||
743 | /* If this dfa has "multibyte node", which is a backreference or | ||
744 | a node which can accept multibyte character or multi character | ||
745 | collating element. */ | ||
746 | unsigned int has_mb_node : 1; | ||
747 | unsigned int is_utf8 : 1; | ||
748 | unsigned int map_notascii : 1; | ||
749 | unsigned int word_ops_used : 1; | ||
750 | int mb_cur_max; | ||
751 | bitset word_char; | ||
752 | reg_syntax_t syntax; | ||
753 | Idx *subexp_map; | ||
754 | #ifdef DEBUG | ||
755 | char* re_str; | ||
756 | #endif | ||
757 | __libc_lock_define (, lock) | ||
758 | }; | ||
759 | |||
760 | #define re_node_set_init_empty(set) memset (set, '\0', sizeof (re_node_set)) | ||
761 | #define re_node_set_remove(set,id) \ | ||
762 | (re_node_set_remove_at (set, re_node_set_contains (set, id) - 1)) | ||
763 | #define re_node_set_empty(p) ((p)->nelem = 0) | ||
764 | #define re_node_set_free(set) re_free ((set)->elems) | ||
765 | |||
766 | static void free_state (re_dfastate_t *state) internal_function; | ||
767 | |||
768 | |||
769 | typedef enum | ||
770 | { | ||
771 | SB_CHAR, | ||
772 | MB_CHAR, | ||
773 | EQUIV_CLASS, | ||
774 | COLL_SYM, | ||
775 | CHAR_CLASS | ||
776 | } bracket_elem_type; | ||
777 | |||
778 | typedef struct | ||
779 | { | ||
780 | bracket_elem_type type; | ||
781 | union | ||
782 | { | ||
783 | unsigned char ch; | ||
784 | unsigned char *name; | ||
785 | wchar_t wch; | ||
786 | } opr; | ||
787 | } bracket_elem_t; | ||
788 | |||
789 | |||
790 | /* Inline functions for bitset operation. */ | ||
791 | |||
792 | static inline void | ||
793 | bitset_set (bitset set, Idx i) | ||
794 | { | ||
795 | set[i / BITSET_WORD_BITS] |= (bitset_word) 1 << i % BITSET_WORD_BITS; | ||
796 | } | ||
797 | |||
798 | static inline void | ||
799 | bitset_clear (bitset set, Idx i) | ||
800 | { | ||
801 | set[i / BITSET_WORD_BITS] &= ~ ((bitset_word) 1 << i % BITSET_WORD_BITS); | ||
802 | } | ||
803 | |||
804 | static inline bool | ||
805 | bitset_contain (const bitset set, Idx i) | ||
806 | { | ||
807 | return (set[i / BITSET_WORD_BITS] >> i % BITSET_WORD_BITS) & 1; | ||
808 | } | ||
809 | |||
810 | static inline void | ||
811 | bitset_empty (bitset set) | ||
812 | { | ||
813 | memset (set, 0, sizeof (bitset)); | ||
814 | } | ||
815 | |||
816 | static inline void | ||
817 | bitset_set_all (bitset set) | ||
818 | { | ||
819 | memset (set, -1, sizeof (bitset_word) * (SBC_MAX / BITSET_WORD_BITS)); | ||
820 | if (SBC_MAX % BITSET_WORD_BITS != 0) | ||
821 | set[BITSET_WORDS - 1] = | ||
822 | ((bitset_word) 1 << SBC_MAX % BITSET_WORD_BITS) - 1; | ||
823 | } | ||
824 | |||
825 | static inline void | ||
826 | bitset_copy (bitset dest, const bitset src) | ||
827 | { | ||
828 | memcpy (dest, src, sizeof (bitset)); | ||
829 | } | ||
830 | |||
831 | static inline void | ||
832 | bitset_not (bitset set) | ||
833 | { | ||
834 | int i; | ||
835 | for (i = 0; i < SBC_MAX / BITSET_WORD_BITS; ++i) | ||
836 | set[i] = ~set[i]; | ||
837 | if (SBC_MAX % BITSET_WORD_BITS != 0) | ||
838 | set[BITSET_WORDS - 1] = | ||
839 | ((((bitset_word) 1 << SBC_MAX % BITSET_WORD_BITS) - 1) | ||
840 | & ~set[BITSET_WORDS - 1]); | ||
841 | } | ||
842 | |||
843 | static inline void | ||
844 | bitset_merge (bitset dest, const bitset src) | ||
845 | { | ||
846 | int i; | ||
847 | for (i = 0; i < BITSET_WORDS; ++i) | ||
848 | dest[i] |= src[i]; | ||
849 | } | ||
850 | |||
851 | static inline void | ||
852 | bitset_mask (bitset dest, const bitset src) | ||
853 | { | ||
854 | int i; | ||
855 | for (i = 0; i < BITSET_WORDS; ++i) | ||
856 | dest[i] &= src[i]; | ||
857 | } | ||
858 | |||
859 | #if defined RE_ENABLE_I18N | ||
860 | /* Inline functions for re_string. */ | ||
861 | static inline int | ||
862 | internal_function __attribute ((pure)) | ||
863 | re_string_char_size_at (const re_string_t *pstr, Idx idx) | ||
864 | { | ||
865 | int byte_idx; | ||
866 | if (pstr->mb_cur_max == 1) | ||
867 | return 1; | ||
868 | for (byte_idx = 1; idx + byte_idx < pstr->valid_len; ++byte_idx) | ||
869 | if (pstr->wcs[idx + byte_idx] != WEOF) | ||
870 | break; | ||
871 | return byte_idx; | ||
872 | } | ||
873 | |||
874 | static inline wint_t | ||
875 | internal_function __attribute ((pure)) | ||
876 | re_string_wchar_at (const re_string_t *pstr, Idx idx) | ||
877 | { | ||
878 | if (pstr->mb_cur_max == 1) | ||
879 | return (wint_t) pstr->mbs[idx]; | ||
880 | return (wint_t) pstr->wcs[idx]; | ||
881 | } | ||
882 | |||
883 | static int | ||
884 | internal_function __attribute ((pure)) | ||
885 | re_string_elem_size_at (const re_string_t *pstr, Idx idx) | ||
886 | { | ||
887 | #ifdef _LIBC | ||
888 | const unsigned char *p, *extra; | ||
889 | const int32_t *table, *indirect; | ||
890 | int32_t tmp; | ||
891 | # include <locale/weight.h> | ||
892 | uint_fast32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
893 | |||
894 | if (nrules != 0) | ||
895 | { | ||
896 | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
897 | extra = (const unsigned char *) | ||
898 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | ||
899 | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
900 | _NL_COLLATE_INDIRECTMB); | ||
901 | p = pstr->mbs + idx; | ||
902 | tmp = findidx (&p); | ||
903 | return p - pstr->mbs - idx; | ||
904 | } | ||
905 | else | ||
906 | #endif /* _LIBC */ | ||
907 | return 1; | ||
908 | } | ||
909 | #endif /* RE_ENABLE_I18N */ | ||
910 | |||
911 | #endif /* _REGEX_INTERNAL_H */ | ||
diff --git a/lib/regexec.c b/lib/regexec.c new file mode 100644 index 00000000..a85077c9 --- /dev/null +++ b/lib/regexec.c | |||
@@ -0,0 +1,4333 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, | ||
21 | Idx n) internal_function; | ||
22 | static void match_ctx_clean (re_match_context_t *mctx) internal_function; | ||
23 | static void match_ctx_free (re_match_context_t *cache) internal_function; | ||
24 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node, | ||
25 | Idx str_idx, Idx from, Idx to) | ||
26 | internal_function; | ||
27 | static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) | ||
28 | internal_function; | ||
29 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node, | ||
30 | Idx str_idx) internal_function; | ||
31 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, | ||
32 | Idx node, Idx str_idx) | ||
33 | internal_function; | ||
34 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | ||
35 | re_dfastate_t **limited_sts, Idx last_node, | ||
36 | Idx last_str_idx) | ||
37 | internal_function; | ||
38 | static reg_errcode_t re_search_internal (const regex_t *preg, | ||
39 | const char *string, Idx length, | ||
40 | Idx start, Idx last_start, Idx stop, | ||
41 | size_t nmatch, regmatch_t pmatch[], | ||
42 | int eflags) internal_function; | ||
43 | static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp, | ||
44 | const char *string1, Idx length1, | ||
45 | const char *string2, Idx length2, | ||
46 | Idx start, regoff_t range, | ||
47 | struct re_registers *regs, | ||
48 | Idx stop, bool ret_len) internal_function; | ||
49 | static regoff_t re_search_stub (struct re_pattern_buffer *bufp, | ||
50 | const char *string, Idx length, Idx start, | ||
51 | regoff_t range, Idx stop, | ||
52 | struct re_registers *regs, | ||
53 | bool ret_len) internal_function; | ||
54 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, | ||
55 | Idx nregs, int regs_allocated) internal_function; | ||
56 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx) | ||
57 | internal_function; | ||
58 | static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match, | ||
59 | Idx *p_match_first) | ||
60 | internal_function; | ||
61 | static Idx check_halt_state_context (const re_match_context_t *mctx, | ||
62 | const re_dfastate_t *state, Idx idx) | ||
63 | internal_function; | ||
64 | static void update_regs (re_dfa_t *dfa, regmatch_t *pmatch, | ||
65 | regmatch_t *prev_idx_match, Idx cur_node, | ||
66 | Idx cur_idx, Idx nmatch) internal_function; | ||
67 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, | ||
68 | Idx str_idx, Idx dest_node, Idx nregs, | ||
69 | regmatch_t *regs, | ||
70 | re_node_set *eps_via_nodes) internal_function; | ||
71 | static reg_errcode_t set_regs (const regex_t *preg, | ||
72 | const re_match_context_t *mctx, | ||
73 | size_t nmatch, regmatch_t *pmatch, | ||
74 | bool fl_backtrack) internal_function; | ||
75 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) internal_function; | ||
76 | |||
77 | #ifdef RE_ENABLE_I18N | ||
78 | static int sift_states_iter_mb (const re_match_context_t *mctx, | ||
79 | re_sift_context_t *sctx, | ||
80 | Idx node_idx, Idx str_idx, Idx max_str_idx) internal_function; | ||
81 | #endif /* RE_ENABLE_I18N */ | ||
82 | static reg_errcode_t sift_states_backward (re_match_context_t *mctx, | ||
83 | re_sift_context_t *sctx) internal_function; | ||
84 | static reg_errcode_t build_sifted_states (re_match_context_t *mctx, | ||
85 | re_sift_context_t *sctx, Idx str_idx, | ||
86 | re_node_set *cur_dest) internal_function; | ||
87 | static reg_errcode_t update_cur_sifted_state (re_match_context_t *mctx, | ||
88 | re_sift_context_t *sctx, | ||
89 | Idx str_idx, | ||
90 | re_node_set *dest_nodes) internal_function; | ||
91 | static reg_errcode_t add_epsilon_src_nodes (re_dfa_t *dfa, | ||
92 | re_node_set *dest_nodes, | ||
93 | const re_node_set *candidates) internal_function; | ||
94 | static bool check_dst_limits (const re_match_context_t *mctx, | ||
95 | const re_node_set *limits, | ||
96 | Idx dst_node, Idx dst_idx, Idx src_node, | ||
97 | Idx src_idx) internal_function; | ||
98 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, | ||
99 | int boundaries, Idx subexp_idx, | ||
100 | Idx from_node, Idx bkref_idx) internal_function; | ||
101 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, | ||
102 | Idx limit, Idx subexp_idx, | ||
103 | Idx node, Idx str_idx, | ||
104 | Idx bkref_idx) internal_function; | ||
105 | static reg_errcode_t check_subexp_limits (re_dfa_t *dfa, | ||
106 | re_node_set *dest_nodes, | ||
107 | const re_node_set *candidates, | ||
108 | re_node_set *limits, | ||
109 | struct re_backref_cache_entry *bkref_ents, | ||
110 | Idx str_idx) internal_function; | ||
111 | static reg_errcode_t sift_states_bkref (re_match_context_t *mctx, | ||
112 | re_sift_context_t *sctx, | ||
113 | Idx str_idx, const re_node_set *candidates) internal_function; | ||
114 | static reg_errcode_t merge_state_array (re_dfa_t *dfa, re_dfastate_t **dst, | ||
115 | re_dfastate_t **src, Idx num) internal_function; | ||
116 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, | ||
117 | re_match_context_t *mctx) internal_function; | ||
118 | static re_dfastate_t *transit_state (reg_errcode_t *err, | ||
119 | re_match_context_t *mctx, | ||
120 | re_dfastate_t *state) internal_function; | ||
121 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, | ||
122 | re_match_context_t *mctx, | ||
123 | re_dfastate_t *next_state) internal_function; | ||
124 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, | ||
125 | re_node_set *cur_nodes, | ||
126 | Idx str_idx) internal_function; | ||
127 | #if 0 | ||
128 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, | ||
129 | re_match_context_t *mctx, | ||
130 | re_dfastate_t *pstate) internal_function; | ||
131 | #endif | ||
132 | #ifdef RE_ENABLE_I18N | ||
133 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, | ||
134 | re_dfastate_t *pstate) internal_function; | ||
135 | #endif /* RE_ENABLE_I18N */ | ||
136 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, | ||
137 | const re_node_set *nodes) internal_function; | ||
138 | static reg_errcode_t get_subexp (re_match_context_t *mctx, | ||
139 | Idx bkref_node, Idx bkref_str_idx) internal_function; | ||
140 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, | ||
141 | const re_sub_match_top_t *sub_top, | ||
142 | re_sub_match_last_t *sub_last, | ||
143 | Idx bkref_node, Idx bkref_str) internal_function; | ||
144 | static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | ||
145 | Idx subexp_idx, int type) internal_function; | ||
146 | static reg_errcode_t check_arrival (re_match_context_t *mctx, | ||
147 | state_array_t *path, Idx top_node, | ||
148 | Idx top_str, Idx last_node, Idx last_str, | ||
149 | int type) internal_function; | ||
150 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, | ||
151 | Idx str_idx, | ||
152 | re_node_set *cur_nodes, | ||
153 | re_node_set *next_nodes) internal_function; | ||
154 | static reg_errcode_t check_arrival_expand_ecl (re_dfa_t *dfa, | ||
155 | re_node_set *cur_nodes, | ||
156 | Idx ex_subexp, int type) internal_function; | ||
157 | static reg_errcode_t check_arrival_expand_ecl_sub (re_dfa_t *dfa, | ||
158 | re_node_set *dst_nodes, | ||
159 | Idx target, Idx ex_subexp, | ||
160 | int type) internal_function; | ||
161 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, | ||
162 | re_node_set *cur_nodes, Idx cur_str, | ||
163 | Idx subexp_num, int type) internal_function; | ||
164 | static bool build_trtable (re_dfa_t *dfa, | ||
165 | re_dfastate_t *state) internal_function; | ||
166 | #ifdef RE_ENABLE_I18N | ||
167 | static int check_node_accept_bytes (re_dfa_t *dfa, Idx node_idx, | ||
168 | const re_string_t *input, Idx idx) internal_function; | ||
169 | # ifdef _LIBC | ||
170 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, | ||
171 | size_t name_len) internal_function; | ||
172 | # endif /* _LIBC */ | ||
173 | #endif /* RE_ENABLE_I18N */ | ||
174 | static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa, | ||
175 | const re_dfastate_t *state, | ||
176 | re_node_set *states_node, | ||
177 | bitset *states_ch) internal_function; | ||
178 | static bool check_node_accept (const re_match_context_t *mctx, | ||
179 | const re_token_t *node, Idx idx) | ||
180 | internal_function; | ||
181 | static reg_errcode_t extend_buffers (re_match_context_t *mctx) internal_function; | ||
182 | |||
183 | /* Entry point for POSIX code. */ | ||
184 | |||
185 | /* regexec searches for a given pattern, specified by PREG, in the | ||
186 | string STRING. | ||
187 | |||
188 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | ||
189 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | ||
190 | least NMATCH elements, and we set them to the offsets of the | ||
191 | corresponding matched substrings. | ||
192 | |||
193 | EFLAGS specifies `execution flags' which affect matching: if | ||
194 | REG_NOTBOL is set, then ^ does not match at the beginning of the | ||
195 | string; if REG_NOTEOL is set, then $ does not match at the end. | ||
196 | |||
197 | We return 0 if we find a match and REG_NOMATCH if not. */ | ||
198 | |||
199 | int | ||
200 | regexec (const regex_t *__restrict preg, const char *__restrict string, | ||
201 | size_t nmatch, regmatch_t pmatch[], int eflags) | ||
202 | { | ||
203 | reg_errcode_t err; | ||
204 | Idx start, length; | ||
205 | #ifdef _LIBC | ||
206 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
207 | #endif | ||
208 | |||
209 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) | ||
210 | return REG_BADPAT; | ||
211 | |||
212 | if (eflags & REG_STARTEND) | ||
213 | { | ||
214 | start = pmatch[0].rm_so; | ||
215 | length = pmatch[0].rm_eo; | ||
216 | } | ||
217 | else | ||
218 | { | ||
219 | start = 0; | ||
220 | length = strlen (string); | ||
221 | } | ||
222 | |||
223 | __libc_lock_lock (dfa->lock); | ||
224 | if (preg->re_no_sub) | ||
225 | err = re_search_internal (preg, string, length, start, length, | ||
226 | length, 0, NULL, eflags); | ||
227 | else | ||
228 | err = re_search_internal (preg, string, length, start, length, | ||
229 | length, nmatch, pmatch, eflags); | ||
230 | __libc_lock_unlock (dfa->lock); | ||
231 | return err != REG_NOERROR; | ||
232 | } | ||
233 | |||
234 | #ifdef _LIBC | ||
235 | # include <shlib-compat.h> | ||
236 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); | ||
237 | |||
238 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) | ||
239 | __typeof__ (__regexec) __compat_regexec; | ||
240 | |||
241 | int | ||
242 | attribute_compat_text_section | ||
243 | __compat_regexec (const regex_t *__restrict preg, | ||
244 | const char *__restrict string, size_t nmatch, | ||
245 | regmatch_t pmatch[], int eflags) | ||
246 | { | ||
247 | return regexec (preg, string, nmatch, pmatch, | ||
248 | eflags & (REG_NOTBOL | REG_NOTEOL)); | ||
249 | } | ||
250 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); | ||
251 | # endif | ||
252 | #endif | ||
253 | |||
254 | /* Entry points for GNU code. */ | ||
255 | |||
256 | /* re_match, re_search, re_match_2, re_search_2 | ||
257 | |||
258 | The former two functions operate on STRING with length LENGTH, | ||
259 | while the later two operate on concatenation of STRING1 and STRING2 | ||
260 | with lengths LENGTH1 and LENGTH2, respectively. | ||
261 | |||
262 | re_match() matches the compiled pattern in BUFP against the string, | ||
263 | starting at index START. | ||
264 | |||
265 | re_search() first tries matching at index START, then it tries to match | ||
266 | starting from index START + 1, and so on. The last start position tried | ||
267 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same | ||
268 | way as re_match().) | ||
269 | |||
270 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding | ||
271 | the first STOP characters of the concatenation of the strings should be | ||
272 | concerned. | ||
273 | |||
274 | If REGS is not NULL, and BUFP->re_no_sub is not set, the offsets of the match | ||
275 | and all groups is stroed in REGS. (For the "_2" variants, the offsets are | ||
276 | computed relative to the concatenation, not relative to the individual | ||
277 | strings.) | ||
278 | |||
279 | On success, re_match* functions return the length of the match, re_search* | ||
280 | return the position of the start of the match. Return value -1 means no | ||
281 | match was found and -2 indicates an internal error. */ | ||
282 | |||
283 | regoff_t | ||
284 | re_match (struct re_pattern_buffer *bufp, const char *string, | ||
285 | Idx length, Idx start, struct re_registers *regs) | ||
286 | { | ||
287 | return re_search_stub (bufp, string, length, start, 0, length, regs, true); | ||
288 | } | ||
289 | #ifdef _LIBC | ||
290 | weak_alias (__re_match, re_match) | ||
291 | #endif | ||
292 | |||
293 | regoff_t | ||
294 | re_search (struct re_pattern_buffer *bufp, const char *string, | ||
295 | Idx length, Idx start, regoff_t range, struct re_registers *regs) | ||
296 | { | ||
297 | return re_search_stub (bufp, string, length, start, range, length, regs, | ||
298 | false); | ||
299 | } | ||
300 | #ifdef _LIBC | ||
301 | weak_alias (__re_search, re_search) | ||
302 | #endif | ||
303 | |||
304 | regoff_t | ||
305 | re_match_2 (struct re_pattern_buffer *bufp, | ||
306 | const char *string1, Idx length1, | ||
307 | const char *string2, Idx length2, | ||
308 | Idx start, struct re_registers *regs, Idx stop) | ||
309 | { | ||
310 | return re_search_2_stub (bufp, string1, length1, string2, length2, | ||
311 | start, 0, regs, stop, true); | ||
312 | } | ||
313 | #ifdef _LIBC | ||
314 | weak_alias (__re_match_2, re_match_2) | ||
315 | #endif | ||
316 | |||
317 | regoff_t | ||
318 | re_search_2 (struct re_pattern_buffer *bufp, | ||
319 | const char *string1, Idx length1, | ||
320 | const char *string2, Idx length2, | ||
321 | Idx start, regoff_t range, struct re_registers *regs, Idx stop) | ||
322 | { | ||
323 | return re_search_2_stub (bufp, string1, length1, string2, length2, | ||
324 | start, range, regs, stop, false); | ||
325 | } | ||
326 | #ifdef _LIBC | ||
327 | weak_alias (__re_search_2, re_search_2) | ||
328 | #endif | ||
329 | |||
330 | static regoff_t | ||
331 | internal_function | ||
332 | re_search_2_stub (struct re_pattern_buffer *bufp, | ||
333 | const char *string1, Idx length1, | ||
334 | const char *string2, Idx length2, | ||
335 | Idx start, regoff_t range, struct re_registers *regs, | ||
336 | Idx stop, bool ret_len) | ||
337 | { | ||
338 | const char *str; | ||
339 | regoff_t rval; | ||
340 | Idx len = length1 + length2; | ||
341 | char *s = NULL; | ||
342 | |||
343 | if (BE (length1 < 0 || length2 < 0 || stop < 0 || len < length1, 0)) | ||
344 | return -2; | ||
345 | |||
346 | /* Concatenate the strings. */ | ||
347 | if (length2 > 0) | ||
348 | if (length1 > 0) | ||
349 | { | ||
350 | s = re_malloc (char, len); | ||
351 | |||
352 | if (BE (s == NULL, 0)) | ||
353 | return -2; | ||
354 | memcpy (s, string1, length1); | ||
355 | memcpy (s + length1, string2, length2); | ||
356 | str = s; | ||
357 | } | ||
358 | else | ||
359 | str = string2; | ||
360 | else | ||
361 | str = string1; | ||
362 | |||
363 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, | ||
364 | ret_len); | ||
365 | re_free (s); | ||
366 | return rval; | ||
367 | } | ||
368 | |||
369 | /* The parameters have the same meaning as those of re_search. | ||
370 | Additional parameters: | ||
371 | If RET_LEN is true the length of the match is returned (re_match style); | ||
372 | otherwise the position of the match is returned. */ | ||
373 | |||
374 | static regoff_t | ||
375 | internal_function | ||
376 | re_search_stub (struct re_pattern_buffer *bufp, | ||
377 | const char *string, Idx length, | ||
378 | Idx start, regoff_t range, Idx stop, struct re_registers *regs, | ||
379 | bool ret_len) | ||
380 | { | ||
381 | reg_errcode_t result; | ||
382 | regmatch_t *pmatch; | ||
383 | Idx nregs; | ||
384 | regoff_t rval; | ||
385 | int eflags = 0; | ||
386 | #ifdef _LIBC | ||
387 | re_dfa_t *dfa = (re_dfa_t *) bufp->re_buffer; | ||
388 | #endif | ||
389 | Idx last_start = start + range; | ||
390 | |||
391 | /* Check for out-of-range. */ | ||
392 | if (BE (start < 0 || start > length, 0)) | ||
393 | return -1; | ||
394 | if (sizeof start < sizeof range) | ||
395 | { | ||
396 | regoff_t length_offset = length; | ||
397 | regoff_t start_offset = start; | ||
398 | if (BE (length_offset - start_offset < range, 0)) | ||
399 | last_start = length; | ||
400 | else if (BE (range < - start_offset, 0)) | ||
401 | last_start = 0; | ||
402 | } | ||
403 | else | ||
404 | { | ||
405 | if (BE ((last_start < start) != (range < 0), 0)) | ||
406 | { | ||
407 | /* Overflow occurred when computing last_start; substitute | ||
408 | the extreme value. */ | ||
409 | last_start = range < 0 ? 0 : length; | ||
410 | } | ||
411 | else | ||
412 | { | ||
413 | if (BE (length < last_start, 0)) | ||
414 | last_start = length; | ||
415 | else if (BE (last_start < 0, 0)) | ||
416 | last_start = 0; | ||
417 | } | ||
418 | } | ||
419 | |||
420 | __libc_lock_lock (dfa->lock); | ||
421 | |||
422 | eflags |= (bufp->re_not_bol) ? REG_NOTBOL : 0; | ||
423 | eflags |= (bufp->re_not_eol) ? REG_NOTEOL : 0; | ||
424 | |||
425 | /* Compile fastmap if we haven't yet. */ | ||
426 | if (start < last_start && bufp->re_fastmap != NULL | ||
427 | && !bufp->re_fastmap_accurate) | ||
428 | re_compile_fastmap (bufp); | ||
429 | |||
430 | if (BE (bufp->re_no_sub, 0)) | ||
431 | regs = NULL; | ||
432 | |||
433 | /* We need at least 1 register. */ | ||
434 | if (regs == NULL) | ||
435 | nregs = 1; | ||
436 | else if (BE (bufp->re_regs_allocated == REG_FIXED | ||
437 | && regs->rm_num_regs <= bufp->re_nsub, 0)) | ||
438 | { | ||
439 | nregs = regs->rm_num_regs; | ||
440 | if (BE (nregs < 1, 0)) | ||
441 | { | ||
442 | /* Nothing can be copied to regs. */ | ||
443 | regs = NULL; | ||
444 | nregs = 1; | ||
445 | } | ||
446 | } | ||
447 | else | ||
448 | nregs = bufp->re_nsub + 1; | ||
449 | pmatch = re_xmalloc (regmatch_t, nregs); | ||
450 | if (BE (pmatch == NULL, 0)) | ||
451 | { | ||
452 | rval = -2; | ||
453 | goto out; | ||
454 | } | ||
455 | |||
456 | result = re_search_internal (bufp, string, length, start, last_start, stop, | ||
457 | nregs, pmatch, eflags); | ||
458 | |||
459 | rval = 0; | ||
460 | |||
461 | /* I hope we needn't fill ther regs with -1's when no match was found. */ | ||
462 | if (result != REG_NOERROR) | ||
463 | rval = -1; | ||
464 | else if (regs != NULL) | ||
465 | { | ||
466 | /* If caller wants register contents data back, copy them. */ | ||
467 | bufp->re_regs_allocated = re_copy_regs (regs, pmatch, nregs, | ||
468 | bufp->re_regs_allocated); | ||
469 | if (BE (bufp->re_regs_allocated == REG_UNALLOCATED, 0)) | ||
470 | rval = -2; | ||
471 | } | ||
472 | |||
473 | if (BE (rval == 0, 1)) | ||
474 | { | ||
475 | if (ret_len) | ||
476 | { | ||
477 | assert (pmatch[0].rm_so == start); | ||
478 | rval = pmatch[0].rm_eo - start; | ||
479 | } | ||
480 | else | ||
481 | rval = pmatch[0].rm_so; | ||
482 | } | ||
483 | re_free (pmatch); | ||
484 | out: | ||
485 | __libc_lock_unlock (dfa->lock); | ||
486 | return rval; | ||
487 | } | ||
488 | |||
489 | static unsigned | ||
490 | internal_function | ||
491 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs, | ||
492 | int regs_allocated) | ||
493 | { | ||
494 | int rval = REG_REALLOCATE; | ||
495 | Idx i; | ||
496 | Idx need_regs = nregs + 1; | ||
497 | /* We need one extra element beyond `rm_num_regs' for the `-1' marker GNU code | ||
498 | uses. */ | ||
499 | |||
500 | /* Have the register data arrays been allocated? */ | ||
501 | if (regs_allocated == REG_UNALLOCATED) | ||
502 | { /* No. So allocate them with malloc. */ | ||
503 | regs->rm_start = re_xmalloc (regoff_t, need_regs); | ||
504 | regs->rm_end = re_malloc (regoff_t, need_regs); | ||
505 | if (BE (regs->rm_start == NULL, 0) || BE (regs->rm_end == NULL, 0)) | ||
506 | return REG_UNALLOCATED; | ||
507 | regs->rm_num_regs = need_regs; | ||
508 | } | ||
509 | else if (regs_allocated == REG_REALLOCATE) | ||
510 | { /* Yes. If we need more elements than were already | ||
511 | allocated, reallocate them. If we need fewer, just | ||
512 | leave it alone. */ | ||
513 | if (BE (need_regs > regs->rm_num_regs, 0)) | ||
514 | { | ||
515 | regoff_t *new_start = | ||
516 | re_xrealloc (regs->rm_start, regoff_t, need_regs); | ||
517 | regoff_t *new_end = re_realloc (regs->rm_end, regoff_t, need_regs); | ||
518 | if (BE (new_start == NULL, 0) || BE (new_end == NULL, 0)) | ||
519 | return REG_UNALLOCATED; | ||
520 | regs->rm_start = new_start; | ||
521 | regs->rm_end = new_end; | ||
522 | regs->rm_num_regs = need_regs; | ||
523 | } | ||
524 | } | ||
525 | else | ||
526 | { | ||
527 | assert (regs_allocated == REG_FIXED); | ||
528 | /* This function may not be called with REG_FIXED and nregs too big. */ | ||
529 | assert (regs->rm_num_regs >= nregs); | ||
530 | rval = REG_FIXED; | ||
531 | } | ||
532 | |||
533 | /* Copy the regs. */ | ||
534 | for (i = 0; i < nregs; ++i) | ||
535 | { | ||
536 | regs->rm_start[i] = pmatch[i].rm_so; | ||
537 | regs->rm_end[i] = pmatch[i].rm_eo; | ||
538 | } | ||
539 | for ( ; i < regs->rm_num_regs; ++i) | ||
540 | regs->rm_start[i] = regs->rm_end[i] = -1; | ||
541 | |||
542 | return rval; | ||
543 | } | ||
544 | |||
545 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
546 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | ||
547 | this memory for recording register information. STARTS and ENDS | ||
548 | must be allocated using the malloc library routine, and must each | ||
549 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | ||
550 | |||
551 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
552 | register data. | ||
553 | |||
554 | Unless this function is called, the first search or match using | ||
555 | PATTERN_BUFFER will allocate its own register data, without | ||
556 | freeing the old data. */ | ||
557 | |||
558 | void | ||
559 | re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, | ||
560 | __re_size_t num_regs, regoff_t *starts, regoff_t *ends) | ||
561 | { | ||
562 | if (num_regs) | ||
563 | { | ||
564 | bufp->re_regs_allocated = REG_REALLOCATE; | ||
565 | regs->rm_num_regs = num_regs; | ||
566 | regs->rm_start = starts; | ||
567 | regs->rm_end = ends; | ||
568 | } | ||
569 | else | ||
570 | { | ||
571 | bufp->re_regs_allocated = REG_UNALLOCATED; | ||
572 | regs->rm_num_regs = 0; | ||
573 | regs->rm_start = regs->rm_end = NULL; | ||
574 | } | ||
575 | } | ||
576 | #ifdef _LIBC | ||
577 | weak_alias (__re_set_registers, re_set_registers) | ||
578 | #endif | ||
579 | |||
580 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
581 | them unless specifically requested. */ | ||
582 | |||
583 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
584 | int | ||
585 | # ifdef _LIBC | ||
586 | weak_function | ||
587 | # endif | ||
588 | re_exec (const char *s) | ||
589 | { | ||
590 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); | ||
591 | } | ||
592 | #endif /* _REGEX_RE_COMP */ | ||
593 | |||
594 | /* Internal entry point. */ | ||
595 | |||
596 | /* Searches for a compiled pattern PREG in the string STRING, whose | ||
597 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same | ||
598 | meaning as with regexec. LAST_START is START + RANGE, where | ||
599 | START and RANGE have the same meaning as with re_search. | ||
600 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, | ||
601 | otherwise return the error code. | ||
602 | Note: We assume front end functions already check ranges. | ||
603 | (0 <= LAST_START && LAST_START <= LENGTH) */ | ||
604 | |||
605 | static reg_errcode_t | ||
606 | internal_function | ||
607 | re_search_internal (const regex_t *preg, | ||
608 | const char *string, Idx length, | ||
609 | Idx start, Idx last_start, Idx stop, | ||
610 | size_t nmatch, regmatch_t pmatch[], | ||
611 | int eflags) | ||
612 | { | ||
613 | reg_errcode_t err; | ||
614 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
615 | Idx left_lim, right_lim; | ||
616 | int incr; | ||
617 | bool fl_longest_match; | ||
618 | int match_kind; | ||
619 | Idx match_first, match_last = REG_MISSING; | ||
620 | Idx extra_nmatch; | ||
621 | bool sb; | ||
622 | int ch; | ||
623 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) | ||
624 | re_match_context_t mctx = { .dfa = dfa }; | ||
625 | #else | ||
626 | re_match_context_t mctx; | ||
627 | #endif | ||
628 | char *fastmap = ((preg->re_fastmap != NULL && preg->re_fastmap_accurate | ||
629 | && start != last_start && !preg->re_can_be_null) | ||
630 | ? preg->re_fastmap : NULL); | ||
631 | unsigned REG_TRANSLATE_TYPE t = | ||
632 | (unsigned REG_TRANSLATE_TYPE) preg->re_translate; | ||
633 | |||
634 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) | ||
635 | memset (&mctx, '\0', sizeof (re_match_context_t)); | ||
636 | mctx.dfa = dfa; | ||
637 | #endif | ||
638 | |||
639 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; | ||
640 | nmatch -= extra_nmatch; | ||
641 | |||
642 | /* Check if the DFA haven't been compiled. */ | ||
643 | if (BE (preg->re_used == 0 || dfa->init_state == NULL | ||
644 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL | ||
645 | || dfa->init_state_begbuf == NULL, 0)) | ||
646 | return REG_NOMATCH; | ||
647 | |||
648 | #ifdef DEBUG | ||
649 | /* We assume front-end functions already check them. */ | ||
650 | assert (0 <= last_start && last_start <= length); | ||
651 | #endif | ||
652 | |||
653 | /* If initial states with non-begbuf contexts have no elements, | ||
654 | the regex must be anchored. If preg->re_newline_anchor is set, | ||
655 | we'll never use init_state_nl, so do not check it. */ | ||
656 | if (dfa->init_state->nodes.nelem == 0 | ||
657 | && dfa->init_state_word->nodes.nelem == 0 | ||
658 | && (dfa->init_state_nl->nodes.nelem == 0 | ||
659 | || !preg->re_newline_anchor)) | ||
660 | { | ||
661 | if (start != 0 && last_start != 0) | ||
662 | return REG_NOMATCH; | ||
663 | start = last_start = 0; | ||
664 | } | ||
665 | |||
666 | /* We must check the longest matching, if nmatch > 0. */ | ||
667 | fl_longest_match = (nmatch != 0 || dfa->nbackref); | ||
668 | |||
669 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, | ||
670 | preg->re_translate, | ||
671 | preg->re_syntax & REG_IGNORE_CASE, dfa); | ||
672 | if (BE (err != REG_NOERROR, 0)) | ||
673 | goto free_return; | ||
674 | mctx.input.stop = stop; | ||
675 | mctx.input.raw_stop = stop; | ||
676 | mctx.input.newline_anchor = preg->re_newline_anchor; | ||
677 | |||
678 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); | ||
679 | if (BE (err != REG_NOERROR, 0)) | ||
680 | goto free_return; | ||
681 | |||
682 | /* We will log all the DFA states through which the dfa pass, | ||
683 | if nmatch > 1, or this dfa has "multibyte node", which is a | ||
684 | back-reference or a node which can accept multibyte character or | ||
685 | multi character collating element. */ | ||
686 | if (nmatch > 1 || dfa->has_mb_node) | ||
687 | { | ||
688 | mctx.state_log = re_xmalloc (re_dfastate_t *, mctx.input.bufs_len + 1); | ||
689 | if (BE (mctx.state_log == NULL, 0)) | ||
690 | { | ||
691 | err = REG_ESPACE; | ||
692 | goto free_return; | ||
693 | } | ||
694 | } | ||
695 | else | ||
696 | mctx.state_log = NULL; | ||
697 | |||
698 | match_first = start; | ||
699 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | ||
700 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; | ||
701 | |||
702 | /* Check incrementally whether of not the input string match. */ | ||
703 | incr = (last_start < start) ? -1 : 1; | ||
704 | left_lim = (last_start < start) ? last_start : start; | ||
705 | right_lim = (last_start < start) ? start : last_start; | ||
706 | sb = dfa->mb_cur_max == 1; | ||
707 | match_kind = | ||
708 | (fastmap | ||
709 | ? ((sb || !(preg->re_syntax & REG_IGNORE_CASE || t) ? 4 : 0) | ||
710 | | (start <= last_start ? 2 : 0) | ||
711 | | (t != NULL ? 1 : 0)) | ||
712 | : 8); | ||
713 | |||
714 | for (;; match_first += incr) | ||
715 | { | ||
716 | err = REG_NOMATCH; | ||
717 | if (match_first < left_lim || right_lim < match_first) | ||
718 | goto free_return; | ||
719 | |||
720 | /* Advance as rapidly as possible through the string, until we | ||
721 | find a plausible place to start matching. This may be done | ||
722 | with varying efficiency, so there are various possibilities: | ||
723 | only the most common of them are specialized, in order to | ||
724 | save on code size. We use a switch statement for speed. */ | ||
725 | switch (match_kind) | ||
726 | { | ||
727 | case 8: | ||
728 | /* No fastmap. */ | ||
729 | break; | ||
730 | |||
731 | case 7: | ||
732 | /* Fastmap with single-byte translation, match forward. */ | ||
733 | while (BE (match_first < right_lim, 1) | ||
734 | && !fastmap[t[(unsigned char) string[match_first]]]) | ||
735 | ++match_first; | ||
736 | goto forward_match_found_start_or_reached_end; | ||
737 | |||
738 | case 6: | ||
739 | /* Fastmap without translation, match forward. */ | ||
740 | while (BE (match_first < right_lim, 1) | ||
741 | && !fastmap[(unsigned char) string[match_first]]) | ||
742 | ++match_first; | ||
743 | |||
744 | forward_match_found_start_or_reached_end: | ||
745 | if (BE (match_first == right_lim, 0)) | ||
746 | { | ||
747 | ch = match_first >= length | ||
748 | ? 0 : (unsigned char) string[match_first]; | ||
749 | if (!fastmap[t ? t[ch] : ch]) | ||
750 | goto free_return; | ||
751 | } | ||
752 | break; | ||
753 | |||
754 | case 4: | ||
755 | case 5: | ||
756 | /* Fastmap without multi-byte translation, match backwards. */ | ||
757 | while (match_first >= left_lim) | ||
758 | { | ||
759 | ch = match_first >= length | ||
760 | ? 0 : (unsigned char) string[match_first]; | ||
761 | if (fastmap[t ? t[ch] : ch]) | ||
762 | break; | ||
763 | --match_first; | ||
764 | } | ||
765 | if (match_first < left_lim) | ||
766 | goto free_return; | ||
767 | break; | ||
768 | |||
769 | default: | ||
770 | /* In this case, we can't determine easily the current byte, | ||
771 | since it might be a component byte of a multibyte | ||
772 | character. Then we use the constructed buffer instead. */ | ||
773 | for (;;) | ||
774 | { | ||
775 | /* If MATCH_FIRST is out of the valid range, reconstruct the | ||
776 | buffers. */ | ||
777 | __re_size_t offset = match_first - mctx.input.raw_mbs_idx; | ||
778 | if (BE (offset >= (__re_size_t) mctx.input.valid_raw_len, 0)) | ||
779 | { | ||
780 | err = re_string_reconstruct (&mctx.input, match_first, | ||
781 | eflags); | ||
782 | if (BE (err != REG_NOERROR, 0)) | ||
783 | goto free_return; | ||
784 | |||
785 | offset = match_first - mctx.input.raw_mbs_idx; | ||
786 | } | ||
787 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. | ||
788 | Note that MATCH_FIRST must not be smaller than 0. */ | ||
789 | ch = (match_first >= length | ||
790 | ? 0 : re_string_byte_at (&mctx.input, offset)); | ||
791 | if (fastmap[ch]) | ||
792 | break; | ||
793 | match_first += incr; | ||
794 | if (match_first < left_lim || match_first > right_lim) | ||
795 | { | ||
796 | err = REG_NOMATCH; | ||
797 | goto free_return; | ||
798 | } | ||
799 | } | ||
800 | break; | ||
801 | } | ||
802 | |||
803 | /* Reconstruct the buffers so that the matcher can assume that | ||
804 | the matching starts from the beginning of the buffer. */ | ||
805 | err = re_string_reconstruct (&mctx.input, match_first, eflags); | ||
806 | if (BE (err != REG_NOERROR, 0)) | ||
807 | goto free_return; | ||
808 | |||
809 | #ifdef RE_ENABLE_I18N | ||
810 | /* Don't consider this char as a possible match start if it part, | ||
811 | yet isn't the head, of a multibyte character. */ | ||
812 | if (!sb && !re_string_first_byte (&mctx.input, 0)) | ||
813 | continue; | ||
814 | #endif | ||
815 | |||
816 | /* It seems to be appropriate one, then use the matcher. */ | ||
817 | /* We assume that the matching starts from 0. */ | ||
818 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; | ||
819 | match_last = check_matching (&mctx, fl_longest_match, | ||
820 | start <= last_start ? &match_first : NULL); | ||
821 | if (match_last != REG_MISSING) | ||
822 | { | ||
823 | if (BE (match_last == REG_ERROR, 0)) | ||
824 | { | ||
825 | err = REG_ESPACE; | ||
826 | goto free_return; | ||
827 | } | ||
828 | else | ||
829 | { | ||
830 | mctx.match_last = match_last; | ||
831 | if ((!preg->re_no_sub && nmatch > 1) || dfa->nbackref) | ||
832 | { | ||
833 | re_dfastate_t *pstate = mctx.state_log[match_last]; | ||
834 | mctx.last_node = check_halt_state_context (&mctx, pstate, | ||
835 | match_last); | ||
836 | } | ||
837 | if ((!preg->re_no_sub && nmatch > 1 && dfa->has_plural_match) | ||
838 | || dfa->nbackref) | ||
839 | { | ||
840 | err = prune_impossible_nodes (&mctx); | ||
841 | if (err == REG_NOERROR) | ||
842 | break; | ||
843 | if (BE (err != REG_NOMATCH, 0)) | ||
844 | goto free_return; | ||
845 | match_last = REG_MISSING; | ||
846 | } | ||
847 | else | ||
848 | break; /* We found a match. */ | ||
849 | } | ||
850 | } | ||
851 | |||
852 | match_ctx_clean (&mctx); | ||
853 | } | ||
854 | |||
855 | #ifdef DEBUG | ||
856 | assert (match_last != REG_MISSING); | ||
857 | assert (err == REG_NOERROR); | ||
858 | #endif | ||
859 | |||
860 | /* Set pmatch[] if we need. */ | ||
861 | if (nmatch > 0) | ||
862 | { | ||
863 | Idx reg_idx; | ||
864 | |||
865 | /* Initialize registers. */ | ||
866 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) | ||
867 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; | ||
868 | |||
869 | /* Set the points where matching start/end. */ | ||
870 | pmatch[0].rm_so = 0; | ||
871 | pmatch[0].rm_eo = mctx.match_last; | ||
872 | /* FIXME: This function should fail if mctx.match_last exceeds | ||
873 | the maximum possible regoff_t value. We need a new error | ||
874 | code REG_OVERFLOW. */ | ||
875 | |||
876 | if (!preg->re_no_sub && nmatch > 1) | ||
877 | { | ||
878 | err = set_regs (preg, &mctx, nmatch, pmatch, | ||
879 | dfa->has_plural_match && dfa->nbackref > 0); | ||
880 | if (BE (err != REG_NOERROR, 0)) | ||
881 | goto free_return; | ||
882 | } | ||
883 | |||
884 | /* At last, add the offset to the each registers, since we slided | ||
885 | the buffers so that we could assume that the matching starts | ||
886 | from 0. */ | ||
887 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | ||
888 | if (pmatch[reg_idx].rm_so != -1) | ||
889 | { | ||
890 | #ifdef RE_ENABLE_I18N | ||
891 | if (BE (mctx.input.offsets_needed != 0, 0)) | ||
892 | { | ||
893 | pmatch[reg_idx].rm_so = | ||
894 | (pmatch[reg_idx].rm_so == mctx.input.valid_len | ||
895 | ? mctx.input.valid_raw_len | ||
896 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); | ||
897 | pmatch[reg_idx].rm_eo = | ||
898 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len | ||
899 | ? mctx.input.valid_raw_len | ||
900 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); | ||
901 | } | ||
902 | #else | ||
903 | assert (mctx.input.offsets_needed == 0); | ||
904 | #endif | ||
905 | pmatch[reg_idx].rm_so += match_first; | ||
906 | pmatch[reg_idx].rm_eo += match_first; | ||
907 | } | ||
908 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) | ||
909 | { | ||
910 | pmatch[nmatch + reg_idx].rm_so = -1; | ||
911 | pmatch[nmatch + reg_idx].rm_eo = -1; | ||
912 | } | ||
913 | |||
914 | if (dfa->subexp_map) | ||
915 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) | ||
916 | if (dfa->subexp_map[reg_idx] != reg_idx) | ||
917 | { | ||
918 | pmatch[reg_idx + 1].rm_so | ||
919 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; | ||
920 | pmatch[reg_idx + 1].rm_eo | ||
921 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; | ||
922 | } | ||
923 | } | ||
924 | |||
925 | free_return: | ||
926 | re_free (mctx.state_log); | ||
927 | if (dfa->nbackref) | ||
928 | match_ctx_free (&mctx); | ||
929 | re_string_destruct (&mctx.input); | ||
930 | return err; | ||
931 | } | ||
932 | |||
933 | static reg_errcode_t | ||
934 | internal_function | ||
935 | prune_impossible_nodes (re_match_context_t *mctx) | ||
936 | { | ||
937 | re_dfa_t *const dfa = mctx->dfa; | ||
938 | Idx halt_node, match_last; | ||
939 | reg_errcode_t ret; | ||
940 | re_dfastate_t **sifted_states; | ||
941 | re_dfastate_t **lim_states = NULL; | ||
942 | re_sift_context_t sctx; | ||
943 | #ifdef DEBUG | ||
944 | assert (mctx->state_log != NULL); | ||
945 | #endif | ||
946 | match_last = mctx->match_last; | ||
947 | halt_node = mctx->last_node; | ||
948 | sifted_states = re_xmalloc (re_dfastate_t *, match_last + 1); | ||
949 | if (BE (sifted_states == NULL, 0)) | ||
950 | { | ||
951 | ret = REG_ESPACE; | ||
952 | goto free_return; | ||
953 | } | ||
954 | if (dfa->nbackref) | ||
955 | { | ||
956 | lim_states = re_xmalloc (re_dfastate_t *, match_last + 1); | ||
957 | if (BE (lim_states == NULL, 0)) | ||
958 | { | ||
959 | ret = REG_ESPACE; | ||
960 | goto free_return; | ||
961 | } | ||
962 | while (1) | ||
963 | { | ||
964 | memset (lim_states, '\0', | ||
965 | sizeof (re_dfastate_t *) * (match_last + 1)); | ||
966 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, | ||
967 | match_last); | ||
968 | ret = sift_states_backward (mctx, &sctx); | ||
969 | re_node_set_free (&sctx.limits); | ||
970 | if (BE (ret != REG_NOERROR, 0)) | ||
971 | goto free_return; | ||
972 | if (sifted_states[0] != NULL || lim_states[0] != NULL) | ||
973 | break; | ||
974 | do | ||
975 | { | ||
976 | --match_last; | ||
977 | if (! REG_VALID_INDEX (match_last)) | ||
978 | { | ||
979 | ret = REG_NOMATCH; | ||
980 | goto free_return; | ||
981 | } | ||
982 | } while (mctx->state_log[match_last] == NULL | ||
983 | || !mctx->state_log[match_last]->halt); | ||
984 | halt_node = check_halt_state_context (mctx, | ||
985 | mctx->state_log[match_last], | ||
986 | match_last); | ||
987 | } | ||
988 | ret = merge_state_array (dfa, sifted_states, lim_states, | ||
989 | match_last + 1); | ||
990 | re_free (lim_states); | ||
991 | lim_states = NULL; | ||
992 | if (BE (ret != REG_NOERROR, 0)) | ||
993 | goto free_return; | ||
994 | } | ||
995 | else | ||
996 | { | ||
997 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); | ||
998 | ret = sift_states_backward (mctx, &sctx); | ||
999 | re_node_set_free (&sctx.limits); | ||
1000 | if (BE (ret != REG_NOERROR, 0)) | ||
1001 | goto free_return; | ||
1002 | } | ||
1003 | re_free (mctx->state_log); | ||
1004 | mctx->state_log = sifted_states; | ||
1005 | sifted_states = NULL; | ||
1006 | mctx->last_node = halt_node; | ||
1007 | mctx->match_last = match_last; | ||
1008 | ret = REG_NOERROR; | ||
1009 | free_return: | ||
1010 | re_free (sifted_states); | ||
1011 | re_free (lim_states); | ||
1012 | return ret; | ||
1013 | } | ||
1014 | |||
1015 | /* Acquire an initial state and return it. | ||
1016 | We must select appropriate initial state depending on the context, | ||
1017 | since initial states may have constraints like "\<", "^", etc.. */ | ||
1018 | |||
1019 | static inline re_dfastate_t * | ||
1020 | __attribute ((always_inline)) internal_function | ||
1021 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, | ||
1022 | Idx idx) | ||
1023 | { | ||
1024 | re_dfa_t *const dfa = mctx->dfa; | ||
1025 | if (dfa->init_state->has_constraint) | ||
1026 | { | ||
1027 | unsigned int context; | ||
1028 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); | ||
1029 | if (IS_WORD_CONTEXT (context)) | ||
1030 | return dfa->init_state_word; | ||
1031 | else if (IS_ORDINARY_CONTEXT (context)) | ||
1032 | return dfa->init_state; | ||
1033 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) | ||
1034 | return dfa->init_state_begbuf; | ||
1035 | else if (IS_NEWLINE_CONTEXT (context)) | ||
1036 | return dfa->init_state_nl; | ||
1037 | else if (IS_BEGBUF_CONTEXT (context)) | ||
1038 | { | ||
1039 | /* It is relatively rare case, then calculate on demand. */ | ||
1040 | return re_acquire_state_context (err, dfa, | ||
1041 | dfa->init_state->entrance_nodes, | ||
1042 | context); | ||
1043 | } | ||
1044 | else | ||
1045 | /* Must not happen? */ | ||
1046 | return dfa->init_state; | ||
1047 | } | ||
1048 | else | ||
1049 | return dfa->init_state; | ||
1050 | } | ||
1051 | |||
1052 | /* Check whether the regular expression match input string INPUT or not, | ||
1053 | and return the index where the matching end. Return REG_MISSING if | ||
1054 | there is no match, and return REG_ERROR in case of an error. | ||
1055 | FL_LONGEST_MATCH means we want the POSIX longest matching. | ||
1056 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the | ||
1057 | next place where we may want to try matching. | ||
1058 | Note that the matcher assume that the maching starts from the current | ||
1059 | index of the buffer. */ | ||
1060 | |||
1061 | static Idx | ||
1062 | internal_function | ||
1063 | check_matching (re_match_context_t *mctx, bool fl_longest_match, | ||
1064 | Idx *p_match_first) | ||
1065 | { | ||
1066 | re_dfa_t *const dfa = mctx->dfa; | ||
1067 | reg_errcode_t err; | ||
1068 | Idx match = 0; | ||
1069 | Idx match_last = REG_MISSING; | ||
1070 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
1071 | re_dfastate_t *cur_state; | ||
1072 | bool at_init_state = p_match_first != NULL; | ||
1073 | Idx next_start_idx = cur_str_idx; | ||
1074 | |||
1075 | err = REG_NOERROR; | ||
1076 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); | ||
1077 | /* An initial state must not be NULL (invalid). */ | ||
1078 | if (BE (cur_state == NULL, 0)) | ||
1079 | { | ||
1080 | assert (err == REG_ESPACE); | ||
1081 | return REG_ERROR; | ||
1082 | } | ||
1083 | |||
1084 | if (mctx->state_log != NULL) | ||
1085 | { | ||
1086 | mctx->state_log[cur_str_idx] = cur_state; | ||
1087 | |||
1088 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them | ||
1089 | later. E.g. Processing back references. */ | ||
1090 | if (BE (dfa->nbackref, 0)) | ||
1091 | { | ||
1092 | at_init_state = false; | ||
1093 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); | ||
1094 | if (BE (err != REG_NOERROR, 0)) | ||
1095 | return err; | ||
1096 | |||
1097 | if (cur_state->has_backref) | ||
1098 | { | ||
1099 | err = transit_state_bkref (mctx, &cur_state->nodes); | ||
1100 | if (BE (err != REG_NOERROR, 0)) | ||
1101 | return err; | ||
1102 | } | ||
1103 | } | ||
1104 | } | ||
1105 | |||
1106 | /* If the RE accepts NULL string. */ | ||
1107 | if (BE (cur_state->halt, 0)) | ||
1108 | { | ||
1109 | if (!cur_state->has_constraint | ||
1110 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) | ||
1111 | { | ||
1112 | if (!fl_longest_match) | ||
1113 | return cur_str_idx; | ||
1114 | else | ||
1115 | { | ||
1116 | match_last = cur_str_idx; | ||
1117 | match = 1; | ||
1118 | } | ||
1119 | } | ||
1120 | } | ||
1121 | |||
1122 | while (!re_string_eoi (&mctx->input)) | ||
1123 | { | ||
1124 | re_dfastate_t *old_state = cur_state; | ||
1125 | Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1; | ||
1126 | |||
1127 | if (BE (next_char_idx >= mctx->input.bufs_len, 0) | ||
1128 | || (BE (next_char_idx >= mctx->input.valid_len, 0) | ||
1129 | && mctx->input.valid_len < mctx->input.len)) | ||
1130 | { | ||
1131 | err = extend_buffers (mctx); | ||
1132 | if (BE (err != REG_NOERROR, 0)) | ||
1133 | { | ||
1134 | assert (err == REG_ESPACE); | ||
1135 | return REG_ERROR; | ||
1136 | } | ||
1137 | } | ||
1138 | |||
1139 | cur_state = transit_state (&err, mctx, cur_state); | ||
1140 | if (mctx->state_log != NULL) | ||
1141 | cur_state = merge_state_with_log (&err, mctx, cur_state); | ||
1142 | |||
1143 | if (cur_state == NULL) | ||
1144 | { | ||
1145 | /* Reached the invalid state or an error. Try to recover a valid | ||
1146 | state using the state log, if available and if we have not | ||
1147 | already found a valid (even if not the longest) match. */ | ||
1148 | if (BE (err != REG_NOERROR, 0)) | ||
1149 | return REG_ERROR; | ||
1150 | |||
1151 | if (mctx->state_log == NULL | ||
1152 | || (match && !fl_longest_match) | ||
1153 | || (cur_state = find_recover_state (&err, mctx)) == NULL) | ||
1154 | break; | ||
1155 | } | ||
1156 | |||
1157 | if (BE (at_init_state, 0)) | ||
1158 | { | ||
1159 | if (old_state == cur_state) | ||
1160 | next_start_idx = next_char_idx; | ||
1161 | else | ||
1162 | at_init_state = false; | ||
1163 | } | ||
1164 | |||
1165 | if (cur_state->halt) | ||
1166 | { | ||
1167 | /* Reached a halt state. | ||
1168 | Check the halt state can satisfy the current context. */ | ||
1169 | if (!cur_state->has_constraint | ||
1170 | || check_halt_state_context (mctx, cur_state, | ||
1171 | re_string_cur_idx (&mctx->input))) | ||
1172 | { | ||
1173 | /* We found an appropriate halt state. */ | ||
1174 | match_last = re_string_cur_idx (&mctx->input); | ||
1175 | match = 1; | ||
1176 | |||
1177 | /* We found a match, do not modify match_first below. */ | ||
1178 | p_match_first = NULL; | ||
1179 | if (!fl_longest_match) | ||
1180 | break; | ||
1181 | } | ||
1182 | } | ||
1183 | } | ||
1184 | |||
1185 | if (p_match_first) | ||
1186 | *p_match_first += next_start_idx; | ||
1187 | |||
1188 | return match_last; | ||
1189 | } | ||
1190 | |||
1191 | /* Check NODE match the current context. */ | ||
1192 | |||
1193 | static bool | ||
1194 | internal_function | ||
1195 | check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context) | ||
1196 | { | ||
1197 | re_token_type_t type = dfa->nodes[node].type; | ||
1198 | unsigned int constraint = dfa->nodes[node].constraint; | ||
1199 | if (type != END_OF_RE) | ||
1200 | return false; | ||
1201 | if (!constraint) | ||
1202 | return true; | ||
1203 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) | ||
1204 | return false; | ||
1205 | return true; | ||
1206 | } | ||
1207 | |||
1208 | /* Check the halt state STATE match the current context. | ||
1209 | Return 0 if not match, if the node, STATE has, is a halt node and | ||
1210 | match the context, return the node. */ | ||
1211 | |||
1212 | static Idx | ||
1213 | internal_function | ||
1214 | check_halt_state_context (const re_match_context_t *mctx, | ||
1215 | const re_dfastate_t *state, Idx idx) | ||
1216 | { | ||
1217 | Idx i; | ||
1218 | unsigned int context; | ||
1219 | #ifdef DEBUG | ||
1220 | assert (state->halt); | ||
1221 | #endif | ||
1222 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); | ||
1223 | for (i = 0; i < state->nodes.nelem; ++i) | ||
1224 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) | ||
1225 | return state->nodes.elems[i]; | ||
1226 | return 0; | ||
1227 | } | ||
1228 | |||
1229 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA | ||
1230 | corresponding to the DFA). | ||
1231 | Return the destination node, and update EPS_VIA_NODES; | ||
1232 | return REG_MISSING in case of errors. */ | ||
1233 | |||
1234 | static Idx | ||
1235 | internal_function | ||
1236 | proceed_next_node (const re_match_context_t *mctx, | ||
1237 | Idx nregs, regmatch_t *regs, Idx *pidx, Idx node, | ||
1238 | re_node_set *eps_via_nodes, struct re_fail_stack_t *fs) | ||
1239 | { | ||
1240 | re_dfa_t *const dfa = mctx->dfa; | ||
1241 | Idx i; | ||
1242 | bool ok; | ||
1243 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) | ||
1244 | { | ||
1245 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; | ||
1246 | re_node_set *edests = &dfa->edests[node]; | ||
1247 | Idx dest_node; | ||
1248 | ok = re_node_set_insert (eps_via_nodes, node); | ||
1249 | if (BE (! ok, 0)) | ||
1250 | return REG_ERROR; | ||
1251 | /* Pick up a valid destination, or return REG_MISSING if none | ||
1252 | is found. */ | ||
1253 | for (dest_node = REG_MISSING, i = 0; i < edests->nelem; ++i) | ||
1254 | { | ||
1255 | Idx candidate = edests->elems[i]; | ||
1256 | if (!re_node_set_contains (cur_nodes, candidate)) | ||
1257 | continue; | ||
1258 | if (dest_node == REG_MISSING) | ||
1259 | dest_node = candidate; | ||
1260 | |||
1261 | else | ||
1262 | { | ||
1263 | /* In order to avoid infinite loop like "(a*)*", return the second | ||
1264 | epsilon-transition if the first was already considered. */ | ||
1265 | if (re_node_set_contains (eps_via_nodes, dest_node)) | ||
1266 | return candidate; | ||
1267 | |||
1268 | /* Otherwise, push the second epsilon-transition on the fail stack. */ | ||
1269 | else if (fs != NULL | ||
1270 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, | ||
1271 | eps_via_nodes)) | ||
1272 | return REG_ERROR; | ||
1273 | |||
1274 | /* We know we are going to exit. */ | ||
1275 | break; | ||
1276 | } | ||
1277 | } | ||
1278 | return dest_node; | ||
1279 | } | ||
1280 | else | ||
1281 | { | ||
1282 | Idx naccepted = 0; | ||
1283 | re_token_type_t type = dfa->nodes[node].type; | ||
1284 | |||
1285 | #ifdef RE_ENABLE_I18N | ||
1286 | if (dfa->nodes[node].accept_mb) | ||
1287 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); | ||
1288 | else | ||
1289 | #endif /* RE_ENABLE_I18N */ | ||
1290 | if (type == OP_BACK_REF) | ||
1291 | { | ||
1292 | Idx subexp_idx = dfa->nodes[node].opr.idx + 1; | ||
1293 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; | ||
1294 | if (fs != NULL) | ||
1295 | { | ||
1296 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) | ||
1297 | return REG_MISSING; | ||
1298 | else if (naccepted) | ||
1299 | { | ||
1300 | char *buf = (char *) re_string_get_buffer (&mctx->input); | ||
1301 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, | ||
1302 | naccepted) != 0) | ||
1303 | return REG_MISSING; | ||
1304 | } | ||
1305 | } | ||
1306 | |||
1307 | if (naccepted == 0) | ||
1308 | { | ||
1309 | Idx dest_node; | ||
1310 | ok = re_node_set_insert (eps_via_nodes, node); | ||
1311 | if (BE (! ok, 0)) | ||
1312 | return REG_ERROR; | ||
1313 | dest_node = dfa->edests[node].elems[0]; | ||
1314 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, | ||
1315 | dest_node)) | ||
1316 | return dest_node; | ||
1317 | } | ||
1318 | } | ||
1319 | |||
1320 | if (naccepted != 0 | ||
1321 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) | ||
1322 | { | ||
1323 | Idx dest_node = dfa->nexts[node]; | ||
1324 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; | ||
1325 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL | ||
1326 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, | ||
1327 | dest_node))) | ||
1328 | return REG_MISSING; | ||
1329 | re_node_set_empty (eps_via_nodes); | ||
1330 | return dest_node; | ||
1331 | } | ||
1332 | } | ||
1333 | return REG_MISSING; | ||
1334 | } | ||
1335 | |||
1336 | static reg_errcode_t | ||
1337 | internal_function | ||
1338 | push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node, | ||
1339 | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | ||
1340 | { | ||
1341 | reg_errcode_t err; | ||
1342 | Idx num = fs->num++; | ||
1343 | if (fs->num == fs->alloc) | ||
1344 | { | ||
1345 | struct re_fail_stack_ent_t *new_array = | ||
1346 | re_x2realloc (fs->stack, struct re_fail_stack_ent_t, &fs->alloc); | ||
1347 | if (new_array == NULL) | ||
1348 | return REG_ESPACE; | ||
1349 | fs->stack = new_array; | ||
1350 | } | ||
1351 | fs->stack[num].idx = str_idx; | ||
1352 | fs->stack[num].node = dest_node; | ||
1353 | fs->stack[num].regs = re_xmalloc (regmatch_t, nregs); | ||
1354 | if (fs->stack[num].regs == NULL) | ||
1355 | return REG_ESPACE; | ||
1356 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); | ||
1357 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); | ||
1358 | return err; | ||
1359 | } | ||
1360 | |||
1361 | static Idx | ||
1362 | internal_function | ||
1363 | pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, | ||
1364 | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | ||
1365 | { | ||
1366 | Idx num = --fs->num; | ||
1367 | assert (REG_VALID_INDEX (num)); | ||
1368 | *pidx = fs->stack[num].idx; | ||
1369 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); | ||
1370 | re_node_set_free (eps_via_nodes); | ||
1371 | re_free (fs->stack[num].regs); | ||
1372 | *eps_via_nodes = fs->stack[num].eps_via_nodes; | ||
1373 | return fs->stack[num].node; | ||
1374 | } | ||
1375 | |||
1376 | /* Set the positions where the subexpressions are starts/ends to registers | ||
1377 | PMATCH. | ||
1378 | Note: We assume that pmatch[0] is already set, and | ||
1379 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ | ||
1380 | |||
1381 | static reg_errcode_t | ||
1382 | internal_function | ||
1383 | set_regs (const regex_t *preg, const re_match_context_t *mctx, | ||
1384 | size_t nmatch, regmatch_t *pmatch, bool fl_backtrack) | ||
1385 | { | ||
1386 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
1387 | Idx idx, cur_node; | ||
1388 | re_node_set eps_via_nodes; | ||
1389 | struct re_fail_stack_t *fs; | ||
1390 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; | ||
1391 | regmatch_t *prev_idx_match; | ||
1392 | bool prev_idx_match_malloced = false; | ||
1393 | |||
1394 | #ifdef DEBUG | ||
1395 | assert (nmatch > 1); | ||
1396 | assert (mctx->state_log != NULL); | ||
1397 | #endif | ||
1398 | if (fl_backtrack) | ||
1399 | { | ||
1400 | fs = &fs_body; | ||
1401 | fs->stack = re_xmalloc (struct re_fail_stack_ent_t, fs->alloc); | ||
1402 | if (fs->stack == NULL) | ||
1403 | return REG_ESPACE; | ||
1404 | } | ||
1405 | else | ||
1406 | fs = NULL; | ||
1407 | |||
1408 | cur_node = dfa->init_node; | ||
1409 | re_node_set_init_empty (&eps_via_nodes); | ||
1410 | |||
1411 | if (re_alloc_oversized (nmatch, sizeof (regmatch_t))) | ||
1412 | { | ||
1413 | free_fail_stack_return (fs); | ||
1414 | return REG_ESPACE; | ||
1415 | } | ||
1416 | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) | ||
1417 | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); | ||
1418 | else | ||
1419 | { | ||
1420 | prev_idx_match = re_malloc (regmatch_t, nmatch); | ||
1421 | if (prev_idx_match == NULL) | ||
1422 | { | ||
1423 | free_fail_stack_return (fs); | ||
1424 | return REG_ESPACE; | ||
1425 | } | ||
1426 | prev_idx_match_malloced = true; | ||
1427 | } | ||
1428 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | ||
1429 | |||
1430 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) | ||
1431 | { | ||
1432 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); | ||
1433 | |||
1434 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) | ||
1435 | { | ||
1436 | Idx reg_idx; | ||
1437 | if (fs) | ||
1438 | { | ||
1439 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | ||
1440 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) | ||
1441 | break; | ||
1442 | if (reg_idx == nmatch) | ||
1443 | { | ||
1444 | re_node_set_free (&eps_via_nodes); | ||
1445 | if (prev_idx_match_malloced) | ||
1446 | re_free (prev_idx_match); | ||
1447 | return free_fail_stack_return (fs); | ||
1448 | } | ||
1449 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | ||
1450 | &eps_via_nodes); | ||
1451 | } | ||
1452 | else | ||
1453 | { | ||
1454 | re_node_set_free (&eps_via_nodes); | ||
1455 | if (prev_idx_match_malloced) | ||
1456 | re_free (prev_idx_match); | ||
1457 | return REG_NOERROR; | ||
1458 | } | ||
1459 | } | ||
1460 | |||
1461 | /* Proceed to next node. */ | ||
1462 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, | ||
1463 | &eps_via_nodes, fs); | ||
1464 | |||
1465 | if (BE (! REG_VALID_INDEX (cur_node), 0)) | ||
1466 | { | ||
1467 | if (BE (cur_node == REG_ERROR, 0)) | ||
1468 | { | ||
1469 | re_node_set_free (&eps_via_nodes); | ||
1470 | if (prev_idx_match_malloced) | ||
1471 | re_free (prev_idx_match); | ||
1472 | free_fail_stack_return (fs); | ||
1473 | return REG_ESPACE; | ||
1474 | } | ||
1475 | if (fs) | ||
1476 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | ||
1477 | &eps_via_nodes); | ||
1478 | else | ||
1479 | { | ||
1480 | re_node_set_free (&eps_via_nodes); | ||
1481 | if (prev_idx_match_malloced) | ||
1482 | re_free (prev_idx_match); | ||
1483 | return REG_NOMATCH; | ||
1484 | } | ||
1485 | } | ||
1486 | } | ||
1487 | re_node_set_free (&eps_via_nodes); | ||
1488 | if (prev_idx_match_malloced) | ||
1489 | re_free (prev_idx_match); | ||
1490 | return free_fail_stack_return (fs); | ||
1491 | } | ||
1492 | |||
1493 | static reg_errcode_t | ||
1494 | internal_function | ||
1495 | free_fail_stack_return (struct re_fail_stack_t *fs) | ||
1496 | { | ||
1497 | if (fs) | ||
1498 | { | ||
1499 | Idx fs_idx; | ||
1500 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) | ||
1501 | { | ||
1502 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); | ||
1503 | re_free (fs->stack[fs_idx].regs); | ||
1504 | } | ||
1505 | re_free (fs->stack); | ||
1506 | } | ||
1507 | return REG_NOERROR; | ||
1508 | } | ||
1509 | |||
1510 | static void | ||
1511 | internal_function | ||
1512 | update_regs (re_dfa_t *dfa, regmatch_t *pmatch, regmatch_t *prev_idx_match, | ||
1513 | Idx cur_node, Idx cur_idx, Idx nmatch) | ||
1514 | { | ||
1515 | int type = dfa->nodes[cur_node].type; | ||
1516 | if (type == OP_OPEN_SUBEXP) | ||
1517 | { | ||
1518 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; | ||
1519 | |||
1520 | /* We are at the first node of this sub expression. */ | ||
1521 | if (reg_num < nmatch) | ||
1522 | { | ||
1523 | pmatch[reg_num].rm_so = cur_idx; | ||
1524 | pmatch[reg_num].rm_eo = -1; | ||
1525 | } | ||
1526 | } | ||
1527 | else if (type == OP_CLOSE_SUBEXP) | ||
1528 | { | ||
1529 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; | ||
1530 | if (reg_num < nmatch) | ||
1531 | { | ||
1532 | /* We are at the last node of this sub expression. */ | ||
1533 | if (pmatch[reg_num].rm_so < cur_idx) | ||
1534 | { | ||
1535 | pmatch[reg_num].rm_eo = cur_idx; | ||
1536 | /* This is a non-empty match or we are not inside an optional | ||
1537 | subexpression. Accept this right away. */ | ||
1538 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | ||
1539 | } | ||
1540 | else | ||
1541 | { | ||
1542 | if (dfa->nodes[cur_node].opt_subexp | ||
1543 | && prev_idx_match[reg_num].rm_so != -1) | ||
1544 | /* We transited through an empty match for an optional | ||
1545 | subexpression, like (a?)*, and this is not the subexp's | ||
1546 | first match. Copy back the old content of the registers | ||
1547 | so that matches of an inner subexpression are undone as | ||
1548 | well, like in ((a?))*. */ | ||
1549 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); | ||
1550 | else | ||
1551 | /* We completed a subexpression, but it may be part of | ||
1552 | an optional one, so do not update PREV_IDX_MATCH. */ | ||
1553 | pmatch[reg_num].rm_eo = cur_idx; | ||
1554 | } | ||
1555 | } | ||
1556 | } | ||
1557 | } | ||
1558 | |||
1559 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 | ||
1560 | and sift the nodes in each states according to the following rules. | ||
1561 | Updated state_log will be wrote to STATE_LOG. | ||
1562 | |||
1563 | Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... | ||
1564 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): | ||
1565 | If `a' isn't the LAST_NODE and `a' can't epsilon transit to | ||
1566 | the LAST_NODE, we throw away the node `a'. | ||
1567 | 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts | ||
1568 | string `s' and transit to `b': | ||
1569 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw | ||
1570 | away the node `a'. | ||
1571 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is | ||
1572 | thrown away, we throw away the node `a'. | ||
1573 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': | ||
1574 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the | ||
1575 | node `a'. | ||
1576 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, | ||
1577 | we throw away the node `a'. */ | ||
1578 | |||
1579 | #define STATE_NODE_CONTAINS(state,node) \ | ||
1580 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) | ||
1581 | |||
1582 | static reg_errcode_t | ||
1583 | internal_function | ||
1584 | sift_states_backward (re_match_context_t *mctx, re_sift_context_t *sctx) | ||
1585 | { | ||
1586 | reg_errcode_t err; | ||
1587 | int null_cnt = 0; | ||
1588 | Idx str_idx = sctx->last_str_idx; | ||
1589 | re_node_set cur_dest; | ||
1590 | |||
1591 | #ifdef DEBUG | ||
1592 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); | ||
1593 | #endif | ||
1594 | |||
1595 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon | ||
1596 | transit to the last_node and the last_node itself. */ | ||
1597 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); | ||
1598 | if (BE (err != REG_NOERROR, 0)) | ||
1599 | return err; | ||
1600 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | ||
1601 | if (BE (err != REG_NOERROR, 0)) | ||
1602 | goto free_return; | ||
1603 | |||
1604 | /* Then check each states in the state_log. */ | ||
1605 | while (str_idx > 0) | ||
1606 | { | ||
1607 | /* Update counters. */ | ||
1608 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; | ||
1609 | if (null_cnt > mctx->max_mb_elem_len) | ||
1610 | { | ||
1611 | memset (sctx->sifted_states, '\0', | ||
1612 | sizeof (re_dfastate_t *) * str_idx); | ||
1613 | re_node_set_free (&cur_dest); | ||
1614 | return REG_NOERROR; | ||
1615 | } | ||
1616 | re_node_set_empty (&cur_dest); | ||
1617 | --str_idx; | ||
1618 | |||
1619 | if (mctx->state_log[str_idx]) | ||
1620 | { | ||
1621 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); | ||
1622 | if (BE (err != REG_NOERROR, 0)) | ||
1623 | goto free_return; | ||
1624 | } | ||
1625 | |||
1626 | /* Add all the nodes which satisfy the following conditions: | ||
1627 | - It can epsilon transit to a node in CUR_DEST. | ||
1628 | - It is in CUR_SRC. | ||
1629 | And update state_log. */ | ||
1630 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | ||
1631 | if (BE (err != REG_NOERROR, 0)) | ||
1632 | goto free_return; | ||
1633 | } | ||
1634 | err = REG_NOERROR; | ||
1635 | free_return: | ||
1636 | re_node_set_free (&cur_dest); | ||
1637 | return err; | ||
1638 | } | ||
1639 | |||
1640 | static reg_errcode_t | ||
1641 | internal_function | ||
1642 | build_sifted_states (re_match_context_t *mctx, re_sift_context_t *sctx, | ||
1643 | Idx str_idx, re_node_set *cur_dest) | ||
1644 | { | ||
1645 | re_dfa_t *const dfa = mctx->dfa; | ||
1646 | re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; | ||
1647 | Idx i; | ||
1648 | |||
1649 | /* Then build the next sifted state. | ||
1650 | We build the next sifted state on `cur_dest', and update | ||
1651 | `sifted_states[str_idx]' with `cur_dest'. | ||
1652 | Note: | ||
1653 | `cur_dest' is the sifted state from `state_log[str_idx + 1]'. | ||
1654 | `cur_src' points the node_set of the old `state_log[str_idx]' | ||
1655 | (with the epsilon nodes pre-filtered out). */ | ||
1656 | for (i = 0; i < cur_src->nelem; i++) | ||
1657 | { | ||
1658 | Idx prev_node = cur_src->elems[i]; | ||
1659 | int naccepted = 0; | ||
1660 | bool ok; | ||
1661 | |||
1662 | #ifdef DEBUG | ||
1663 | re_token_type_t type = dfa->nodes[prev_node].type; | ||
1664 | assert (!IS_EPSILON_NODE (type)); | ||
1665 | #endif | ||
1666 | #ifdef RE_ENABLE_I18N | ||
1667 | /* If the node may accept `multi byte'. */ | ||
1668 | if (dfa->nodes[prev_node].accept_mb) | ||
1669 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, | ||
1670 | str_idx, sctx->last_str_idx); | ||
1671 | #endif /* RE_ENABLE_I18N */ | ||
1672 | |||
1673 | /* We don't check backreferences here. | ||
1674 | See update_cur_sifted_state(). */ | ||
1675 | if (!naccepted | ||
1676 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) | ||
1677 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], | ||
1678 | dfa->nexts[prev_node])) | ||
1679 | naccepted = 1; | ||
1680 | |||
1681 | if (naccepted == 0) | ||
1682 | continue; | ||
1683 | |||
1684 | if (sctx->limits.nelem) | ||
1685 | { | ||
1686 | Idx to_idx = str_idx + naccepted; | ||
1687 | if (check_dst_limits (mctx, &sctx->limits, | ||
1688 | dfa->nexts[prev_node], to_idx, | ||
1689 | prev_node, str_idx)) | ||
1690 | continue; | ||
1691 | } | ||
1692 | ok = re_node_set_insert (cur_dest, prev_node); | ||
1693 | if (BE (! ok, 0)) | ||
1694 | return REG_ESPACE; | ||
1695 | } | ||
1696 | |||
1697 | return REG_NOERROR; | ||
1698 | } | ||
1699 | |||
1700 | /* Helper functions. */ | ||
1701 | |||
1702 | static reg_errcode_t | ||
1703 | internal_function | ||
1704 | clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx) | ||
1705 | { | ||
1706 | Idx top = mctx->state_log_top; | ||
1707 | |||
1708 | if (next_state_log_idx >= mctx->input.bufs_len | ||
1709 | || (next_state_log_idx >= mctx->input.valid_len | ||
1710 | && mctx->input.valid_len < mctx->input.len)) | ||
1711 | { | ||
1712 | reg_errcode_t err; | ||
1713 | err = extend_buffers (mctx); | ||
1714 | if (BE (err != REG_NOERROR, 0)) | ||
1715 | return err; | ||
1716 | } | ||
1717 | |||
1718 | if (top < next_state_log_idx) | ||
1719 | { | ||
1720 | memset (mctx->state_log + top + 1, '\0', | ||
1721 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); | ||
1722 | mctx->state_log_top = next_state_log_idx; | ||
1723 | } | ||
1724 | return REG_NOERROR; | ||
1725 | } | ||
1726 | |||
1727 | static reg_errcode_t | ||
1728 | internal_function | ||
1729 | merge_state_array (re_dfa_t *dfa, re_dfastate_t **dst, re_dfastate_t **src, | ||
1730 | Idx num) | ||
1731 | { | ||
1732 | Idx st_idx; | ||
1733 | reg_errcode_t err; | ||
1734 | for (st_idx = 0; st_idx < num; ++st_idx) | ||
1735 | { | ||
1736 | if (dst[st_idx] == NULL) | ||
1737 | dst[st_idx] = src[st_idx]; | ||
1738 | else if (src[st_idx] != NULL) | ||
1739 | { | ||
1740 | re_node_set merged_set; | ||
1741 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, | ||
1742 | &src[st_idx]->nodes); | ||
1743 | if (BE (err != REG_NOERROR, 0)) | ||
1744 | return err; | ||
1745 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); | ||
1746 | re_node_set_free (&merged_set); | ||
1747 | if (BE (err != REG_NOERROR, 0)) | ||
1748 | return err; | ||
1749 | } | ||
1750 | } | ||
1751 | return REG_NOERROR; | ||
1752 | } | ||
1753 | |||
1754 | static reg_errcode_t | ||
1755 | internal_function | ||
1756 | update_cur_sifted_state (re_match_context_t *mctx, re_sift_context_t *sctx, | ||
1757 | Idx str_idx, re_node_set *dest_nodes) | ||
1758 | { | ||
1759 | re_dfa_t *const dfa = mctx->dfa; | ||
1760 | reg_errcode_t err; | ||
1761 | const re_node_set *candidates; | ||
1762 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL | ||
1763 | : &mctx->state_log[str_idx]->nodes); | ||
1764 | |||
1765 | if (dest_nodes->nelem == 0) | ||
1766 | sctx->sifted_states[str_idx] = NULL; | ||
1767 | else | ||
1768 | { | ||
1769 | if (candidates) | ||
1770 | { | ||
1771 | /* At first, add the nodes which can epsilon transit to a node in | ||
1772 | DEST_NODE. */ | ||
1773 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); | ||
1774 | if (BE (err != REG_NOERROR, 0)) | ||
1775 | return err; | ||
1776 | |||
1777 | /* Then, check the limitations in the current sift_context. */ | ||
1778 | if (sctx->limits.nelem) | ||
1779 | { | ||
1780 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, | ||
1781 | mctx->bkref_ents, str_idx); | ||
1782 | if (BE (err != REG_NOERROR, 0)) | ||
1783 | return err; | ||
1784 | } | ||
1785 | } | ||
1786 | |||
1787 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); | ||
1788 | if (BE (err != REG_NOERROR, 0)) | ||
1789 | return err; | ||
1790 | } | ||
1791 | |||
1792 | if (candidates && mctx->state_log[str_idx]->has_backref) | ||
1793 | { | ||
1794 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); | ||
1795 | if (BE (err != REG_NOERROR, 0)) | ||
1796 | return err; | ||
1797 | } | ||
1798 | return REG_NOERROR; | ||
1799 | } | ||
1800 | |||
1801 | static reg_errcode_t | ||
1802 | internal_function | ||
1803 | add_epsilon_src_nodes (re_dfa_t *dfa, re_node_set *dest_nodes, | ||
1804 | const re_node_set *candidates) | ||
1805 | { | ||
1806 | reg_errcode_t err = REG_NOERROR; | ||
1807 | Idx i; | ||
1808 | |||
1809 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); | ||
1810 | if (BE (err != REG_NOERROR, 0)) | ||
1811 | return err; | ||
1812 | |||
1813 | if (!state->inveclosure.alloc) | ||
1814 | { | ||
1815 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); | ||
1816 | if (BE (err != REG_NOERROR, 0)) | ||
1817 | return REG_ESPACE; | ||
1818 | for (i = 0; i < dest_nodes->nelem; i++) | ||
1819 | re_node_set_merge (&state->inveclosure, | ||
1820 | dfa->inveclosures + dest_nodes->elems[i]); | ||
1821 | } | ||
1822 | return re_node_set_add_intersect (dest_nodes, candidates, | ||
1823 | &state->inveclosure); | ||
1824 | } | ||
1825 | |||
1826 | static reg_errcode_t | ||
1827 | internal_function | ||
1828 | sub_epsilon_src_nodes (re_dfa_t *dfa, Idx node, re_node_set *dest_nodes, | ||
1829 | const re_node_set *candidates) | ||
1830 | { | ||
1831 | Idx ecl_idx; | ||
1832 | reg_errcode_t err; | ||
1833 | re_node_set *inv_eclosure = dfa->inveclosures + node; | ||
1834 | re_node_set except_nodes; | ||
1835 | re_node_set_init_empty (&except_nodes); | ||
1836 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | ||
1837 | { | ||
1838 | Idx cur_node = inv_eclosure->elems[ecl_idx]; | ||
1839 | if (cur_node == node) | ||
1840 | continue; | ||
1841 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) | ||
1842 | { | ||
1843 | Idx edst1 = dfa->edests[cur_node].elems[0]; | ||
1844 | Idx edst2 = ((dfa->edests[cur_node].nelem > 1) | ||
1845 | ? dfa->edests[cur_node].elems[1] : REG_MISSING); | ||
1846 | if ((!re_node_set_contains (inv_eclosure, edst1) | ||
1847 | && re_node_set_contains (dest_nodes, edst1)) | ||
1848 | || (REG_VALID_NONZERO_INDEX (edst2) | ||
1849 | && !re_node_set_contains (inv_eclosure, edst2) | ||
1850 | && re_node_set_contains (dest_nodes, edst2))) | ||
1851 | { | ||
1852 | err = re_node_set_add_intersect (&except_nodes, candidates, | ||
1853 | dfa->inveclosures + cur_node); | ||
1854 | if (BE (err != REG_NOERROR, 0)) | ||
1855 | { | ||
1856 | re_node_set_free (&except_nodes); | ||
1857 | return err; | ||
1858 | } | ||
1859 | } | ||
1860 | } | ||
1861 | } | ||
1862 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | ||
1863 | { | ||
1864 | Idx cur_node = inv_eclosure->elems[ecl_idx]; | ||
1865 | if (!re_node_set_contains (&except_nodes, cur_node)) | ||
1866 | { | ||
1867 | Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1; | ||
1868 | re_node_set_remove_at (dest_nodes, idx); | ||
1869 | } | ||
1870 | } | ||
1871 | re_node_set_free (&except_nodes); | ||
1872 | return REG_NOERROR; | ||
1873 | } | ||
1874 | |||
1875 | static bool | ||
1876 | internal_function | ||
1877 | check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits, | ||
1878 | Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx) | ||
1879 | { | ||
1880 | re_dfa_t *const dfa = mctx->dfa; | ||
1881 | Idx lim_idx, src_pos, dst_pos; | ||
1882 | |||
1883 | Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); | ||
1884 | Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); | ||
1885 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | ||
1886 | { | ||
1887 | Idx subexp_idx; | ||
1888 | struct re_backref_cache_entry *ent; | ||
1889 | ent = mctx->bkref_ents + limits->elems[lim_idx]; | ||
1890 | subexp_idx = dfa->nodes[ent->node].opr.idx; | ||
1891 | |||
1892 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | ||
1893 | subexp_idx, dst_node, dst_idx, | ||
1894 | dst_bkref_idx); | ||
1895 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | ||
1896 | subexp_idx, src_node, src_idx, | ||
1897 | src_bkref_idx); | ||
1898 | |||
1899 | /* In case of: | ||
1900 | <src> <dst> ( <subexp> ) | ||
1901 | ( <subexp> ) <src> <dst> | ||
1902 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ | ||
1903 | if (src_pos == dst_pos) | ||
1904 | continue; /* This is unrelated limitation. */ | ||
1905 | else | ||
1906 | return true; | ||
1907 | } | ||
1908 | return false; | ||
1909 | } | ||
1910 | |||
1911 | static int | ||
1912 | internal_function | ||
1913 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, | ||
1914 | Idx subexp_idx, Idx from_node, Idx bkref_idx) | ||
1915 | { | ||
1916 | re_dfa_t *const dfa = mctx->dfa; | ||
1917 | re_node_set *eclosures = dfa->eclosures + from_node; | ||
1918 | Idx node_idx; | ||
1919 | |||
1920 | /* Else, we are on the boundary: examine the nodes on the epsilon | ||
1921 | closure. */ | ||
1922 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) | ||
1923 | { | ||
1924 | Idx node = eclosures->elems[node_idx]; | ||
1925 | switch (dfa->nodes[node].type) | ||
1926 | { | ||
1927 | case OP_BACK_REF: | ||
1928 | if (bkref_idx != REG_MISSING) | ||
1929 | { | ||
1930 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; | ||
1931 | do | ||
1932 | { | ||
1933 | Idx dst; | ||
1934 | int cpos; | ||
1935 | |||
1936 | if (ent->node != node) | ||
1937 | continue; | ||
1938 | |||
1939 | if (subexp_idx < BITSET_WORD_BITS | ||
1940 | && !(ent->eps_reachable_subexps_map | ||
1941 | & ((bitset_word) 1 << subexp_idx))) | ||
1942 | continue; | ||
1943 | |||
1944 | /* Recurse trying to reach the OP_OPEN_SUBEXP and | ||
1945 | OP_CLOSE_SUBEXP cases below. But, if the | ||
1946 | destination node is the same node as the source | ||
1947 | node, don't recurse because it would cause an | ||
1948 | infinite loop: a regex that exhibits this behavior | ||
1949 | is ()\1*\1* */ | ||
1950 | dst = dfa->edests[node].elems[0]; | ||
1951 | if (dst == from_node) | ||
1952 | { | ||
1953 | if (boundaries & 1) | ||
1954 | return -1; | ||
1955 | else /* if (boundaries & 2) */ | ||
1956 | return 0; | ||
1957 | } | ||
1958 | |||
1959 | cpos = | ||
1960 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | ||
1961 | dst, bkref_idx); | ||
1962 | if (cpos == -1 /* && (boundaries & 1) */) | ||
1963 | return -1; | ||
1964 | if (cpos == 0 && (boundaries & 2)) | ||
1965 | return 0; | ||
1966 | |||
1967 | if (subexp_idx < BITSET_WORD_BITS) | ||
1968 | ent->eps_reachable_subexps_map &= | ||
1969 | ~ ((bitset_word) 1 << subexp_idx); | ||
1970 | } | ||
1971 | while (ent++->more); | ||
1972 | } | ||
1973 | break; | ||
1974 | |||
1975 | case OP_OPEN_SUBEXP: | ||
1976 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) | ||
1977 | return -1; | ||
1978 | break; | ||
1979 | |||
1980 | case OP_CLOSE_SUBEXP: | ||
1981 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) | ||
1982 | return 0; | ||
1983 | break; | ||
1984 | |||
1985 | default: | ||
1986 | break; | ||
1987 | } | ||
1988 | } | ||
1989 | |||
1990 | return (boundaries & 2) ? 1 : 0; | ||
1991 | } | ||
1992 | |||
1993 | static int | ||
1994 | internal_function | ||
1995 | check_dst_limits_calc_pos (const re_match_context_t *mctx, | ||
1996 | Idx limit, Idx subexp_idx, | ||
1997 | Idx from_node, Idx str_idx, Idx bkref_idx) | ||
1998 | { | ||
1999 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; | ||
2000 | int boundaries; | ||
2001 | |||
2002 | /* If we are outside the range of the subexpression, return -1 or 1. */ | ||
2003 | if (str_idx < lim->subexp_from) | ||
2004 | return -1; | ||
2005 | |||
2006 | if (lim->subexp_to < str_idx) | ||
2007 | return 1; | ||
2008 | |||
2009 | /* If we are within the subexpression, return 0. */ | ||
2010 | boundaries = (str_idx == lim->subexp_from); | ||
2011 | boundaries |= (str_idx == lim->subexp_to) << 1; | ||
2012 | if (boundaries == 0) | ||
2013 | return 0; | ||
2014 | |||
2015 | /* Else, examine epsilon closure. */ | ||
2016 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | ||
2017 | from_node, bkref_idx); | ||
2018 | } | ||
2019 | |||
2020 | /* Check the limitations of sub expressions LIMITS, and remove the nodes | ||
2021 | which are against limitations from DEST_NODES. */ | ||
2022 | |||
2023 | static reg_errcode_t | ||
2024 | internal_function | ||
2025 | check_subexp_limits (re_dfa_t *dfa, re_node_set *dest_nodes, | ||
2026 | const re_node_set *candidates, re_node_set *limits, | ||
2027 | struct re_backref_cache_entry *bkref_ents, Idx str_idx) | ||
2028 | { | ||
2029 | reg_errcode_t err; | ||
2030 | Idx node_idx, lim_idx; | ||
2031 | |||
2032 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | ||
2033 | { | ||
2034 | Idx subexp_idx; | ||
2035 | struct re_backref_cache_entry *ent; | ||
2036 | ent = bkref_ents + limits->elems[lim_idx]; | ||
2037 | |||
2038 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) | ||
2039 | continue; /* This is unrelated limitation. */ | ||
2040 | |||
2041 | subexp_idx = dfa->nodes[ent->node].opr.idx; | ||
2042 | if (ent->subexp_to == str_idx) | ||
2043 | { | ||
2044 | Idx ops_node = REG_MISSING; | ||
2045 | Idx cls_node = REG_MISSING; | ||
2046 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2047 | { | ||
2048 | Idx node = dest_nodes->elems[node_idx]; | ||
2049 | re_token_type_t type = dfa->nodes[node].type; | ||
2050 | if (type == OP_OPEN_SUBEXP | ||
2051 | && subexp_idx == dfa->nodes[node].opr.idx) | ||
2052 | ops_node = node; | ||
2053 | else if (type == OP_CLOSE_SUBEXP | ||
2054 | && subexp_idx == dfa->nodes[node].opr.idx) | ||
2055 | cls_node = node; | ||
2056 | } | ||
2057 | |||
2058 | /* Check the limitation of the open subexpression. */ | ||
2059 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ | ||
2060 | if (REG_VALID_INDEX (ops_node)) | ||
2061 | { | ||
2062 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, | ||
2063 | candidates); | ||
2064 | if (BE (err != REG_NOERROR, 0)) | ||
2065 | return err; | ||
2066 | } | ||
2067 | |||
2068 | /* Check the limitation of the close subexpression. */ | ||
2069 | if (REG_VALID_INDEX (cls_node)) | ||
2070 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2071 | { | ||
2072 | Idx node = dest_nodes->elems[node_idx]; | ||
2073 | if (!re_node_set_contains (dfa->inveclosures + node, | ||
2074 | cls_node) | ||
2075 | && !re_node_set_contains (dfa->eclosures + node, | ||
2076 | cls_node)) | ||
2077 | { | ||
2078 | /* It is against this limitation. | ||
2079 | Remove it form the current sifted state. */ | ||
2080 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | ||
2081 | candidates); | ||
2082 | if (BE (err != REG_NOERROR, 0)) | ||
2083 | return err; | ||
2084 | --node_idx; | ||
2085 | } | ||
2086 | } | ||
2087 | } | ||
2088 | else /* (ent->subexp_to != str_idx) */ | ||
2089 | { | ||
2090 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2091 | { | ||
2092 | Idx node = dest_nodes->elems[node_idx]; | ||
2093 | re_token_type_t type = dfa->nodes[node].type; | ||
2094 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) | ||
2095 | { | ||
2096 | if (subexp_idx != dfa->nodes[node].opr.idx) | ||
2097 | continue; | ||
2098 | /* It is against this limitation. | ||
2099 | Remove it form the current sifted state. */ | ||
2100 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | ||
2101 | candidates); | ||
2102 | if (BE (err != REG_NOERROR, 0)) | ||
2103 | return err; | ||
2104 | } | ||
2105 | } | ||
2106 | } | ||
2107 | } | ||
2108 | return REG_NOERROR; | ||
2109 | } | ||
2110 | |||
2111 | static reg_errcode_t | ||
2112 | internal_function | ||
2113 | sift_states_bkref (re_match_context_t *mctx, re_sift_context_t *sctx, | ||
2114 | Idx str_idx, const re_node_set *candidates) | ||
2115 | { | ||
2116 | re_dfa_t *const dfa = mctx->dfa; | ||
2117 | reg_errcode_t err; | ||
2118 | Idx node_idx, node; | ||
2119 | re_sift_context_t local_sctx; | ||
2120 | Idx first_idx = search_cur_bkref_entry (mctx, str_idx); | ||
2121 | |||
2122 | if (first_idx == REG_MISSING) | ||
2123 | return REG_NOERROR; | ||
2124 | |||
2125 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ | ||
2126 | |||
2127 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) | ||
2128 | { | ||
2129 | Idx enabled_idx; | ||
2130 | re_token_type_t type; | ||
2131 | struct re_backref_cache_entry *entry; | ||
2132 | node = candidates->elems[node_idx]; | ||
2133 | type = dfa->nodes[node].type; | ||
2134 | /* Avoid infinite loop for the REs like "()\1+". */ | ||
2135 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) | ||
2136 | continue; | ||
2137 | if (type != OP_BACK_REF) | ||
2138 | continue; | ||
2139 | |||
2140 | entry = mctx->bkref_ents + first_idx; | ||
2141 | enabled_idx = first_idx; | ||
2142 | do | ||
2143 | { | ||
2144 | bool ok; | ||
2145 | Idx subexp_len, to_idx, dst_node; | ||
2146 | re_dfastate_t *cur_state; | ||
2147 | |||
2148 | if (entry->node != node) | ||
2149 | continue; | ||
2150 | subexp_len = entry->subexp_to - entry->subexp_from; | ||
2151 | to_idx = str_idx + subexp_len; | ||
2152 | dst_node = (subexp_len ? dfa->nexts[node] | ||
2153 | : dfa->edests[node].elems[0]); | ||
2154 | |||
2155 | if (to_idx > sctx->last_str_idx | ||
2156 | || sctx->sifted_states[to_idx] == NULL | ||
2157 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) | ||
2158 | || check_dst_limits (mctx, &sctx->limits, node, | ||
2159 | str_idx, dst_node, to_idx)) | ||
2160 | continue; | ||
2161 | |||
2162 | if (local_sctx.sifted_states == NULL) | ||
2163 | { | ||
2164 | local_sctx = *sctx; | ||
2165 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); | ||
2166 | if (BE (err != REG_NOERROR, 0)) | ||
2167 | goto free_return; | ||
2168 | } | ||
2169 | local_sctx.last_node = node; | ||
2170 | local_sctx.last_str_idx = str_idx; | ||
2171 | ok = re_node_set_insert (&local_sctx.limits, enabled_idx); | ||
2172 | if (BE (! ok, 0)) | ||
2173 | { | ||
2174 | err = REG_ESPACE; | ||
2175 | goto free_return; | ||
2176 | } | ||
2177 | cur_state = local_sctx.sifted_states[str_idx]; | ||
2178 | err = sift_states_backward (mctx, &local_sctx); | ||
2179 | if (BE (err != REG_NOERROR, 0)) | ||
2180 | goto free_return; | ||
2181 | if (sctx->limited_states != NULL) | ||
2182 | { | ||
2183 | err = merge_state_array (dfa, sctx->limited_states, | ||
2184 | local_sctx.sifted_states, | ||
2185 | str_idx + 1); | ||
2186 | if (BE (err != REG_NOERROR, 0)) | ||
2187 | goto free_return; | ||
2188 | } | ||
2189 | local_sctx.sifted_states[str_idx] = cur_state; | ||
2190 | re_node_set_remove (&local_sctx.limits, enabled_idx); | ||
2191 | |||
2192 | /* mctx->bkref_ents may have changed, reload the pointer. */ | ||
2193 | entry = mctx->bkref_ents + enabled_idx; | ||
2194 | } | ||
2195 | while (enabled_idx++, entry++->more); | ||
2196 | } | ||
2197 | err = REG_NOERROR; | ||
2198 | free_return: | ||
2199 | if (local_sctx.sifted_states != NULL) | ||
2200 | { | ||
2201 | re_node_set_free (&local_sctx.limits); | ||
2202 | } | ||
2203 | |||
2204 | return err; | ||
2205 | } | ||
2206 | |||
2207 | |||
2208 | #ifdef RE_ENABLE_I18N | ||
2209 | static int | ||
2210 | internal_function | ||
2211 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, | ||
2212 | Idx node_idx, Idx str_idx, Idx max_str_idx) | ||
2213 | { | ||
2214 | re_dfa_t *const dfa = mctx->dfa; | ||
2215 | int naccepted; | ||
2216 | /* Check the node can accept `multi byte'. */ | ||
2217 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); | ||
2218 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && | ||
2219 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], | ||
2220 | dfa->nexts[node_idx])) | ||
2221 | /* The node can't accept the `multi byte', or the | ||
2222 | destination was already thrown away, then the node | ||
2223 | could't accept the current input `multi byte'. */ | ||
2224 | naccepted = 0; | ||
2225 | /* Otherwise, it is sure that the node could accept | ||
2226 | `naccepted' bytes input. */ | ||
2227 | return naccepted; | ||
2228 | } | ||
2229 | #endif /* RE_ENABLE_I18N */ | ||
2230 | |||
2231 | |||
2232 | /* Functions for state transition. */ | ||
2233 | |||
2234 | /* Return the next state to which the current state STATE will transit by | ||
2235 | accepting the current input byte, and update STATE_LOG if necessary. | ||
2236 | If STATE can accept a multibyte char/collating element/back reference | ||
2237 | update the destination of STATE_LOG. */ | ||
2238 | |||
2239 | static re_dfastate_t * | ||
2240 | internal_function | ||
2241 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, | ||
2242 | re_dfastate_t *state) | ||
2243 | { | ||
2244 | re_dfastate_t **trtable; | ||
2245 | unsigned char ch; | ||
2246 | |||
2247 | #ifdef RE_ENABLE_I18N | ||
2248 | /* If the current state can accept multibyte. */ | ||
2249 | if (BE (state->accept_mb, 0)) | ||
2250 | { | ||
2251 | *err = transit_state_mb (mctx, state); | ||
2252 | if (BE (*err != REG_NOERROR, 0)) | ||
2253 | return NULL; | ||
2254 | } | ||
2255 | #endif /* RE_ENABLE_I18N */ | ||
2256 | |||
2257 | /* Then decide the next state with the single byte. */ | ||
2258 | #if 0 | ||
2259 | if (0) | ||
2260 | /* don't use transition table */ | ||
2261 | return transit_state_sb (err, mctx, state); | ||
2262 | #endif | ||
2263 | |||
2264 | /* Use transition table */ | ||
2265 | ch = re_string_fetch_byte (&mctx->input); | ||
2266 | for (;;) | ||
2267 | { | ||
2268 | trtable = state->trtable; | ||
2269 | if (BE (trtable != NULL, 1)) | ||
2270 | return trtable[ch]; | ||
2271 | |||
2272 | trtable = state->word_trtable; | ||
2273 | if (BE (trtable != NULL, 1)) | ||
2274 | { | ||
2275 | unsigned int context; | ||
2276 | context | ||
2277 | = re_string_context_at (&mctx->input, | ||
2278 | re_string_cur_idx (&mctx->input) - 1, | ||
2279 | mctx->eflags); | ||
2280 | if (IS_WORD_CONTEXT (context)) | ||
2281 | return trtable[ch + SBC_MAX]; | ||
2282 | else | ||
2283 | return trtable[ch]; | ||
2284 | } | ||
2285 | |||
2286 | if (!build_trtable (mctx->dfa, state)) | ||
2287 | { | ||
2288 | *err = REG_ESPACE; | ||
2289 | return NULL; | ||
2290 | } | ||
2291 | |||
2292 | /* Retry, we now have a transition table. */ | ||
2293 | } | ||
2294 | } | ||
2295 | |||
2296 | /* Update the state_log if we need */ | ||
2297 | re_dfastate_t * | ||
2298 | internal_function | ||
2299 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, | ||
2300 | re_dfastate_t *next_state) | ||
2301 | { | ||
2302 | re_dfa_t *const dfa = mctx->dfa; | ||
2303 | Idx cur_idx = re_string_cur_idx (&mctx->input); | ||
2304 | |||
2305 | if (cur_idx > mctx->state_log_top) | ||
2306 | { | ||
2307 | mctx->state_log[cur_idx] = next_state; | ||
2308 | mctx->state_log_top = cur_idx; | ||
2309 | } | ||
2310 | else if (mctx->state_log[cur_idx] == 0) | ||
2311 | { | ||
2312 | mctx->state_log[cur_idx] = next_state; | ||
2313 | } | ||
2314 | else | ||
2315 | { | ||
2316 | re_dfastate_t *pstate; | ||
2317 | unsigned int context; | ||
2318 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; | ||
2319 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is | ||
2320 | the destination of a multibyte char/collating element/ | ||
2321 | back reference. Then the next state is the union set of | ||
2322 | these destinations and the results of the transition table. */ | ||
2323 | pstate = mctx->state_log[cur_idx]; | ||
2324 | log_nodes = pstate->entrance_nodes; | ||
2325 | if (next_state != NULL) | ||
2326 | { | ||
2327 | table_nodes = next_state->entrance_nodes; | ||
2328 | *err = re_node_set_init_union (&next_nodes, table_nodes, | ||
2329 | log_nodes); | ||
2330 | if (BE (*err != REG_NOERROR, 0)) | ||
2331 | return NULL; | ||
2332 | } | ||
2333 | else | ||
2334 | next_nodes = *log_nodes; | ||
2335 | /* Note: We already add the nodes of the initial state, | ||
2336 | then we don't need to add them here. */ | ||
2337 | |||
2338 | context = re_string_context_at (&mctx->input, | ||
2339 | re_string_cur_idx (&mctx->input) - 1, | ||
2340 | mctx->eflags); | ||
2341 | next_state = mctx->state_log[cur_idx] | ||
2342 | = re_acquire_state_context (err, dfa, &next_nodes, context); | ||
2343 | /* We don't need to check errors here, since the return value of | ||
2344 | this function is next_state and ERR is already set. */ | ||
2345 | |||
2346 | if (table_nodes != NULL) | ||
2347 | re_node_set_free (&next_nodes); | ||
2348 | } | ||
2349 | |||
2350 | if (BE (dfa->nbackref, 0) && next_state != NULL) | ||
2351 | { | ||
2352 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them | ||
2353 | later. We must check them here, since the back references in the | ||
2354 | next state might use them. */ | ||
2355 | *err = check_subexp_matching_top (mctx, &next_state->nodes, | ||
2356 | cur_idx); | ||
2357 | if (BE (*err != REG_NOERROR, 0)) | ||
2358 | return NULL; | ||
2359 | |||
2360 | /* If the next state has back references. */ | ||
2361 | if (next_state->has_backref) | ||
2362 | { | ||
2363 | *err = transit_state_bkref (mctx, &next_state->nodes); | ||
2364 | if (BE (*err != REG_NOERROR, 0)) | ||
2365 | return NULL; | ||
2366 | next_state = mctx->state_log[cur_idx]; | ||
2367 | } | ||
2368 | } | ||
2369 | |||
2370 | return next_state; | ||
2371 | } | ||
2372 | |||
2373 | /* Skip bytes in the input that correspond to part of a | ||
2374 | multi-byte match, then look in the log for a state | ||
2375 | from which to restart matching. */ | ||
2376 | static re_dfastate_t * | ||
2377 | internal_function | ||
2378 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) | ||
2379 | { | ||
2380 | re_dfastate_t *cur_state = NULL; | ||
2381 | do | ||
2382 | { | ||
2383 | Idx max = mctx->state_log_top; | ||
2384 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2385 | |||
2386 | do | ||
2387 | { | ||
2388 | if (++cur_str_idx > max) | ||
2389 | return NULL; | ||
2390 | re_string_skip_bytes (&mctx->input, 1); | ||
2391 | } | ||
2392 | while (mctx->state_log[cur_str_idx] == NULL); | ||
2393 | |||
2394 | cur_state = merge_state_with_log (err, mctx, NULL); | ||
2395 | } | ||
2396 | while (*err == REG_NOERROR && cur_state == NULL); | ||
2397 | return cur_state; | ||
2398 | } | ||
2399 | |||
2400 | /* Helper functions for transit_state. */ | ||
2401 | |||
2402 | /* From the node set CUR_NODES, pick up the nodes whose types are | ||
2403 | OP_OPEN_SUBEXP and which have corresponding back references in the regular | ||
2404 | expression. And register them to use them later for evaluating the | ||
2405 | correspoding back references. */ | ||
2406 | |||
2407 | static reg_errcode_t | ||
2408 | internal_function | ||
2409 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, | ||
2410 | Idx str_idx) | ||
2411 | { | ||
2412 | re_dfa_t *const dfa = mctx->dfa; | ||
2413 | Idx node_idx; | ||
2414 | reg_errcode_t err; | ||
2415 | |||
2416 | /* TODO: This isn't efficient. | ||
2417 | Because there might be more than one nodes whose types are | ||
2418 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | ||
2419 | nodes. | ||
2420 | E.g. RE: (a){2} */ | ||
2421 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) | ||
2422 | { | ||
2423 | Idx node = cur_nodes->elems[node_idx]; | ||
2424 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP | ||
2425 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS | ||
2426 | && (dfa->used_bkref_map | ||
2427 | & ((bitset_word) 1 << dfa->nodes[node].opr.idx))) | ||
2428 | { | ||
2429 | err = match_ctx_add_subtop (mctx, node, str_idx); | ||
2430 | if (BE (err != REG_NOERROR, 0)) | ||
2431 | return err; | ||
2432 | } | ||
2433 | } | ||
2434 | return REG_NOERROR; | ||
2435 | } | ||
2436 | |||
2437 | #if 0 | ||
2438 | /* Return the next state to which the current state STATE will transit by | ||
2439 | accepting the current input byte. */ | ||
2440 | |||
2441 | static re_dfastate_t * | ||
2442 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, | ||
2443 | re_dfastate_t *state) | ||
2444 | { | ||
2445 | re_dfa_t *const dfa = mctx->dfa; | ||
2446 | re_node_set next_nodes; | ||
2447 | re_dfastate_t *next_state; | ||
2448 | Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2449 | unsigned int context; | ||
2450 | |||
2451 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); | ||
2452 | if (BE (*err != REG_NOERROR, 0)) | ||
2453 | return NULL; | ||
2454 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) | ||
2455 | { | ||
2456 | Idx cur_node = state->nodes.elems[node_cnt]; | ||
2457 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) | ||
2458 | { | ||
2459 | *err = re_node_set_merge (&next_nodes, | ||
2460 | dfa->eclosures + dfa->nexts[cur_node]); | ||
2461 | if (BE (*err != REG_NOERROR, 0)) | ||
2462 | { | ||
2463 | re_node_set_free (&next_nodes); | ||
2464 | return NULL; | ||
2465 | } | ||
2466 | } | ||
2467 | } | ||
2468 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); | ||
2469 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); | ||
2470 | /* We don't need to check errors here, since the return value of | ||
2471 | this function is next_state and ERR is already set. */ | ||
2472 | |||
2473 | re_node_set_free (&next_nodes); | ||
2474 | re_string_skip_bytes (&mctx->input, 1); | ||
2475 | return next_state; | ||
2476 | } | ||
2477 | #endif | ||
2478 | |||
2479 | #ifdef RE_ENABLE_I18N | ||
2480 | static reg_errcode_t | ||
2481 | internal_function | ||
2482 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) | ||
2483 | { | ||
2484 | re_dfa_t *const dfa = mctx->dfa; | ||
2485 | reg_errcode_t err; | ||
2486 | Idx i; | ||
2487 | |||
2488 | for (i = 0; i < pstate->nodes.nelem; ++i) | ||
2489 | { | ||
2490 | re_node_set dest_nodes, *new_nodes; | ||
2491 | Idx cur_node_idx = pstate->nodes.elems[i]; | ||
2492 | int naccepted; | ||
2493 | Idx dest_idx; | ||
2494 | unsigned int context; | ||
2495 | re_dfastate_t *dest_state; | ||
2496 | |||
2497 | if (!dfa->nodes[cur_node_idx].accept_mb) | ||
2498 | continue; | ||
2499 | |||
2500 | if (dfa->nodes[cur_node_idx].constraint) | ||
2501 | { | ||
2502 | context = re_string_context_at (&mctx->input, | ||
2503 | re_string_cur_idx (&mctx->input), | ||
2504 | mctx->eflags); | ||
2505 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, | ||
2506 | context)) | ||
2507 | continue; | ||
2508 | } | ||
2509 | |||
2510 | /* How many bytes the node can accept? */ | ||
2511 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, | ||
2512 | re_string_cur_idx (&mctx->input)); | ||
2513 | if (naccepted == 0) | ||
2514 | continue; | ||
2515 | |||
2516 | /* The node can accepts `naccepted' bytes. */ | ||
2517 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; | ||
2518 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted | ||
2519 | : mctx->max_mb_elem_len); | ||
2520 | err = clean_state_log_if_needed (mctx, dest_idx); | ||
2521 | if (BE (err != REG_NOERROR, 0)) | ||
2522 | return err; | ||
2523 | #ifdef DEBUG | ||
2524 | assert (dfa->nexts[cur_node_idx] != REG_MISSING); | ||
2525 | #endif | ||
2526 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; | ||
2527 | |||
2528 | dest_state = mctx->state_log[dest_idx]; | ||
2529 | if (dest_state == NULL) | ||
2530 | dest_nodes = *new_nodes; | ||
2531 | else | ||
2532 | { | ||
2533 | err = re_node_set_init_union (&dest_nodes, | ||
2534 | dest_state->entrance_nodes, new_nodes); | ||
2535 | if (BE (err != REG_NOERROR, 0)) | ||
2536 | return err; | ||
2537 | } | ||
2538 | context = re_string_context_at (&mctx->input, dest_idx - 1, mctx->eflags); | ||
2539 | mctx->state_log[dest_idx] | ||
2540 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | ||
2541 | if (dest_state != NULL) | ||
2542 | re_node_set_free (&dest_nodes); | ||
2543 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) | ||
2544 | return err; | ||
2545 | } | ||
2546 | return REG_NOERROR; | ||
2547 | } | ||
2548 | #endif /* RE_ENABLE_I18N */ | ||
2549 | |||
2550 | static reg_errcode_t | ||
2551 | internal_function | ||
2552 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) | ||
2553 | { | ||
2554 | re_dfa_t *const dfa = mctx->dfa; | ||
2555 | reg_errcode_t err; | ||
2556 | Idx i; | ||
2557 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2558 | |||
2559 | for (i = 0; i < nodes->nelem; ++i) | ||
2560 | { | ||
2561 | Idx dest_str_idx, prev_nelem, bkc_idx; | ||
2562 | Idx node_idx = nodes->elems[i]; | ||
2563 | unsigned int context; | ||
2564 | const re_token_t *node = dfa->nodes + node_idx; | ||
2565 | re_node_set *new_dest_nodes; | ||
2566 | |||
2567 | /* Check whether `node' is a backreference or not. */ | ||
2568 | if (node->type != OP_BACK_REF) | ||
2569 | continue; | ||
2570 | |||
2571 | if (node->constraint) | ||
2572 | { | ||
2573 | context = re_string_context_at (&mctx->input, cur_str_idx, | ||
2574 | mctx->eflags); | ||
2575 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | ||
2576 | continue; | ||
2577 | } | ||
2578 | |||
2579 | /* `node' is a backreference. | ||
2580 | Check the substring which the substring matched. */ | ||
2581 | bkc_idx = mctx->nbkref_ents; | ||
2582 | err = get_subexp (mctx, node_idx, cur_str_idx); | ||
2583 | if (BE (err != REG_NOERROR, 0)) | ||
2584 | goto free_return; | ||
2585 | |||
2586 | /* And add the epsilon closures (which is `new_dest_nodes') of | ||
2587 | the backreference to appropriate state_log. */ | ||
2588 | #ifdef DEBUG | ||
2589 | assert (dfa->nexts[node_idx] != REG_MISSING); | ||
2590 | #endif | ||
2591 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) | ||
2592 | { | ||
2593 | Idx subexp_len; | ||
2594 | re_dfastate_t *dest_state; | ||
2595 | struct re_backref_cache_entry *bkref_ent; | ||
2596 | bkref_ent = mctx->bkref_ents + bkc_idx; | ||
2597 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) | ||
2598 | continue; | ||
2599 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; | ||
2600 | new_dest_nodes = (subexp_len == 0 | ||
2601 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] | ||
2602 | : dfa->eclosures + dfa->nexts[node_idx]); | ||
2603 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to | ||
2604 | - bkref_ent->subexp_from); | ||
2605 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, | ||
2606 | mctx->eflags); | ||
2607 | dest_state = mctx->state_log[dest_str_idx]; | ||
2608 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 | ||
2609 | : mctx->state_log[cur_str_idx]->nodes.nelem); | ||
2610 | /* Add `new_dest_node' to state_log. */ | ||
2611 | if (dest_state == NULL) | ||
2612 | { | ||
2613 | mctx->state_log[dest_str_idx] | ||
2614 | = re_acquire_state_context (&err, dfa, new_dest_nodes, | ||
2615 | context); | ||
2616 | if (BE (mctx->state_log[dest_str_idx] == NULL | ||
2617 | && err != REG_NOERROR, 0)) | ||
2618 | goto free_return; | ||
2619 | } | ||
2620 | else | ||
2621 | { | ||
2622 | re_node_set dest_nodes; | ||
2623 | err = re_node_set_init_union (&dest_nodes, | ||
2624 | dest_state->entrance_nodes, | ||
2625 | new_dest_nodes); | ||
2626 | if (BE (err != REG_NOERROR, 0)) | ||
2627 | { | ||
2628 | re_node_set_free (&dest_nodes); | ||
2629 | goto free_return; | ||
2630 | } | ||
2631 | mctx->state_log[dest_str_idx] | ||
2632 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | ||
2633 | re_node_set_free (&dest_nodes); | ||
2634 | if (BE (mctx->state_log[dest_str_idx] == NULL | ||
2635 | && err != REG_NOERROR, 0)) | ||
2636 | goto free_return; | ||
2637 | } | ||
2638 | /* We need to check recursively if the backreference can epsilon | ||
2639 | transit. */ | ||
2640 | if (subexp_len == 0 | ||
2641 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) | ||
2642 | { | ||
2643 | err = check_subexp_matching_top (mctx, new_dest_nodes, | ||
2644 | cur_str_idx); | ||
2645 | if (BE (err != REG_NOERROR, 0)) | ||
2646 | goto free_return; | ||
2647 | err = transit_state_bkref (mctx, new_dest_nodes); | ||
2648 | if (BE (err != REG_NOERROR, 0)) | ||
2649 | goto free_return; | ||
2650 | } | ||
2651 | } | ||
2652 | } | ||
2653 | err = REG_NOERROR; | ||
2654 | free_return: | ||
2655 | return err; | ||
2656 | } | ||
2657 | |||
2658 | /* Enumerate all the candidates which the backreference BKREF_NODE can match | ||
2659 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). | ||
2660 | Note that we might collect inappropriate candidates here. | ||
2661 | However, the cost of checking them strictly here is too high, then we | ||
2662 | delay these checking for prune_impossible_nodes(). */ | ||
2663 | |||
2664 | static reg_errcode_t | ||
2665 | internal_function | ||
2666 | get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx) | ||
2667 | { | ||
2668 | re_dfa_t *const dfa = mctx->dfa; | ||
2669 | Idx subexp_num, sub_top_idx; | ||
2670 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2671 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ | ||
2672 | Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); | ||
2673 | if (cache_idx != REG_MISSING) | ||
2674 | { | ||
2675 | const struct re_backref_cache_entry *entry = mctx->bkref_ents + cache_idx; | ||
2676 | do | ||
2677 | if (entry->node == bkref_node) | ||
2678 | return REG_NOERROR; /* We already checked it. */ | ||
2679 | while (entry++->more); | ||
2680 | } | ||
2681 | |||
2682 | subexp_num = dfa->nodes[bkref_node].opr.idx; | ||
2683 | |||
2684 | /* For each sub expression */ | ||
2685 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) | ||
2686 | { | ||
2687 | reg_errcode_t err; | ||
2688 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; | ||
2689 | re_sub_match_last_t *sub_last; | ||
2690 | Idx sub_last_idx, sl_str, bkref_str_off; | ||
2691 | |||
2692 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) | ||
2693 | continue; /* It isn't related. */ | ||
2694 | |||
2695 | sl_str = sub_top->str_idx; | ||
2696 | bkref_str_off = bkref_str_idx; | ||
2697 | /* At first, check the last node of sub expressions we already | ||
2698 | evaluated. */ | ||
2699 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) | ||
2700 | { | ||
2701 | regoff_t sl_str_diff; | ||
2702 | sub_last = sub_top->lasts[sub_last_idx]; | ||
2703 | sl_str_diff = sub_last->str_idx - sl_str; | ||
2704 | /* The matched string by the sub expression match with the substring | ||
2705 | at the back reference? */ | ||
2706 | if (sl_str_diff > 0) | ||
2707 | { | ||
2708 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) | ||
2709 | { | ||
2710 | /* Not enough chars for a successful match. */ | ||
2711 | if (bkref_str_off + sl_str_diff > mctx->input.len) | ||
2712 | break; | ||
2713 | |||
2714 | err = clean_state_log_if_needed (mctx, | ||
2715 | bkref_str_off | ||
2716 | + sl_str_diff); | ||
2717 | if (BE (err != REG_NOERROR, 0)) | ||
2718 | return err; | ||
2719 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2720 | } | ||
2721 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) | ||
2722 | break; /* We don't need to search this sub expression any more. */ | ||
2723 | } | ||
2724 | bkref_str_off += sl_str_diff; | ||
2725 | sl_str += sl_str_diff; | ||
2726 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | ||
2727 | bkref_str_idx); | ||
2728 | |||
2729 | /* Reload buf, since the preceding call might have reallocated | ||
2730 | the buffer. */ | ||
2731 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2732 | |||
2733 | if (err == REG_NOMATCH) | ||
2734 | continue; | ||
2735 | if (BE (err != REG_NOERROR, 0)) | ||
2736 | return err; | ||
2737 | } | ||
2738 | |||
2739 | if (sub_last_idx < sub_top->nlasts) | ||
2740 | continue; | ||
2741 | if (sub_last_idx > 0) | ||
2742 | ++sl_str; | ||
2743 | /* Then, search for the other last nodes of the sub expression. */ | ||
2744 | for (; sl_str <= bkref_str_idx; ++sl_str) | ||
2745 | { | ||
2746 | Idx cls_node; | ||
2747 | regoff_t sl_str_off; | ||
2748 | const re_node_set *nodes; | ||
2749 | sl_str_off = sl_str - sub_top->str_idx; | ||
2750 | /* The matched string by the sub expression match with the substring | ||
2751 | at the back reference? */ | ||
2752 | if (sl_str_off > 0) | ||
2753 | { | ||
2754 | if (BE (bkref_str_off >= mctx->input.valid_len, 0)) | ||
2755 | { | ||
2756 | /* If we are at the end of the input, we cannot match. */ | ||
2757 | if (bkref_str_off >= mctx->input.len) | ||
2758 | break; | ||
2759 | |||
2760 | err = extend_buffers (mctx); | ||
2761 | if (BE (err != REG_NOERROR, 0)) | ||
2762 | return err; | ||
2763 | |||
2764 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2765 | } | ||
2766 | if (buf [bkref_str_off++] != buf[sl_str - 1]) | ||
2767 | break; /* We don't need to search this sub expression | ||
2768 | any more. */ | ||
2769 | } | ||
2770 | if (mctx->state_log[sl_str] == NULL) | ||
2771 | continue; | ||
2772 | /* Does this state have a ')' of the sub expression? */ | ||
2773 | nodes = &mctx->state_log[sl_str]->nodes; | ||
2774 | cls_node = find_subexp_node (dfa, nodes, subexp_num, OP_CLOSE_SUBEXP); | ||
2775 | if (cls_node == REG_MISSING) | ||
2776 | continue; /* No. */ | ||
2777 | if (sub_top->path == NULL) | ||
2778 | { | ||
2779 | sub_top->path = re_calloc (state_array_t, | ||
2780 | sl_str - sub_top->str_idx + 1); | ||
2781 | if (sub_top->path == NULL) | ||
2782 | return REG_ESPACE; | ||
2783 | } | ||
2784 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node | ||
2785 | in the current context? */ | ||
2786 | err = check_arrival (mctx, sub_top->path, sub_top->node, | ||
2787 | sub_top->str_idx, cls_node, sl_str, OP_CLOSE_SUBEXP); | ||
2788 | if (err == REG_NOMATCH) | ||
2789 | continue; | ||
2790 | if (BE (err != REG_NOERROR, 0)) | ||
2791 | return err; | ||
2792 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); | ||
2793 | if (BE (sub_last == NULL, 0)) | ||
2794 | return REG_ESPACE; | ||
2795 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | ||
2796 | bkref_str_idx); | ||
2797 | if (err == REG_NOMATCH) | ||
2798 | continue; | ||
2799 | } | ||
2800 | } | ||
2801 | return REG_NOERROR; | ||
2802 | } | ||
2803 | |||
2804 | /* Helper functions for get_subexp(). */ | ||
2805 | |||
2806 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. | ||
2807 | If it can arrive, register the sub expression expressed with SUB_TOP | ||
2808 | and SUB_LAST. */ | ||
2809 | |||
2810 | static reg_errcode_t | ||
2811 | internal_function | ||
2812 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, | ||
2813 | re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str) | ||
2814 | { | ||
2815 | reg_errcode_t err; | ||
2816 | Idx to_idx; | ||
2817 | /* Can the subexpression arrive the back reference? */ | ||
2818 | err = check_arrival (mctx, &sub_last->path, sub_last->node, | ||
2819 | sub_last->str_idx, bkref_node, bkref_str, OP_OPEN_SUBEXP); | ||
2820 | if (err != REG_NOERROR) | ||
2821 | return err; | ||
2822 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, | ||
2823 | sub_last->str_idx); | ||
2824 | if (BE (err != REG_NOERROR, 0)) | ||
2825 | return err; | ||
2826 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; | ||
2827 | return clean_state_log_if_needed (mctx, to_idx); | ||
2828 | } | ||
2829 | |||
2830 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. | ||
2831 | Search '(' if FL_OPEN, or search ')' otherwise. | ||
2832 | TODO: This function isn't efficient... | ||
2833 | Because there might be more than one nodes whose types are | ||
2834 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | ||
2835 | nodes. | ||
2836 | E.g. RE: (a){2} */ | ||
2837 | |||
2838 | static Idx | ||
2839 | internal_function | ||
2840 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | ||
2841 | Idx subexp_idx, int type) | ||
2842 | { | ||
2843 | Idx cls_idx; | ||
2844 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) | ||
2845 | { | ||
2846 | Idx cls_node = nodes->elems[cls_idx]; | ||
2847 | const re_token_t *node = dfa->nodes + cls_node; | ||
2848 | if (node->type == type | ||
2849 | && node->opr.idx == subexp_idx) | ||
2850 | return cls_node; | ||
2851 | } | ||
2852 | return REG_MISSING; | ||
2853 | } | ||
2854 | |||
2855 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node | ||
2856 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be | ||
2857 | heavily reused. | ||
2858 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */ | ||
2859 | |||
2860 | static reg_errcode_t | ||
2861 | internal_function | ||
2862 | check_arrival (re_match_context_t *mctx, state_array_t *path, | ||
2863 | Idx top_node, Idx top_str, Idx last_node, Idx last_str, | ||
2864 | int type) | ||
2865 | { | ||
2866 | re_dfa_t *const dfa = mctx->dfa; | ||
2867 | reg_errcode_t err; | ||
2868 | Idx subexp_num, backup_cur_idx, str_idx, null_cnt; | ||
2869 | re_dfastate_t *cur_state = NULL; | ||
2870 | re_node_set *cur_nodes, next_nodes; | ||
2871 | re_dfastate_t **backup_state_log; | ||
2872 | unsigned int context; | ||
2873 | |||
2874 | subexp_num = dfa->nodes[top_node].opr.idx; | ||
2875 | /* Extend the buffer if we need. */ | ||
2876 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) | ||
2877 | { | ||
2878 | re_dfastate_t **new_array; | ||
2879 | Idx old_alloc = path->alloc; | ||
2880 | Idx new_alloc = old_alloc + last_str + mctx->max_mb_elem_len + 1; | ||
2881 | if (BE (new_alloc < old_alloc, 0)) | ||
2882 | return REG_ESPACE; | ||
2883 | new_array = re_xrealloc (path->array, re_dfastate_t *, new_alloc); | ||
2884 | if (BE (new_array == NULL, 0)) | ||
2885 | return REG_ESPACE; | ||
2886 | path->array = new_array; | ||
2887 | path->alloc = new_alloc; | ||
2888 | memset (new_array + old_alloc, '\0', | ||
2889 | sizeof (re_dfastate_t *) * (new_alloc - old_alloc)); | ||
2890 | } | ||
2891 | |||
2892 | str_idx = path->next_idx == 0 ? top_str : path->next_idx; | ||
2893 | |||
2894 | /* Temporary modify MCTX. */ | ||
2895 | backup_state_log = mctx->state_log; | ||
2896 | backup_cur_idx = mctx->input.cur_idx; | ||
2897 | mctx->state_log = path->array; | ||
2898 | mctx->input.cur_idx = str_idx; | ||
2899 | |||
2900 | /* Setup initial node set. */ | ||
2901 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | ||
2902 | if (str_idx == top_str) | ||
2903 | { | ||
2904 | err = re_node_set_init_1 (&next_nodes, top_node); | ||
2905 | if (BE (err != REG_NOERROR, 0)) | ||
2906 | return err; | ||
2907 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | ||
2908 | if (BE (err != REG_NOERROR, 0)) | ||
2909 | { | ||
2910 | re_node_set_free (&next_nodes); | ||
2911 | return err; | ||
2912 | } | ||
2913 | } | ||
2914 | else | ||
2915 | { | ||
2916 | cur_state = mctx->state_log[str_idx]; | ||
2917 | if (cur_state && cur_state->has_backref) | ||
2918 | { | ||
2919 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); | ||
2920 | if (BE ( err != REG_NOERROR, 0)) | ||
2921 | return err; | ||
2922 | } | ||
2923 | else | ||
2924 | re_node_set_init_empty (&next_nodes); | ||
2925 | } | ||
2926 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) | ||
2927 | { | ||
2928 | if (next_nodes.nelem) | ||
2929 | { | ||
2930 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | ||
2931 | subexp_num, type); | ||
2932 | if (BE ( err != REG_NOERROR, 0)) | ||
2933 | { | ||
2934 | re_node_set_free (&next_nodes); | ||
2935 | return err; | ||
2936 | } | ||
2937 | } | ||
2938 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | ||
2939 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | ||
2940 | { | ||
2941 | re_node_set_free (&next_nodes); | ||
2942 | return err; | ||
2943 | } | ||
2944 | mctx->state_log[str_idx] = cur_state; | ||
2945 | } | ||
2946 | |||
2947 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) | ||
2948 | { | ||
2949 | re_node_set_empty (&next_nodes); | ||
2950 | if (mctx->state_log[str_idx + 1]) | ||
2951 | { | ||
2952 | err = re_node_set_merge (&next_nodes, | ||
2953 | &mctx->state_log[str_idx + 1]->nodes); | ||
2954 | if (BE (err != REG_NOERROR, 0)) | ||
2955 | { | ||
2956 | re_node_set_free (&next_nodes); | ||
2957 | return err; | ||
2958 | } | ||
2959 | } | ||
2960 | if (cur_state) | ||
2961 | { | ||
2962 | err = check_arrival_add_next_nodes (mctx, str_idx, | ||
2963 | &cur_state->non_eps_nodes, &next_nodes); | ||
2964 | if (BE (err != REG_NOERROR, 0)) | ||
2965 | { | ||
2966 | re_node_set_free (&next_nodes); | ||
2967 | return err; | ||
2968 | } | ||
2969 | } | ||
2970 | ++str_idx; | ||
2971 | if (next_nodes.nelem) | ||
2972 | { | ||
2973 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | ||
2974 | if (BE (err != REG_NOERROR, 0)) | ||
2975 | { | ||
2976 | re_node_set_free (&next_nodes); | ||
2977 | return err; | ||
2978 | } | ||
2979 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | ||
2980 | subexp_num, type); | ||
2981 | if (BE ( err != REG_NOERROR, 0)) | ||
2982 | { | ||
2983 | re_node_set_free (&next_nodes); | ||
2984 | return err; | ||
2985 | } | ||
2986 | } | ||
2987 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | ||
2988 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | ||
2989 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | ||
2990 | { | ||
2991 | re_node_set_free (&next_nodes); | ||
2992 | return err; | ||
2993 | } | ||
2994 | mctx->state_log[str_idx] = cur_state; | ||
2995 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; | ||
2996 | } | ||
2997 | re_node_set_free (&next_nodes); | ||
2998 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL | ||
2999 | : &mctx->state_log[last_str]->nodes); | ||
3000 | path->next_idx = str_idx; | ||
3001 | |||
3002 | /* Fix MCTX. */ | ||
3003 | mctx->state_log = backup_state_log; | ||
3004 | mctx->input.cur_idx = backup_cur_idx; | ||
3005 | |||
3006 | /* Then check the current node set has the node LAST_NODE. */ | ||
3007 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) | ||
3008 | return REG_NOERROR; | ||
3009 | |||
3010 | return REG_NOMATCH; | ||
3011 | } | ||
3012 | |||
3013 | /* Helper functions for check_arrival. */ | ||
3014 | |||
3015 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them | ||
3016 | to NEXT_NODES. | ||
3017 | TODO: This function is similar to the functions transit_state*(), | ||
3018 | however this function has many additional works. | ||
3019 | Can't we unify them? */ | ||
3020 | |||
3021 | static reg_errcode_t | ||
3022 | internal_function | ||
3023 | check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx, | ||
3024 | re_node_set *cur_nodes, | ||
3025 | re_node_set *next_nodes) | ||
3026 | { | ||
3027 | re_dfa_t *const dfa = mctx->dfa; | ||
3028 | bool ok; | ||
3029 | Idx cur_idx; | ||
3030 | reg_errcode_t err; | ||
3031 | re_node_set union_set; | ||
3032 | re_node_set_init_empty (&union_set); | ||
3033 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) | ||
3034 | { | ||
3035 | int naccepted = 0; | ||
3036 | Idx cur_node = cur_nodes->elems[cur_idx]; | ||
3037 | #ifdef DEBUG | ||
3038 | re_token_type_t type = dfa->nodes[cur_node].type; | ||
3039 | assert (!IS_EPSILON_NODE (type)); | ||
3040 | #endif | ||
3041 | #ifdef RE_ENABLE_I18N | ||
3042 | /* If the node may accept `multi byte'. */ | ||
3043 | if (dfa->nodes[cur_node].accept_mb) | ||
3044 | { | ||
3045 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, | ||
3046 | str_idx); | ||
3047 | if (naccepted > 1) | ||
3048 | { | ||
3049 | re_dfastate_t *dest_state; | ||
3050 | Idx next_node = dfa->nexts[cur_node]; | ||
3051 | Idx next_idx = str_idx + naccepted; | ||
3052 | dest_state = mctx->state_log[next_idx]; | ||
3053 | re_node_set_empty (&union_set); | ||
3054 | if (dest_state) | ||
3055 | { | ||
3056 | err = re_node_set_merge (&union_set, &dest_state->nodes); | ||
3057 | if (BE (err != REG_NOERROR, 0)) | ||
3058 | { | ||
3059 | re_node_set_free (&union_set); | ||
3060 | return err; | ||
3061 | } | ||
3062 | } | ||
3063 | ok = re_node_set_insert (&union_set, next_node); | ||
3064 | if (BE (! ok, 0)) | ||
3065 | { | ||
3066 | re_node_set_free (&union_set); | ||
3067 | return REG_ESPACE; | ||
3068 | } | ||
3069 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, | ||
3070 | &union_set); | ||
3071 | if (BE (mctx->state_log[next_idx] == NULL | ||
3072 | && err != REG_NOERROR, 0)) | ||
3073 | { | ||
3074 | re_node_set_free (&union_set); | ||
3075 | return err; | ||
3076 | } | ||
3077 | } | ||
3078 | } | ||
3079 | #endif /* RE_ENABLE_I18N */ | ||
3080 | if (naccepted | ||
3081 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) | ||
3082 | { | ||
3083 | ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); | ||
3084 | if (BE (! ok, 0)) | ||
3085 | { | ||
3086 | re_node_set_free (&union_set); | ||
3087 | return REG_ESPACE; | ||
3088 | } | ||
3089 | } | ||
3090 | } | ||
3091 | re_node_set_free (&union_set); | ||
3092 | return REG_NOERROR; | ||
3093 | } | ||
3094 | |||
3095 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to | ||
3096 | CUR_NODES, however exclude the nodes which are: | ||
3097 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. | ||
3098 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. | ||
3099 | */ | ||
3100 | |||
3101 | static reg_errcode_t | ||
3102 | internal_function | ||
3103 | check_arrival_expand_ecl (re_dfa_t *dfa, re_node_set *cur_nodes, | ||
3104 | Idx ex_subexp, int type) | ||
3105 | { | ||
3106 | reg_errcode_t err; | ||
3107 | Idx idx, outside_node; | ||
3108 | re_node_set new_nodes; | ||
3109 | #ifdef DEBUG | ||
3110 | assert (cur_nodes->nelem); | ||
3111 | #endif | ||
3112 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); | ||
3113 | if (BE (err != REG_NOERROR, 0)) | ||
3114 | return err; | ||
3115 | /* Create a new node set NEW_NODES with the nodes which are epsilon | ||
3116 | closures of the node in CUR_NODES. */ | ||
3117 | |||
3118 | for (idx = 0; idx < cur_nodes->nelem; ++idx) | ||
3119 | { | ||
3120 | Idx cur_node = cur_nodes->elems[idx]; | ||
3121 | re_node_set *eclosure = dfa->eclosures + cur_node; | ||
3122 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); | ||
3123 | if (outside_node == REG_MISSING) | ||
3124 | { | ||
3125 | /* There are no problematic nodes, just merge them. */ | ||
3126 | err = re_node_set_merge (&new_nodes, eclosure); | ||
3127 | if (BE (err != REG_NOERROR, 0)) | ||
3128 | { | ||
3129 | re_node_set_free (&new_nodes); | ||
3130 | return err; | ||
3131 | } | ||
3132 | } | ||
3133 | else | ||
3134 | { | ||
3135 | /* There are problematic nodes, re-calculate incrementally. */ | ||
3136 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, | ||
3137 | ex_subexp, type); | ||
3138 | if (BE (err != REG_NOERROR, 0)) | ||
3139 | { | ||
3140 | re_node_set_free (&new_nodes); | ||
3141 | return err; | ||
3142 | } | ||
3143 | } | ||
3144 | } | ||
3145 | re_node_set_free (cur_nodes); | ||
3146 | *cur_nodes = new_nodes; | ||
3147 | return REG_NOERROR; | ||
3148 | } | ||
3149 | |||
3150 | /* Helper function for check_arrival_expand_ecl. | ||
3151 | Check incrementally the epsilon closure of TARGET, and if it isn't | ||
3152 | problematic append it to DST_NODES. */ | ||
3153 | |||
3154 | static reg_errcode_t | ||
3155 | internal_function | ||
3156 | check_arrival_expand_ecl_sub (re_dfa_t *dfa, re_node_set *dst_nodes, | ||
3157 | Idx target, Idx ex_subexp, int type) | ||
3158 | { | ||
3159 | Idx cur_node; | ||
3160 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) | ||
3161 | { | ||
3162 | bool ok; | ||
3163 | |||
3164 | if (dfa->nodes[cur_node].type == type | ||
3165 | && dfa->nodes[cur_node].opr.idx == ex_subexp) | ||
3166 | { | ||
3167 | if (type == OP_CLOSE_SUBEXP) | ||
3168 | { | ||
3169 | ok = re_node_set_insert (dst_nodes, cur_node); | ||
3170 | if (BE (! ok, 0)) | ||
3171 | return REG_ESPACE; | ||
3172 | } | ||
3173 | break; | ||
3174 | } | ||
3175 | ok = re_node_set_insert (dst_nodes, cur_node); | ||
3176 | if (BE (! ok, 0)) | ||
3177 | return REG_ESPACE; | ||
3178 | if (dfa->edests[cur_node].nelem == 0) | ||
3179 | break; | ||
3180 | if (dfa->edests[cur_node].nelem == 2) | ||
3181 | { | ||
3182 | reg_errcode_t ret = | ||
3183 | check_arrival_expand_ecl_sub (dfa, dst_nodes, | ||
3184 | dfa->edests[cur_node].elems[1], | ||
3185 | ex_subexp, type); | ||
3186 | if (BE (ret != REG_NOERROR, 0)) | ||
3187 | return ret; | ||
3188 | } | ||
3189 | cur_node = dfa->edests[cur_node].elems[0]; | ||
3190 | } | ||
3191 | return REG_NOERROR; | ||
3192 | } | ||
3193 | |||
3194 | |||
3195 | /* For all the back references in the current state, calculate the | ||
3196 | destination of the back references by the appropriate entry | ||
3197 | in MCTX->BKREF_ENTS. */ | ||
3198 | |||
3199 | static reg_errcode_t | ||
3200 | internal_function | ||
3201 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, | ||
3202 | Idx cur_str, Idx subexp_num, int type) | ||
3203 | { | ||
3204 | re_dfa_t *const dfa = mctx->dfa; | ||
3205 | reg_errcode_t err; | ||
3206 | Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str); | ||
3207 | struct re_backref_cache_entry *ent; | ||
3208 | |||
3209 | if (cache_idx_start == REG_MISSING) | ||
3210 | return REG_NOERROR; | ||
3211 | |||
3212 | restart: | ||
3213 | ent = mctx->bkref_ents + cache_idx_start; | ||
3214 | do | ||
3215 | { | ||
3216 | Idx to_idx, next_node; | ||
3217 | |||
3218 | /* Is this entry ENT is appropriate? */ | ||
3219 | if (!re_node_set_contains (cur_nodes, ent->node)) | ||
3220 | continue; /* No. */ | ||
3221 | |||
3222 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; | ||
3223 | /* Calculate the destination of the back reference, and append it | ||
3224 | to MCTX->STATE_LOG. */ | ||
3225 | if (to_idx == cur_str) | ||
3226 | { | ||
3227 | /* The backreference did epsilon transit, we must re-check all the | ||
3228 | node in the current state. */ | ||
3229 | re_node_set new_dests; | ||
3230 | reg_errcode_t err2, err3; | ||
3231 | next_node = dfa->edests[ent->node].elems[0]; | ||
3232 | if (re_node_set_contains (cur_nodes, next_node)) | ||
3233 | continue; | ||
3234 | err = re_node_set_init_1 (&new_dests, next_node); | ||
3235 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); | ||
3236 | err3 = re_node_set_merge (cur_nodes, &new_dests); | ||
3237 | re_node_set_free (&new_dests); | ||
3238 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR | ||
3239 | || err3 != REG_NOERROR, 0)) | ||
3240 | { | ||
3241 | err = (err != REG_NOERROR ? err | ||
3242 | : (err2 != REG_NOERROR ? err2 : err3)); | ||
3243 | return err; | ||
3244 | } | ||
3245 | /* TODO: It is still inefficient... */ | ||
3246 | goto restart; | ||
3247 | } | ||
3248 | else | ||
3249 | { | ||
3250 | re_node_set union_set; | ||
3251 | next_node = dfa->nexts[ent->node]; | ||
3252 | if (mctx->state_log[to_idx]) | ||
3253 | { | ||
3254 | bool ok; | ||
3255 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, | ||
3256 | next_node)) | ||
3257 | continue; | ||
3258 | err = re_node_set_init_copy (&union_set, | ||
3259 | &mctx->state_log[to_idx]->nodes); | ||
3260 | ok = re_node_set_insert (&union_set, next_node); | ||
3261 | if (BE (err != REG_NOERROR || ! ok, 0)) | ||
3262 | { | ||
3263 | re_node_set_free (&union_set); | ||
3264 | err = err != REG_NOERROR ? err : REG_ESPACE; | ||
3265 | return err; | ||
3266 | } | ||
3267 | } | ||
3268 | else | ||
3269 | { | ||
3270 | err = re_node_set_init_1 (&union_set, next_node); | ||
3271 | if (BE (err != REG_NOERROR, 0)) | ||
3272 | return err; | ||
3273 | } | ||
3274 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); | ||
3275 | re_node_set_free (&union_set); | ||
3276 | if (BE (mctx->state_log[to_idx] == NULL | ||
3277 | && err != REG_NOERROR, 0)) | ||
3278 | return err; | ||
3279 | } | ||
3280 | } | ||
3281 | while (ent++->more); | ||
3282 | return REG_NOERROR; | ||
3283 | } | ||
3284 | |||
3285 | /* Build transition table for the state. | ||
3286 | Return true if successful. */ | ||
3287 | |||
3288 | static bool | ||
3289 | internal_function | ||
3290 | build_trtable (re_dfa_t *dfa, re_dfastate_t *state) | ||
3291 | { | ||
3292 | reg_errcode_t err; | ||
3293 | Idx i, j; | ||
3294 | int ch; | ||
3295 | bool need_word_trtable = false; | ||
3296 | bitset_word elem, mask; | ||
3297 | bool dests_node_malloced = false, dest_states_malloced = false; | ||
3298 | Idx ndests; /* Number of the destination states from `state'. */ | ||
3299 | re_dfastate_t **trtable; | ||
3300 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; | ||
3301 | re_node_set follows, *dests_node; | ||
3302 | bitset *dests_ch; | ||
3303 | bitset acceptable; | ||
3304 | |||
3305 | struct dests_alloc | ||
3306 | { | ||
3307 | re_node_set dests_node[SBC_MAX]; | ||
3308 | bitset dests_ch[SBC_MAX]; | ||
3309 | } *dests_alloc; | ||
3310 | |||
3311 | /* We build DFA states which corresponds to the destination nodes | ||
3312 | from `state'. `dests_node[i]' represents the nodes which i-th | ||
3313 | destination state contains, and `dests_ch[i]' represents the | ||
3314 | characters which i-th destination state accepts. */ | ||
3315 | if (__libc_use_alloca (sizeof (struct dests_alloc))) | ||
3316 | dests_alloc = (struct dests_alloc *) alloca (sizeof dests_alloc[0]); | ||
3317 | else | ||
3318 | { | ||
3319 | dests_alloc = re_malloc (struct dests_alloc, 1); | ||
3320 | if (BE (dests_alloc == NULL, 0)) | ||
3321 | return false; | ||
3322 | dests_node_malloced = true; | ||
3323 | } | ||
3324 | dests_node = dests_alloc->dests_node; | ||
3325 | dests_ch = dests_alloc->dests_ch; | ||
3326 | |||
3327 | /* Initialize transiton table. */ | ||
3328 | state->word_trtable = state->trtable = NULL; | ||
3329 | |||
3330 | /* At first, group all nodes belonging to `state' into several | ||
3331 | destinations. */ | ||
3332 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); | ||
3333 | if (BE (! REG_VALID_NONZERO_INDEX (ndests), 0)) | ||
3334 | { | ||
3335 | if (dests_node_malloced) | ||
3336 | free (dests_alloc); | ||
3337 | if (ndests == 0) | ||
3338 | { | ||
3339 | state->trtable = re_calloc (re_dfastate_t *, SBC_MAX); | ||
3340 | return true; | ||
3341 | } | ||
3342 | return false; | ||
3343 | } | ||
3344 | |||
3345 | err = re_node_set_alloc (&follows, ndests + 1); | ||
3346 | if (BE (err != REG_NOERROR, 0)) | ||
3347 | goto out_free; | ||
3348 | |||
3349 | /* Avoid arithmetic overflow in size calculation. */ | ||
3350 | if (BE (((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX) | ||
3351 | / (3 * sizeof (re_dfastate_t *))) | ||
3352 | < ndests, 0)) | ||
3353 | goto out_free; | ||
3354 | |||
3355 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset)) * SBC_MAX | ||
3356 | + ndests * 3 * sizeof (re_dfastate_t *))) | ||
3357 | dest_states = (re_dfastate_t **) | ||
3358 | alloca (ndests * 3 * sizeof (re_dfastate_t *)); | ||
3359 | else | ||
3360 | { | ||
3361 | dest_states = (re_dfastate_t **) | ||
3362 | malloc (ndests * 3 * sizeof (re_dfastate_t *)); | ||
3363 | if (BE (dest_states == NULL, 0)) | ||
3364 | { | ||
3365 | out_free: | ||
3366 | if (dest_states_malloced) | ||
3367 | free (dest_states); | ||
3368 | re_node_set_free (&follows); | ||
3369 | for (i = 0; i < ndests; ++i) | ||
3370 | re_node_set_free (dests_node + i); | ||
3371 | if (dests_node_malloced) | ||
3372 | free (dests_alloc); | ||
3373 | return false; | ||
3374 | } | ||
3375 | dest_states_malloced = true; | ||
3376 | } | ||
3377 | dest_states_word = dest_states + ndests; | ||
3378 | dest_states_nl = dest_states_word + ndests; | ||
3379 | bitset_empty (acceptable); | ||
3380 | |||
3381 | /* Then build the states for all destinations. */ | ||
3382 | for (i = 0; i < ndests; ++i) | ||
3383 | { | ||
3384 | Idx next_node; | ||
3385 | re_node_set_empty (&follows); | ||
3386 | /* Merge the follows of this destination states. */ | ||
3387 | for (j = 0; j < dests_node[i].nelem; ++j) | ||
3388 | { | ||
3389 | next_node = dfa->nexts[dests_node[i].elems[j]]; | ||
3390 | if (next_node != REG_MISSING) | ||
3391 | { | ||
3392 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); | ||
3393 | if (BE (err != REG_NOERROR, 0)) | ||
3394 | goto out_free; | ||
3395 | } | ||
3396 | } | ||
3397 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); | ||
3398 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) | ||
3399 | goto out_free; | ||
3400 | /* If the new state has context constraint, | ||
3401 | build appropriate states for these contexts. */ | ||
3402 | if (dest_states[i]->has_constraint) | ||
3403 | { | ||
3404 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, | ||
3405 | CONTEXT_WORD); | ||
3406 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) | ||
3407 | goto out_free; | ||
3408 | |||
3409 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) | ||
3410 | need_word_trtable = true; | ||
3411 | |||
3412 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, | ||
3413 | CONTEXT_NEWLINE); | ||
3414 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) | ||
3415 | goto out_free; | ||
3416 | } | ||
3417 | else | ||
3418 | { | ||
3419 | dest_states_word[i] = dest_states[i]; | ||
3420 | dest_states_nl[i] = dest_states[i]; | ||
3421 | } | ||
3422 | bitset_merge (acceptable, dests_ch[i]); | ||
3423 | } | ||
3424 | |||
3425 | if (!BE (need_word_trtable, 0)) | ||
3426 | { | ||
3427 | /* We don't care about whether the following character is a word | ||
3428 | character, or we are in a single-byte character set so we can | ||
3429 | discern by looking at the character code: allocate a | ||
3430 | 256-entry transition table. */ | ||
3431 | trtable = state->trtable = re_calloc (re_dfastate_t *, SBC_MAX); | ||
3432 | if (BE (trtable == NULL, 0)) | ||
3433 | goto out_free; | ||
3434 | |||
3435 | /* For all characters ch...: */ | ||
3436 | for (i = 0; i < BITSET_WORDS; ++i) | ||
3437 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | ||
3438 | elem; | ||
3439 | mask <<= 1, elem >>= 1, ++ch) | ||
3440 | if (BE (elem & 1, 0)) | ||
3441 | { | ||
3442 | /* There must be exactly one destination which accepts | ||
3443 | character ch. See group_nodes_into_DFAstates. */ | ||
3444 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | ||
3445 | ; | ||
3446 | |||
3447 | /* j-th destination accepts the word character ch. */ | ||
3448 | if (dfa->word_char[i] & mask) | ||
3449 | trtable[ch] = dest_states_word[j]; | ||
3450 | else | ||
3451 | trtable[ch] = dest_states[j]; | ||
3452 | } | ||
3453 | } | ||
3454 | else | ||
3455 | { | ||
3456 | /* We care about whether the following character is a word | ||
3457 | character, and we are in a multi-byte character set: discern | ||
3458 | by looking at the character code: build two 256-entry | ||
3459 | transition tables, one starting at trtable[0] and one | ||
3460 | starting at trtable[SBC_MAX]. */ | ||
3461 | trtable = state->word_trtable = re_calloc (re_dfastate_t *, 2 * SBC_MAX); | ||
3462 | if (BE (trtable == NULL, 0)) | ||
3463 | goto out_free; | ||
3464 | |||
3465 | /* For all characters ch...: */ | ||
3466 | for (i = 0; i < BITSET_WORDS; ++i) | ||
3467 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | ||
3468 | elem; | ||
3469 | mask <<= 1, elem >>= 1, ++ch) | ||
3470 | if (BE (elem & 1, 0)) | ||
3471 | { | ||
3472 | /* There must be exactly one destination which accepts | ||
3473 | character ch. See group_nodes_into_DFAstates. */ | ||
3474 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | ||
3475 | ; | ||
3476 | |||
3477 | /* j-th destination accepts the word character ch. */ | ||
3478 | trtable[ch] = dest_states[j]; | ||
3479 | trtable[ch + SBC_MAX] = dest_states_word[j]; | ||
3480 | } | ||
3481 | } | ||
3482 | |||
3483 | /* new line */ | ||
3484 | if (bitset_contain (acceptable, NEWLINE_CHAR)) | ||
3485 | { | ||
3486 | /* The current state accepts newline character. */ | ||
3487 | for (j = 0; j < ndests; ++j) | ||
3488 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) | ||
3489 | { | ||
3490 | /* k-th destination accepts newline character. */ | ||
3491 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; | ||
3492 | if (need_word_trtable) | ||
3493 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; | ||
3494 | /* There must be only one destination which accepts | ||
3495 | newline. See group_nodes_into_DFAstates. */ | ||
3496 | break; | ||
3497 | } | ||
3498 | } | ||
3499 | |||
3500 | if (dest_states_malloced) | ||
3501 | free (dest_states); | ||
3502 | |||
3503 | re_node_set_free (&follows); | ||
3504 | for (i = 0; i < ndests; ++i) | ||
3505 | re_node_set_free (dests_node + i); | ||
3506 | |||
3507 | if (dests_node_malloced) | ||
3508 | free (dests_alloc); | ||
3509 | |||
3510 | return true; | ||
3511 | } | ||
3512 | |||
3513 | /* Group all nodes belonging to STATE into several destinations. | ||
3514 | Then for all destinations, set the nodes belonging to the destination | ||
3515 | to DESTS_NODE[i] and set the characters accepted by the destination | ||
3516 | to DEST_CH[i]. This function return the number of destinations. */ | ||
3517 | |||
3518 | static Idx | ||
3519 | internal_function | ||
3520 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, | ||
3521 | re_node_set *dests_node, bitset *dests_ch) | ||
3522 | { | ||
3523 | reg_errcode_t err; | ||
3524 | bool ok; | ||
3525 | Idx i, j, k; | ||
3526 | Idx ndests; /* Number of the destinations from `state'. */ | ||
3527 | bitset accepts; /* Characters a node can accept. */ | ||
3528 | const re_node_set *cur_nodes = &state->nodes; | ||
3529 | bitset_empty (accepts); | ||
3530 | ndests = 0; | ||
3531 | |||
3532 | /* For all the nodes belonging to `state', */ | ||
3533 | for (i = 0; i < cur_nodes->nelem; ++i) | ||
3534 | { | ||
3535 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; | ||
3536 | re_token_type_t type = node->type; | ||
3537 | unsigned int constraint = node->constraint; | ||
3538 | |||
3539 | /* Enumerate all single byte character this node can accept. */ | ||
3540 | if (type == CHARACTER) | ||
3541 | bitset_set (accepts, node->opr.c); | ||
3542 | else if (type == SIMPLE_BRACKET) | ||
3543 | { | ||
3544 | bitset_merge (accepts, node->opr.sbcset); | ||
3545 | } | ||
3546 | else if (type == OP_PERIOD) | ||
3547 | { | ||
3548 | #ifdef RE_ENABLE_I18N | ||
3549 | if (dfa->mb_cur_max > 1) | ||
3550 | bitset_merge (accepts, dfa->sb_char); | ||
3551 | else | ||
3552 | #endif | ||
3553 | bitset_set_all (accepts); | ||
3554 | if (!(dfa->syntax & REG_DOT_NEWLINE)) | ||
3555 | bitset_clear (accepts, '\n'); | ||
3556 | if (dfa->syntax & REG_DOT_NOT_NULL) | ||
3557 | bitset_clear (accepts, '\0'); | ||
3558 | } | ||
3559 | #ifdef RE_ENABLE_I18N | ||
3560 | else if (type == OP_UTF8_PERIOD) | ||
3561 | { | ||
3562 | if (SBC_MAX / 2 % BITSET_WORD_BITS == 0) | ||
3563 | memset (accepts, -1, sizeof accepts / 2); | ||
3564 | else | ||
3565 | bitset_merge (accepts, utf8_sb_map); | ||
3566 | if (!(dfa->syntax & REG_DOT_NEWLINE)) | ||
3567 | bitset_clear (accepts, '\n'); | ||
3568 | if (dfa->syntax & REG_DOT_NOT_NULL) | ||
3569 | bitset_clear (accepts, '\0'); | ||
3570 | } | ||
3571 | #endif | ||
3572 | else | ||
3573 | continue; | ||
3574 | |||
3575 | /* Check the `accepts' and sift the characters which are not | ||
3576 | match it the context. */ | ||
3577 | if (constraint) | ||
3578 | { | ||
3579 | if (constraint & NEXT_NEWLINE_CONSTRAINT) | ||
3580 | { | ||
3581 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); | ||
3582 | bitset_empty (accepts); | ||
3583 | if (accepts_newline) | ||
3584 | bitset_set (accepts, NEWLINE_CHAR); | ||
3585 | else | ||
3586 | continue; | ||
3587 | } | ||
3588 | if (constraint & NEXT_ENDBUF_CONSTRAINT) | ||
3589 | { | ||
3590 | bitset_empty (accepts); | ||
3591 | continue; | ||
3592 | } | ||
3593 | |||
3594 | if (constraint & NEXT_WORD_CONSTRAINT) | ||
3595 | { | ||
3596 | bitset_word any_set = 0; | ||
3597 | if (type == CHARACTER && !node->word_char) | ||
3598 | { | ||
3599 | bitset_empty (accepts); | ||
3600 | continue; | ||
3601 | } | ||
3602 | #ifdef RE_ENABLE_I18N | ||
3603 | if (dfa->mb_cur_max > 1) | ||
3604 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3605 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); | ||
3606 | else | ||
3607 | #endif | ||
3608 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3609 | any_set |= (accepts[j] &= dfa->word_char[j]); | ||
3610 | if (!any_set) | ||
3611 | continue; | ||
3612 | } | ||
3613 | if (constraint & NEXT_NOTWORD_CONSTRAINT) | ||
3614 | { | ||
3615 | bitset_word any_set = 0; | ||
3616 | if (type == CHARACTER && node->word_char) | ||
3617 | { | ||
3618 | bitset_empty (accepts); | ||
3619 | continue; | ||
3620 | } | ||
3621 | #ifdef RE_ENABLE_I18N | ||
3622 | if (dfa->mb_cur_max > 1) | ||
3623 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3624 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); | ||
3625 | else | ||
3626 | #endif | ||
3627 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3628 | any_set |= (accepts[j] &= ~dfa->word_char[j]); | ||
3629 | if (!any_set) | ||
3630 | continue; | ||
3631 | } | ||
3632 | } | ||
3633 | |||
3634 | /* Then divide `accepts' into DFA states, or create a new | ||
3635 | state. Above, we make sure that accepts is not empty. */ | ||
3636 | for (j = 0; j < ndests; ++j) | ||
3637 | { | ||
3638 | bitset intersec; /* Intersection sets, see below. */ | ||
3639 | bitset remains; | ||
3640 | /* Flags, see below. */ | ||
3641 | bitset_word has_intersec, not_subset, not_consumed; | ||
3642 | |||
3643 | /* Optimization, skip if this state doesn't accept the character. */ | ||
3644 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) | ||
3645 | continue; | ||
3646 | |||
3647 | /* Enumerate the intersection set of this state and `accepts'. */ | ||
3648 | has_intersec = 0; | ||
3649 | for (k = 0; k < BITSET_WORDS; ++k) | ||
3650 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; | ||
3651 | /* And skip if the intersection set is empty. */ | ||
3652 | if (!has_intersec) | ||
3653 | continue; | ||
3654 | |||
3655 | /* Then check if this state is a subset of `accepts'. */ | ||
3656 | not_subset = not_consumed = 0; | ||
3657 | for (k = 0; k < BITSET_WORDS; ++k) | ||
3658 | { | ||
3659 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; | ||
3660 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; | ||
3661 | } | ||
3662 | |||
3663 | /* If this state isn't a subset of `accepts', create a | ||
3664 | new group state, which has the `remains'. */ | ||
3665 | if (not_subset) | ||
3666 | { | ||
3667 | bitset_copy (dests_ch[ndests], remains); | ||
3668 | bitset_copy (dests_ch[j], intersec); | ||
3669 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); | ||
3670 | if (BE (err != REG_NOERROR, 0)) | ||
3671 | goto error_return; | ||
3672 | ++ndests; | ||
3673 | } | ||
3674 | |||
3675 | /* Put the position in the current group. */ | ||
3676 | ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); | ||
3677 | if (BE (! ok, 0)) | ||
3678 | goto error_return; | ||
3679 | |||
3680 | /* If all characters are consumed, go to next node. */ | ||
3681 | if (!not_consumed) | ||
3682 | break; | ||
3683 | } | ||
3684 | /* Some characters remain, create a new group. */ | ||
3685 | if (j == ndests) | ||
3686 | { | ||
3687 | bitset_copy (dests_ch[ndests], accepts); | ||
3688 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); | ||
3689 | if (BE (err != REG_NOERROR, 0)) | ||
3690 | goto error_return; | ||
3691 | ++ndests; | ||
3692 | bitset_empty (accepts); | ||
3693 | } | ||
3694 | } | ||
3695 | return ndests; | ||
3696 | error_return: | ||
3697 | for (j = 0; j < ndests; ++j) | ||
3698 | re_node_set_free (dests_node + j); | ||
3699 | return REG_MISSING; | ||
3700 | } | ||
3701 | |||
3702 | #ifdef RE_ENABLE_I18N | ||
3703 | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. | ||
3704 | Return the number of the bytes the node accepts. | ||
3705 | STR_IDX is the current index of the input string. | ||
3706 | |||
3707 | This function handles the nodes which can accept one character, or | ||
3708 | one collating element like '.', '[a-z]', opposite to the other nodes | ||
3709 | can only accept one byte. */ | ||
3710 | |||
3711 | static int | ||
3712 | internal_function | ||
3713 | check_node_accept_bytes (re_dfa_t *dfa, Idx node_idx, | ||
3714 | const re_string_t *input, Idx str_idx) | ||
3715 | { | ||
3716 | const re_token_t *node = dfa->nodes + node_idx; | ||
3717 | int char_len, elem_len; | ||
3718 | Idx i; | ||
3719 | |||
3720 | if (BE (node->type == OP_UTF8_PERIOD, 0)) | ||
3721 | { | ||
3722 | unsigned char c = re_string_byte_at (input, str_idx), d; | ||
3723 | if (BE (c < 0xc2, 1)) | ||
3724 | return 0; | ||
3725 | |||
3726 | if (str_idx + 2 > input->len) | ||
3727 | return 0; | ||
3728 | |||
3729 | d = re_string_byte_at (input, str_idx + 1); | ||
3730 | if (c < 0xe0) | ||
3731 | return (d < 0x80 || d > 0xbf) ? 0 : 2; | ||
3732 | else if (c < 0xf0) | ||
3733 | { | ||
3734 | char_len = 3; | ||
3735 | if (c == 0xe0 && d < 0xa0) | ||
3736 | return 0; | ||
3737 | } | ||
3738 | else if (c < 0xf8) | ||
3739 | { | ||
3740 | char_len = 4; | ||
3741 | if (c == 0xf0 && d < 0x90) | ||
3742 | return 0; | ||
3743 | } | ||
3744 | else if (c < 0xfc) | ||
3745 | { | ||
3746 | char_len = 5; | ||
3747 | if (c == 0xf8 && d < 0x88) | ||
3748 | return 0; | ||
3749 | } | ||
3750 | else if (c < 0xfe) | ||
3751 | { | ||
3752 | char_len = 6; | ||
3753 | if (c == 0xfc && d < 0x84) | ||
3754 | return 0; | ||
3755 | } | ||
3756 | else | ||
3757 | return 0; | ||
3758 | |||
3759 | if (str_idx + char_len > input->len) | ||
3760 | return 0; | ||
3761 | |||
3762 | for (i = 1; i < char_len; ++i) | ||
3763 | { | ||
3764 | d = re_string_byte_at (input, str_idx + i); | ||
3765 | if (d < 0x80 || d > 0xbf) | ||
3766 | return 0; | ||
3767 | } | ||
3768 | return char_len; | ||
3769 | } | ||
3770 | |||
3771 | char_len = re_string_char_size_at (input, str_idx); | ||
3772 | if (node->type == OP_PERIOD) | ||
3773 | { | ||
3774 | if (char_len <= 1) | ||
3775 | return 0; | ||
3776 | /* FIXME: I don't think this if is needed, as both '\n' | ||
3777 | and '\0' are char_len == 1. */ | ||
3778 | /* '.' accepts any one character except the following two cases. */ | ||
3779 | if ((!(dfa->syntax & REG_DOT_NEWLINE) && | ||
3780 | re_string_byte_at (input, str_idx) == '\n') || | ||
3781 | ((dfa->syntax & REG_DOT_NOT_NULL) && | ||
3782 | re_string_byte_at (input, str_idx) == '\0')) | ||
3783 | return 0; | ||
3784 | return char_len; | ||
3785 | } | ||
3786 | |||
3787 | elem_len = re_string_elem_size_at (input, str_idx); | ||
3788 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) | ||
3789 | return 0; | ||
3790 | |||
3791 | if (node->type == COMPLEX_BRACKET) | ||
3792 | { | ||
3793 | const re_charset_t *cset = node->opr.mbcset; | ||
3794 | # ifdef _LIBC | ||
3795 | const unsigned char *pin | ||
3796 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); | ||
3797 | Idx j; | ||
3798 | uint32_t nrules; | ||
3799 | # endif /* _LIBC */ | ||
3800 | int match_len = 0; | ||
3801 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) | ||
3802 | ? re_string_wchar_at (input, str_idx) : 0); | ||
3803 | |||
3804 | /* match with multibyte character? */ | ||
3805 | for (i = 0; i < cset->nmbchars; ++i) | ||
3806 | if (wc == cset->mbchars[i]) | ||
3807 | { | ||
3808 | match_len = char_len; | ||
3809 | goto check_node_accept_bytes_match; | ||
3810 | } | ||
3811 | /* match with character_class? */ | ||
3812 | for (i = 0; i < cset->nchar_classes; ++i) | ||
3813 | { | ||
3814 | wctype_t wt = cset->char_classes[i]; | ||
3815 | if (__iswctype (wc, wt)) | ||
3816 | { | ||
3817 | match_len = char_len; | ||
3818 | goto check_node_accept_bytes_match; | ||
3819 | } | ||
3820 | } | ||
3821 | |||
3822 | # ifdef _LIBC | ||
3823 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3824 | if (nrules != 0) | ||
3825 | { | ||
3826 | unsigned int in_collseq = 0; | ||
3827 | const int32_t *table, *indirect; | ||
3828 | const unsigned char *weights, *extra; | ||
3829 | const char *collseqwc; | ||
3830 | int32_t idx; | ||
3831 | /* This #include defines a local function! */ | ||
3832 | # include <locale/weight.h> | ||
3833 | |||
3834 | /* match with collating_symbol? */ | ||
3835 | if (cset->ncoll_syms) | ||
3836 | extra = (const unsigned char *) | ||
3837 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | ||
3838 | for (i = 0; i < cset->ncoll_syms; ++i) | ||
3839 | { | ||
3840 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; | ||
3841 | /* Compare the length of input collating element and | ||
3842 | the length of current collating element. */ | ||
3843 | if (*coll_sym != elem_len) | ||
3844 | continue; | ||
3845 | /* Compare each bytes. */ | ||
3846 | for (j = 0; j < *coll_sym; j++) | ||
3847 | if (pin[j] != coll_sym[1 + j]) | ||
3848 | break; | ||
3849 | if (j == *coll_sym) | ||
3850 | { | ||
3851 | /* Match if every bytes is equal. */ | ||
3852 | match_len = j; | ||
3853 | goto check_node_accept_bytes_match; | ||
3854 | } | ||
3855 | } | ||
3856 | |||
3857 | if (cset->nranges) | ||
3858 | { | ||
3859 | if (elem_len <= char_len) | ||
3860 | { | ||
3861 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | ||
3862 | in_collseq = __collseq_table_lookup (collseqwc, wc); | ||
3863 | } | ||
3864 | else | ||
3865 | in_collseq = find_collation_sequence_value (pin, elem_len); | ||
3866 | } | ||
3867 | /* match with range expression? */ | ||
3868 | for (i = 0; i < cset->nranges; ++i) | ||
3869 | if (cset->range_starts[i] <= in_collseq | ||
3870 | && in_collseq <= cset->range_ends[i]) | ||
3871 | { | ||
3872 | match_len = elem_len; | ||
3873 | goto check_node_accept_bytes_match; | ||
3874 | } | ||
3875 | |||
3876 | /* match with equivalence_class? */ | ||
3877 | if (cset->nequiv_classes) | ||
3878 | { | ||
3879 | const unsigned char *cp = pin; | ||
3880 | table = (const int32_t *) | ||
3881 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
3882 | weights = (const unsigned char *) | ||
3883 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); | ||
3884 | extra = (const unsigned char *) | ||
3885 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | ||
3886 | indirect = (const int32_t *) | ||
3887 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); | ||
3888 | idx = findidx (&cp); | ||
3889 | if (idx > 0) | ||
3890 | for (i = 0; i < cset->nequiv_classes; ++i) | ||
3891 | { | ||
3892 | int32_t equiv_class_idx = cset->equiv_classes[i]; | ||
3893 | size_t weight_len = weights[idx]; | ||
3894 | if (weight_len == weights[equiv_class_idx]) | ||
3895 | { | ||
3896 | Idx cnt = 0; | ||
3897 | while (cnt <= weight_len | ||
3898 | && (weights[equiv_class_idx + 1 + cnt] | ||
3899 | == weights[idx + 1 + cnt])) | ||
3900 | ++cnt; | ||
3901 | if (cnt > weight_len) | ||
3902 | { | ||
3903 | match_len = elem_len; | ||
3904 | goto check_node_accept_bytes_match; | ||
3905 | } | ||
3906 | } | ||
3907 | } | ||
3908 | } | ||
3909 | } | ||
3910 | else | ||
3911 | # endif /* _LIBC */ | ||
3912 | { | ||
3913 | /* match with range expression? */ | ||
3914 | #if __GNUC__ >= 2 | ||
3915 | wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'}; | ||
3916 | #else | ||
3917 | wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | ||
3918 | cmp_buf[2] = wc; | ||
3919 | #endif | ||
3920 | for (i = 0; i < cset->nranges; ++i) | ||
3921 | { | ||
3922 | cmp_buf[0] = cset->range_starts[i]; | ||
3923 | cmp_buf[4] = cset->range_ends[i]; | ||
3924 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | ||
3925 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | ||
3926 | { | ||
3927 | match_len = char_len; | ||
3928 | goto check_node_accept_bytes_match; | ||
3929 | } | ||
3930 | } | ||
3931 | } | ||
3932 | check_node_accept_bytes_match: | ||
3933 | if (!cset->non_match) | ||
3934 | return match_len; | ||
3935 | else | ||
3936 | { | ||
3937 | if (match_len > 0) | ||
3938 | return 0; | ||
3939 | else | ||
3940 | return (elem_len > char_len) ? elem_len : char_len; | ||
3941 | } | ||
3942 | } | ||
3943 | return 0; | ||
3944 | } | ||
3945 | |||
3946 | # ifdef _LIBC | ||
3947 | static unsigned int | ||
3948 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) | ||
3949 | { | ||
3950 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3951 | if (nrules == 0) | ||
3952 | { | ||
3953 | if (mbs_len == 1) | ||
3954 | { | ||
3955 | /* No valid character. Match it as a single byte character. */ | ||
3956 | const unsigned char *collseq = (const unsigned char *) | ||
3957 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | ||
3958 | return collseq[mbs[0]]; | ||
3959 | } | ||
3960 | return UINT_MAX; | ||
3961 | } | ||
3962 | else | ||
3963 | { | ||
3964 | int32_t idx; | ||
3965 | const unsigned char *extra = (const unsigned char *) | ||
3966 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | ||
3967 | int32_t extrasize = (const unsigned char *) | ||
3968 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; | ||
3969 | |||
3970 | for (idx = 0; idx < extrasize;) | ||
3971 | { | ||
3972 | int mbs_cnt; | ||
3973 | bool found = false; | ||
3974 | int32_t elem_mbs_len; | ||
3975 | /* Skip the name of collating element name. */ | ||
3976 | idx = idx + extra[idx] + 1; | ||
3977 | elem_mbs_len = extra[idx++]; | ||
3978 | if (mbs_len == elem_mbs_len) | ||
3979 | { | ||
3980 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) | ||
3981 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) | ||
3982 | break; | ||
3983 | if (mbs_cnt == elem_mbs_len) | ||
3984 | /* Found the entry. */ | ||
3985 | found = true; | ||
3986 | } | ||
3987 | /* Skip the byte sequence of the collating element. */ | ||
3988 | idx += elem_mbs_len; | ||
3989 | /* Adjust for the alignment. */ | ||
3990 | idx = (idx + 3) & ~3; | ||
3991 | /* Skip the collation sequence value. */ | ||
3992 | idx += sizeof (uint32_t); | ||
3993 | /* Skip the wide char sequence of the collating element. */ | ||
3994 | idx = idx + sizeof (uint32_t) * (extra[idx] + 1); | ||
3995 | /* If we found the entry, return the sequence value. */ | ||
3996 | if (found) | ||
3997 | return *(uint32_t *) (extra + idx); | ||
3998 | /* Skip the collation sequence value. */ | ||
3999 | idx += sizeof (uint32_t); | ||
4000 | } | ||
4001 | return UINT_MAX; | ||
4002 | } | ||
4003 | } | ||
4004 | # endif /* _LIBC */ | ||
4005 | #endif /* RE_ENABLE_I18N */ | ||
4006 | |||
4007 | /* Check whether the node accepts the byte which is IDX-th | ||
4008 | byte of the INPUT. */ | ||
4009 | |||
4010 | static bool | ||
4011 | internal_function | ||
4012 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, | ||
4013 | Idx idx) | ||
4014 | { | ||
4015 | unsigned char ch; | ||
4016 | ch = re_string_byte_at (&mctx->input, idx); | ||
4017 | switch (node->type) | ||
4018 | { | ||
4019 | case CHARACTER: | ||
4020 | if (node->opr.c != ch) | ||
4021 | return false; | ||
4022 | break; | ||
4023 | |||
4024 | case SIMPLE_BRACKET: | ||
4025 | if (!bitset_contain (node->opr.sbcset, ch)) | ||
4026 | return false; | ||
4027 | break; | ||
4028 | |||
4029 | #ifdef RE_ENABLE_I18N | ||
4030 | case OP_UTF8_PERIOD: | ||
4031 | if (ch >= 0x80) | ||
4032 | return false; | ||
4033 | /* FALLTHROUGH */ | ||
4034 | #endif | ||
4035 | case OP_PERIOD: | ||
4036 | if ((ch == '\n' && !(mctx->dfa->syntax & REG_DOT_NEWLINE)) | ||
4037 | || (ch == '\0' && (mctx->dfa->syntax & REG_DOT_NOT_NULL))) | ||
4038 | return false; | ||
4039 | break; | ||
4040 | |||
4041 | default: | ||
4042 | return false; | ||
4043 | } | ||
4044 | |||
4045 | if (node->constraint) | ||
4046 | { | ||
4047 | /* The node has constraints. Check whether the current context | ||
4048 | satisfies the constraints. */ | ||
4049 | unsigned int context = re_string_context_at (&mctx->input, idx, | ||
4050 | mctx->eflags); | ||
4051 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | ||
4052 | return false; | ||
4053 | } | ||
4054 | |||
4055 | return true; | ||
4056 | } | ||
4057 | |||
4058 | /* Extend the buffers, if the buffers have run out. */ | ||
4059 | |||
4060 | static reg_errcode_t | ||
4061 | internal_function | ||
4062 | extend_buffers (re_match_context_t *mctx) | ||
4063 | { | ||
4064 | reg_errcode_t ret; | ||
4065 | re_string_t *pstr = &mctx->input; | ||
4066 | |||
4067 | /* Double the lengthes of the buffers. */ | ||
4068 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | ||
4069 | if (BE (ret != REG_NOERROR, 0)) | ||
4070 | return ret; | ||
4071 | |||
4072 | if (mctx->state_log != NULL) | ||
4073 | { | ||
4074 | /* And double the length of state_log. */ | ||
4075 | /* XXX We have no indication of the size of this buffer. If this | ||
4076 | allocation fail we have no indication that the state_log array | ||
4077 | does not have the right size. */ | ||
4078 | re_dfastate_t **new_array = re_xrealloc (mctx->state_log, re_dfastate_t *, | ||
4079 | pstr->bufs_len + 1); | ||
4080 | if (BE (new_array == NULL, 0)) | ||
4081 | return REG_ESPACE; | ||
4082 | mctx->state_log = new_array; | ||
4083 | } | ||
4084 | |||
4085 | /* Then reconstruct the buffers. */ | ||
4086 | if (pstr->icase) | ||
4087 | { | ||
4088 | #ifdef RE_ENABLE_I18N | ||
4089 | if (pstr->mb_cur_max > 1) | ||
4090 | { | ||
4091 | ret = build_wcs_upper_buffer (pstr); | ||
4092 | if (BE (ret != REG_NOERROR, 0)) | ||
4093 | return ret; | ||
4094 | } | ||
4095 | else | ||
4096 | #endif /* RE_ENABLE_I18N */ | ||
4097 | build_upper_buffer (pstr); | ||
4098 | } | ||
4099 | else | ||
4100 | { | ||
4101 | #ifdef RE_ENABLE_I18N | ||
4102 | if (pstr->mb_cur_max > 1) | ||
4103 | build_wcs_buffer (pstr); | ||
4104 | else | ||
4105 | #endif /* RE_ENABLE_I18N */ | ||
4106 | { | ||
4107 | if (pstr->trans != NULL) | ||
4108 | re_string_translate_buffer (pstr); | ||
4109 | } | ||
4110 | } | ||
4111 | return REG_NOERROR; | ||
4112 | } | ||
4113 | |||
4114 | |||
4115 | /* Functions for matching context. */ | ||
4116 | |||
4117 | /* Initialize MCTX. */ | ||
4118 | |||
4119 | static reg_errcode_t | ||
4120 | internal_function | ||
4121 | match_ctx_init (re_match_context_t *mctx, int eflags, Idx n) | ||
4122 | { | ||
4123 | mctx->eflags = eflags; | ||
4124 | mctx->match_last = REG_MISSING; | ||
4125 | if (n > 0) | ||
4126 | { | ||
4127 | mctx->bkref_ents = re_xmalloc (struct re_backref_cache_entry, n); | ||
4128 | mctx->sub_tops = re_xmalloc (re_sub_match_top_t *, n); | ||
4129 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) | ||
4130 | return REG_ESPACE; | ||
4131 | } | ||
4132 | /* Already zero-ed by the caller. | ||
4133 | else | ||
4134 | mctx->bkref_ents = NULL; | ||
4135 | mctx->nbkref_ents = 0; | ||
4136 | mctx->nsub_tops = 0; */ | ||
4137 | mctx->abkref_ents = n; | ||
4138 | mctx->max_mb_elem_len = 1; | ||
4139 | mctx->asub_tops = n; | ||
4140 | return REG_NOERROR; | ||
4141 | } | ||
4142 | |||
4143 | /* Clean the entries which depend on the current input in MCTX. | ||
4144 | This function must be invoked when the matcher changes the start index | ||
4145 | of the input, or changes the input string. */ | ||
4146 | |||
4147 | static void | ||
4148 | internal_function | ||
4149 | match_ctx_clean (re_match_context_t *mctx) | ||
4150 | { | ||
4151 | Idx st_idx; | ||
4152 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) | ||
4153 | { | ||
4154 | Idx sl_idx; | ||
4155 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; | ||
4156 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) | ||
4157 | { | ||
4158 | re_sub_match_last_t *last = top->lasts[sl_idx]; | ||
4159 | re_free (last->path.array); | ||
4160 | re_free (last); | ||
4161 | } | ||
4162 | re_free (top->lasts); | ||
4163 | if (top->path) | ||
4164 | { | ||
4165 | re_free (top->path->array); | ||
4166 | re_free (top->path); | ||
4167 | } | ||
4168 | free (top); | ||
4169 | } | ||
4170 | |||
4171 | mctx->nsub_tops = 0; | ||
4172 | mctx->nbkref_ents = 0; | ||
4173 | } | ||
4174 | |||
4175 | /* Free all the memory associated with MCTX. */ | ||
4176 | |||
4177 | static void | ||
4178 | internal_function | ||
4179 | match_ctx_free (re_match_context_t *mctx) | ||
4180 | { | ||
4181 | /* First, free all the memory associated with MCTX->SUB_TOPS. */ | ||
4182 | match_ctx_clean (mctx); | ||
4183 | re_free (mctx->sub_tops); | ||
4184 | re_free (mctx->bkref_ents); | ||
4185 | } | ||
4186 | |||
4187 | /* Add a new backreference entry to MCTX. | ||
4188 | Note that we assume that caller never call this function with duplicate | ||
4189 | entry, and call with STR_IDX which isn't smaller than any existing entry. | ||
4190 | */ | ||
4191 | |||
4192 | static reg_errcode_t | ||
4193 | internal_function | ||
4194 | match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, | ||
4195 | Idx from, Idx to) | ||
4196 | { | ||
4197 | if (mctx->nbkref_ents >= mctx->abkref_ents) | ||
4198 | { | ||
4199 | struct re_backref_cache_entry* new_entry; | ||
4200 | new_entry = re_x2realloc (mctx->bkref_ents, struct re_backref_cache_entry, | ||
4201 | &mctx->abkref_ents); | ||
4202 | if (BE (new_entry == NULL, 0)) | ||
4203 | { | ||
4204 | re_free (mctx->bkref_ents); | ||
4205 | return REG_ESPACE; | ||
4206 | } | ||
4207 | mctx->bkref_ents = new_entry; | ||
4208 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', | ||
4209 | (sizeof (struct re_backref_cache_entry) | ||
4210 | * (mctx->abkref_ents - mctx->nbkref_ents))); | ||
4211 | } | ||
4212 | if (mctx->nbkref_ents > 0 | ||
4213 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) | ||
4214 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; | ||
4215 | |||
4216 | mctx->bkref_ents[mctx->nbkref_ents].node = node; | ||
4217 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; | ||
4218 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; | ||
4219 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; | ||
4220 | |||
4221 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. | ||
4222 | If bit N is clear, means that this entry won't epsilon-transition to | ||
4223 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If | ||
4224 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one | ||
4225 | such node. | ||
4226 | |||
4227 | A backreference does not epsilon-transition unless it is empty, so set | ||
4228 | to all zeros if FROM != TO. */ | ||
4229 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map | ||
4230 | = (from == to ? -1 : 0); | ||
4231 | |||
4232 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; | ||
4233 | if (mctx->max_mb_elem_len < to - from) | ||
4234 | mctx->max_mb_elem_len = to - from; | ||
4235 | return REG_NOERROR; | ||
4236 | } | ||
4237 | |||
4238 | /* Return the first entry with the same str_idx, or REG_MISSING if none is | ||
4239 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ | ||
4240 | |||
4241 | static Idx | ||
4242 | internal_function | ||
4243 | search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) | ||
4244 | { | ||
4245 | Idx left, right, mid, last; | ||
4246 | last = right = mctx->nbkref_ents; | ||
4247 | for (left = 0; left < right;) | ||
4248 | { | ||
4249 | mid = (left + right) / 2; | ||
4250 | if (mctx->bkref_ents[mid].str_idx < str_idx) | ||
4251 | left = mid + 1; | ||
4252 | else | ||
4253 | right = mid; | ||
4254 | } | ||
4255 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) | ||
4256 | return left; | ||
4257 | else | ||
4258 | return REG_MISSING; | ||
4259 | } | ||
4260 | |||
4261 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches | ||
4262 | at STR_IDX. */ | ||
4263 | |||
4264 | static reg_errcode_t | ||
4265 | internal_function | ||
4266 | match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx) | ||
4267 | { | ||
4268 | #ifdef DEBUG | ||
4269 | assert (mctx->sub_tops != NULL); | ||
4270 | assert (mctx->asub_tops > 0); | ||
4271 | #endif | ||
4272 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) | ||
4273 | { | ||
4274 | Idx new_asub_tops = mctx->asub_tops; | ||
4275 | re_sub_match_top_t **new_array = re_x2realloc (mctx->sub_tops, | ||
4276 | re_sub_match_top_t *, | ||
4277 | &new_asub_tops); | ||
4278 | if (BE (new_array == NULL, 0)) | ||
4279 | return REG_ESPACE; | ||
4280 | mctx->sub_tops = new_array; | ||
4281 | mctx->asub_tops = new_asub_tops; | ||
4282 | } | ||
4283 | mctx->sub_tops[mctx->nsub_tops] = re_calloc (re_sub_match_top_t, 1); | ||
4284 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) | ||
4285 | return REG_ESPACE; | ||
4286 | mctx->sub_tops[mctx->nsub_tops]->node = node; | ||
4287 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; | ||
4288 | return REG_NOERROR; | ||
4289 | } | ||
4290 | |||
4291 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches | ||
4292 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */ | ||
4293 | |||
4294 | static re_sub_match_last_t * | ||
4295 | internal_function | ||
4296 | match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx) | ||
4297 | { | ||
4298 | re_sub_match_last_t *new_entry; | ||
4299 | if (BE (subtop->nlasts == subtop->alasts, 0)) | ||
4300 | { | ||
4301 | Idx new_alasts = subtop->alasts; | ||
4302 | re_sub_match_last_t **new_array = re_x2realloc (subtop->lasts, | ||
4303 | re_sub_match_last_t *, | ||
4304 | &new_alasts); | ||
4305 | if (BE (new_array == NULL, 0)) | ||
4306 | return NULL; | ||
4307 | subtop->lasts = new_array; | ||
4308 | subtop->alasts = new_alasts; | ||
4309 | } | ||
4310 | new_entry = re_calloc (re_sub_match_last_t, 1); | ||
4311 | if (BE (new_entry != NULL, 1)) | ||
4312 | { | ||
4313 | subtop->lasts[subtop->nlasts] = new_entry; | ||
4314 | new_entry->node = node; | ||
4315 | new_entry->str_idx = str_idx; | ||
4316 | ++subtop->nlasts; | ||
4317 | } | ||
4318 | return new_entry; | ||
4319 | } | ||
4320 | |||
4321 | static void | ||
4322 | internal_function | ||
4323 | sift_ctx_init (re_sift_context_t *sctx, | ||
4324 | re_dfastate_t **sifted_sts, | ||
4325 | re_dfastate_t **limited_sts, | ||
4326 | Idx last_node, Idx last_str_idx) | ||
4327 | { | ||
4328 | sctx->sifted_states = sifted_sts; | ||
4329 | sctx->limited_states = limited_sts; | ||
4330 | sctx->last_node = last_node; | ||
4331 | sctx->last_str_idx = last_str_idx; | ||
4332 | re_node_set_init_empty (&sctx->limits); | ||
4333 | } | ||
diff --git a/lib/strcase.h b/lib/strcase.h new file mode 100644 index 00000000..e4207980 --- /dev/null +++ b/lib/strcase.h | |||
@@ -0,0 +1,48 @@ | |||
1 | /* Case-insensitive string comparison functions. | ||
2 | Copyright (C) 1995-1996, 2001, 2003, 2005 Free Software Foundation, Inc. | ||
3 | |||
4 | This program is free software; you can redistribute it and/or modify | ||
5 | it under the terms of the GNU General Public License as published by | ||
6 | the Free Software Foundation; either version 2, or (at your option) | ||
7 | any later version. | ||
8 | |||
9 | This program is distributed in the hope that it will be useful, | ||
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | GNU General Public License for more details. | ||
13 | |||
14 | You should have received a copy of the GNU General Public License | ||
15 | along with this program; if not, write to the Free Software Foundation, | ||
16 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
17 | |||
18 | #ifndef _STRCASE_H | ||
19 | #define _STRCASE_H | ||
20 | |||
21 | #include <stddef.h> | ||
22 | |||
23 | |||
24 | #ifdef __cplusplus | ||
25 | extern "C" { | ||
26 | #endif | ||
27 | |||
28 | |||
29 | /* Compare strings S1 and S2, ignoring case, returning less than, equal to or | ||
30 | greater than zero if S1 is lexicographically less than, equal to or greater | ||
31 | than S2. | ||
32 | Note: This function may, in multibyte locales, return 0 for strings of | ||
33 | different lengths! */ | ||
34 | extern int strcasecmp (const char *s1, const char *s2); | ||
35 | |||
36 | /* Compare no more than N characters of strings S1 and S2, ignoring case, | ||
37 | returning less than, equal to or greater than zero if S1 is | ||
38 | lexicographically less than, equal to or greater than S2. | ||
39 | Note: This function can not work correctly in multibyte locales. */ | ||
40 | extern int strncasecmp (const char *s1, const char *s2, size_t n); | ||
41 | |||
42 | |||
43 | #ifdef __cplusplus | ||
44 | } | ||
45 | #endif | ||
46 | |||
47 | |||
48 | #endif /* _STRCASE_H */ | ||