summaryrefslogtreecommitdiffstats
path: root/gl/mktime.c
diff options
context:
space:
mode:
Diffstat (limited to 'gl/mktime.c')
-rw-r--r--gl/mktime.c665
1 files changed, 665 insertions, 0 deletions
diff --git a/gl/mktime.c b/gl/mktime.c
new file mode 100644
index 0000000..0f30d43
--- /dev/null
+++ b/gl/mktime.c
@@ -0,0 +1,665 @@
1/* Convert a `struct tm' to a time_t value.
2 Copyright (C) 1993-1999, 2002-2005, 2006, 2007 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Paul Eggert <eggert@twinsun.com>.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License along
17 with this program; if not, write to the Free Software Foundation,
18 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
19
20/* Define this to have a standalone program to test this implementation of
21 mktime. */
22/* #define DEBUG 1 */
23
24#ifndef _LIBC
25# include <config.h>
26#endif
27
28/* Assume that leap seconds are possible, unless told otherwise.
29 If the host has a `zic' command with a `-L leapsecondfilename' option,
30 then it supports leap seconds; otherwise it probably doesn't. */
31#ifndef LEAP_SECONDS_POSSIBLE
32# define LEAP_SECONDS_POSSIBLE 1
33#endif
34
35#include <time.h>
36
37#include <limits.h>
38
39#include <string.h> /* For the real memcpy prototype. */
40
41#if DEBUG
42# include <stdio.h>
43# include <stdlib.h>
44/* Make it work even if the system's libc has its own mktime routine. */
45# define mktime my_mktime
46#endif /* DEBUG */
47
48/* Shift A right by B bits portably, by dividing A by 2**B and
49 truncating towards minus infinity. A and B should be free of side
50 effects, and B should be in the range 0 <= B <= INT_BITS - 2, where
51 INT_BITS is the number of useful bits in an int. GNU code can
52 assume that INT_BITS is at least 32.
53
54 ISO C99 says that A >> B is implementation-defined if A < 0. Some
55 implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
56 right in the usual way when A < 0, so SHR falls back on division if
57 ordinary A >> B doesn't seem to be the usual signed shift. */
58#define SHR(a, b) \
59 (-1 >> 1 == -1 \
60 ? (a) >> (b) \
61 : (a) / (1 << (b)) - ((a) % (1 << (b)) < 0))
62
63/* The extra casts in the following macros work around compiler bugs,
64 e.g., in Cray C 5.0.3.0. */
65
66/* True if the arithmetic type T is an integer type. bool counts as
67 an integer. */
68#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
69
70/* True if negative values of the signed integer type T use two's
71 complement, ones' complement, or signed magnitude representation,
72 respectively. Much GNU code assumes two's complement, but some
73 people like to be portable to all possible C hosts. */
74#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
75#define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
76#define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
77
78/* True if the arithmetic type T is signed. */
79#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
80
81/* The maximum and minimum values for the integer type T. These
82 macros have undefined behavior if T is signed and has padding bits.
83 If this is a problem for you, please let us know how to fix it for
84 your host. */
85#define TYPE_MINIMUM(t) \
86 ((t) (! TYPE_SIGNED (t) \
87 ? (t) 0 \
88 : TYPE_SIGNED_MAGNITUDE (t) \
89 ? ~ (t) 0 \
90 : ~ (t) 0 << (sizeof (t) * CHAR_BIT - 1)))
91#define TYPE_MAXIMUM(t) \
92 ((t) (! TYPE_SIGNED (t) \
93 ? (t) -1 \
94 : ~ (~ (t) 0 << (sizeof (t) * CHAR_BIT - 1))))
95
96#ifndef TIME_T_MIN
97# define TIME_T_MIN TYPE_MINIMUM (time_t)
98#endif
99#ifndef TIME_T_MAX
100# define TIME_T_MAX TYPE_MAXIMUM (time_t)
101#endif
102#define TIME_T_MIDPOINT (SHR (TIME_T_MIN + TIME_T_MAX, 1) + 1)
103
104/* Verify a requirement at compile-time (unlike assert, which is runtime). */
105#define verify(name, assertion) struct name { char a[(assertion) ? 1 : -1]; }
106
107verify (time_t_is_integer, TYPE_IS_INTEGER (time_t));
108verify (twos_complement_arithmetic, TYPE_TWOS_COMPLEMENT (int));
109/* The code also assumes that signed integer overflow silently wraps
110 around, but this assumption can't be stated without causing a
111 diagnostic on some hosts. */
112
113#define EPOCH_YEAR 1970
114#define TM_YEAR_BASE 1900
115verify (base_year_is_a_multiple_of_100, TM_YEAR_BASE % 100 == 0);
116
117/* Return 1 if YEAR + TM_YEAR_BASE is a leap year. */
118static inline int
119leapyear (long int year)
120{
121 /* Don't add YEAR to TM_YEAR_BASE, as that might overflow.
122 Also, work even if YEAR is negative. */
123 return
124 ((year & 3) == 0
125 && (year % 100 != 0
126 || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3)));
127}
128
129/* How many days come before each month (0-12). */
130#ifndef _LIBC
131static
132#endif
133const unsigned short int __mon_yday[2][13] =
134 {
135 /* Normal years. */
136 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
137 /* Leap years. */
138 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
139 };
140
141
142#ifndef _LIBC
143/* Portable standalone applications should supply a <time.h> that
144 declares a POSIX-compliant localtime_r, for the benefit of older
145 implementations that lack localtime_r or have a nonstandard one.
146 See the gnulib time_r module for one way to implement this. */
147# undef __localtime_r
148# define __localtime_r localtime_r
149# define __mktime_internal mktime_internal
150#endif
151
152/* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) -
153 (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks
154 were not adjusted between the time stamps.
155
156 The YEAR values uses the same numbering as TP->tm_year. Values
157 need not be in the usual range. However, YEAR1 must not be less
158 than 2 * INT_MIN or greater than 2 * INT_MAX.
159
160 The result may overflow. It is the caller's responsibility to
161 detect overflow. */
162
163static inline time_t
164ydhms_diff (long int year1, long int yday1, int hour1, int min1, int sec1,
165 int year0, int yday0, int hour0, int min0, int sec0)
166{
167 verify (C99_integer_division, -1 / 2 == 0);
168 verify (long_int_year_and_yday_are_wide_enough,
169 INT_MAX <= LONG_MAX / 2 || TIME_T_MAX <= UINT_MAX);
170
171 /* Compute intervening leap days correctly even if year is negative.
172 Take care to avoid integer overflow here. */
173 int a4 = SHR (year1, 2) + SHR (TM_YEAR_BASE, 2) - ! (year1 & 3);
174 int b4 = SHR (year0, 2) + SHR (TM_YEAR_BASE, 2) - ! (year0 & 3);
175 int a100 = a4 / 25 - (a4 % 25 < 0);
176 int b100 = b4 / 25 - (b4 % 25 < 0);
177 int a400 = SHR (a100, 2);
178 int b400 = SHR (b100, 2);
179 int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
180
181 /* Compute the desired time in time_t precision. Overflow might
182 occur here. */
183 time_t tyear1 = year1;
184 time_t years = tyear1 - year0;
185 time_t days = 365 * years + yday1 - yday0 + intervening_leap_days;
186 time_t hours = 24 * days + hour1 - hour0;
187 time_t minutes = 60 * hours + min1 - min0;
188 time_t seconds = 60 * minutes + sec1 - sec0;
189 return seconds;
190}
191
192
193/* Return a time_t value corresponding to (YEAR-YDAY HOUR:MIN:SEC),
194 assuming that *T corresponds to *TP and that no clock adjustments
195 occurred between *TP and the desired time.
196 If TP is null, return a value not equal to *T; this avoids false matches.
197 If overflow occurs, yield the minimal or maximal value, except do not
198 yield a value equal to *T. */
199static time_t
200guess_time_tm (long int year, long int yday, int hour, int min, int sec,
201 const time_t *t, const struct tm *tp)
202{
203 if (tp)
204 {
205 time_t d = ydhms_diff (year, yday, hour, min, sec,
206 tp->tm_year, tp->tm_yday,
207 tp->tm_hour, tp->tm_min, tp->tm_sec);
208 time_t t1 = *t + d;
209 if ((t1 < *t) == (TYPE_SIGNED (time_t) ? d < 0 : TIME_T_MAX / 2 < d))
210 return t1;
211 }
212
213 /* Overflow occurred one way or another. Return the nearest result
214 that is actually in range, except don't report a zero difference
215 if the actual difference is nonzero, as that would cause a false
216 match; and don't oscillate between two values, as that would
217 confuse the spring-forward gap detector. */
218 return (*t < TIME_T_MIDPOINT
219 ? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN)
220 : (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX));
221}
222
223/* Use CONVERT to convert *T to a broken down time in *TP.
224 If *T is out of range for conversion, adjust it so that
225 it is the nearest in-range value and then convert that. */
226static struct tm *
227ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
228 time_t *t, struct tm *tp)
229{
230 struct tm *r = convert (t, tp);
231
232 if (!r && *t)
233 {
234 time_t bad = *t;
235 time_t ok = 0;
236
237 /* BAD is a known unconvertible time_t, and OK is a known good one.
238 Use binary search to narrow the range between BAD and OK until
239 they differ by 1. */
240 while (bad != ok + (bad < 0 ? -1 : 1))
241 {
242 time_t mid = *t = (bad < 0
243 ? bad + ((ok - bad) >> 1)
244 : ok + ((bad - ok) >> 1));
245 r = convert (t, tp);
246 if (r)
247 ok = mid;
248 else
249 bad = mid;
250 }
251
252 if (!r && ok)
253 {
254 /* The last conversion attempt failed;
255 revert to the most recent successful attempt. */
256 *t = ok;
257 r = convert (t, tp);
258 }
259 }
260
261 return r;
262}
263
264
265/* Convert *TP to a time_t value, inverting
266 the monotonic and mostly-unit-linear conversion function CONVERT.
267 Use *OFFSET to keep track of a guess at the offset of the result,
268 compared to what the result would be for UTC without leap seconds.
269 If *OFFSET's guess is correct, only one CONVERT call is needed.
270 This function is external because it is used also by timegm.c. */
271time_t
272__mktime_internal (struct tm *tp,
273 struct tm *(*convert) (const time_t *, struct tm *),
274 time_t *offset)
275{
276 time_t t, gt, t0, t1, t2;
277 struct tm tm;
278
279 /* The maximum number of probes (calls to CONVERT) should be enough
280 to handle any combinations of time zone rule changes, solar time,
281 leap seconds, and oscillations around a spring-forward gap.
282 POSIX.1 prohibits leap seconds, but some hosts have them anyway. */
283 int remaining_probes = 6;
284
285 /* Time requested. Copy it in case CONVERT modifies *TP; this can
286 occur if TP is localtime's returned value and CONVERT is localtime. */
287 int sec = tp->tm_sec;
288 int min = tp->tm_min;
289 int hour = tp->tm_hour;
290 int mday = tp->tm_mday;
291 int mon = tp->tm_mon;
292 int year_requested = tp->tm_year;
293 /* Normalize the value. */
294 int isdst = ((tp->tm_isdst >> (8 * sizeof (tp->tm_isdst) - 1))
295 | (tp->tm_isdst != 0));
296
297 /* 1 if the previous probe was DST. */
298 int dst2;
299
300 /* Ensure that mon is in range, and set year accordingly. */
301 int mon_remainder = mon % 12;
302 int negative_mon_remainder = mon_remainder < 0;
303 int mon_years = mon / 12 - negative_mon_remainder;
304 long int lyear_requested = year_requested;
305 long int year = lyear_requested + mon_years;
306
307 /* The other values need not be in range:
308 the remaining code handles minor overflows correctly,
309 assuming int and time_t arithmetic wraps around.
310 Major overflows are caught at the end. */
311
312 /* Calculate day of year from year, month, and day of month.
313 The result need not be in range. */
314 int mon_yday = ((__mon_yday[leapyear (year)]
315 [mon_remainder + 12 * negative_mon_remainder])
316 - 1);
317 long int lmday = mday;
318 long int yday = mon_yday + lmday;
319
320 time_t guessed_offset = *offset;
321
322 int sec_requested = sec;
323
324 if (LEAP_SECONDS_POSSIBLE)
325 {
326 /* Handle out-of-range seconds specially,
327 since ydhms_tm_diff assumes every minute has 60 seconds. */
328 if (sec < 0)
329 sec = 0;
330 if (59 < sec)
331 sec = 59;
332 }
333
334 /* Invert CONVERT by probing. First assume the same offset as last
335 time. */
336
337 t0 = ydhms_diff (year, yday, hour, min, sec,
338 EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset);
339
340 if (TIME_T_MAX / INT_MAX / 366 / 24 / 60 / 60 < 3)
341 {
342 /* time_t isn't large enough to rule out overflows, so check
343 for major overflows. A gross check suffices, since if t0
344 has overflowed, it is off by a multiple of TIME_T_MAX -
345 TIME_T_MIN + 1. So ignore any component of the difference
346 that is bounded by a small value. */
347
348 /* Approximate log base 2 of the number of time units per
349 biennium. A biennium is 2 years; use this unit instead of
350 years to avoid integer overflow. For example, 2 average
351 Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds,
352 which is 63113904 seconds, and rint (log2 (63113904)) is
353 26. */
354 int ALOG2_SECONDS_PER_BIENNIUM = 26;
355 int ALOG2_MINUTES_PER_BIENNIUM = 20;
356 int ALOG2_HOURS_PER_BIENNIUM = 14;
357 int ALOG2_DAYS_PER_BIENNIUM = 10;
358 int LOG2_YEARS_PER_BIENNIUM = 1;
359
360 int approx_requested_biennia =
361 (SHR (year_requested, LOG2_YEARS_PER_BIENNIUM)
362 - SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM)
363 + SHR (mday, ALOG2_DAYS_PER_BIENNIUM)
364 + SHR (hour, ALOG2_HOURS_PER_BIENNIUM)
365 + SHR (min, ALOG2_MINUTES_PER_BIENNIUM)
366 + (LEAP_SECONDS_POSSIBLE
367 ? 0
368 : SHR (sec, ALOG2_SECONDS_PER_BIENNIUM)));
369
370 int approx_biennia = SHR (t0, ALOG2_SECONDS_PER_BIENNIUM);
371 int diff = approx_biennia - approx_requested_biennia;
372 int abs_diff = diff < 0 ? - diff : diff;
373
374 /* IRIX 4.0.5 cc miscaculates TIME_T_MIN / 3: it erroneously
375 gives a positive value of 715827882. Setting a variable
376 first then doing math on it seems to work.
377 (ghazi@caip.rutgers.edu) */
378 time_t time_t_max = TIME_T_MAX;
379 time_t time_t_min = TIME_T_MIN;
380 time_t overflow_threshold =
381 (time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM;
382
383 if (overflow_threshold < abs_diff)
384 {
385 /* Overflow occurred. Try repairing it; this might work if
386 the time zone offset is enough to undo the overflow. */
387 time_t repaired_t0 = -1 - t0;
388 approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM);
389 diff = approx_biennia - approx_requested_biennia;
390 abs_diff = diff < 0 ? - diff : diff;
391 if (overflow_threshold < abs_diff)
392 return -1;
393 guessed_offset += repaired_t0 - t0;
394 t0 = repaired_t0;
395 }
396 }
397
398 /* Repeatedly use the error to improve the guess. */
399
400 for (t = t1 = t2 = t0, dst2 = 0;
401 (gt = guess_time_tm (year, yday, hour, min, sec, &t,
402 ranged_convert (convert, &t, &tm)),
403 t != gt);
404 t1 = t2, t2 = t, t = gt, dst2 = tm.tm_isdst != 0)
405 if (t == t1 && t != t2
406 && (tm.tm_isdst < 0
407 || (isdst < 0
408 ? dst2 <= (tm.tm_isdst != 0)
409 : (isdst != 0) != (tm.tm_isdst != 0))))
410 /* We can't possibly find a match, as we are oscillating
411 between two values. The requested time probably falls
412 within a spring-forward gap of size GT - T. Follow the common
413 practice in this case, which is to return a time that is GT - T
414 away from the requested time, preferring a time whose
415 tm_isdst differs from the requested value. (If no tm_isdst
416 was requested and only one of the two values has a nonzero
417 tm_isdst, prefer that value.) In practice, this is more
418 useful than returning -1. */
419 goto offset_found;
420 else if (--remaining_probes == 0)
421 return -1;
422
423 /* We have a match. Check whether tm.tm_isdst has the requested
424 value, if any. */
425 if (isdst != tm.tm_isdst && 0 <= isdst && 0 <= tm.tm_isdst)
426 {
427 /* tm.tm_isdst has the wrong value. Look for a neighboring
428 time with the right value, and use its UTC offset.
429
430 Heuristic: probe the adjacent timestamps in both directions,
431 looking for the desired isdst. This should work for all real
432 time zone histories in the tz database. */
433
434 /* Distance between probes when looking for a DST boundary. In
435 tzdata2003a, the shortest period of DST is 601200 seconds
436 (e.g., America/Recife starting 2000-10-08 01:00), and the
437 shortest period of non-DST surrounded by DST is 694800
438 seconds (Africa/Tunis starting 1943-04-17 01:00). Use the
439 minimum of these two values, so we don't miss these short
440 periods when probing. */
441 int stride = 601200;
442
443 /* The longest period of DST in tzdata2003a is 536454000 seconds
444 (e.g., America/Jujuy starting 1946-10-01 01:00). The longest
445 period of non-DST is much longer, but it makes no real sense
446 to search for more than a year of non-DST, so use the DST
447 max. */
448 int duration_max = 536454000;
449
450 /* Search in both directions, so the maximum distance is half
451 the duration; add the stride to avoid off-by-1 problems. */
452 int delta_bound = duration_max / 2 + stride;
453
454 int delta, direction;
455
456 for (delta = stride; delta < delta_bound; delta += stride)
457 for (direction = -1; direction <= 1; direction += 2)
458 {
459 time_t ot = t + delta * direction;
460 if ((ot < t) == (direction < 0))
461 {
462 struct tm otm;
463 ranged_convert (convert, &ot, &otm);
464 if (otm.tm_isdst == isdst)
465 {
466 /* We found the desired tm_isdst.
467 Extrapolate back to the desired time. */
468 t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm);
469 ranged_convert (convert, &t, &tm);
470 goto offset_found;
471 }
472 }
473 }
474 }
475
476 offset_found:
477 *offset = guessed_offset + t - t0;
478
479 if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec)
480 {
481 /* Adjust time to reflect the tm_sec requested, not the normalized value.
482 Also, repair any damage from a false match due to a leap second. */
483 int sec_adjustment = (sec == 0 && tm.tm_sec == 60) - sec;
484 t1 = t + sec_requested;
485 t2 = t1 + sec_adjustment;
486 if (((t1 < t) != (sec_requested < 0))
487 | ((t2 < t1) != (sec_adjustment < 0))
488 | ! convert (&t2, &tm))
489 return -1;
490 t = t2;
491 }
492
493 *tp = tm;
494 return t;
495}
496
497
498/* FIXME: This should use a signed type wide enough to hold any UTC
499 offset in seconds. 'int' should be good enough for GNU code. We
500 can't fix this unilaterally though, as other modules invoke
501 __mktime_internal. */
502static time_t localtime_offset;
503
504/* Convert *TP to a time_t value. */
505time_t
506mktime (struct tm *tp)
507{
508#ifdef _LIBC
509 /* POSIX.1 8.1.1 requires that whenever mktime() is called, the
510 time zone names contained in the external variable `tzname' shall
511 be set as if the tzset() function had been called. */
512 __tzset ();
513#endif
514
515 return __mktime_internal (tp, __localtime_r, &localtime_offset);
516}
517
518#ifdef weak_alias
519weak_alias (mktime, timelocal)
520#endif
521
522#ifdef _LIBC
523libc_hidden_def (mktime)
524libc_hidden_weak (timelocal)
525#endif
526
527#if DEBUG
528
529static int
530not_equal_tm (const struct tm *a, const struct tm *b)
531{
532 return ((a->tm_sec ^ b->tm_sec)
533 | (a->tm_min ^ b->tm_min)
534 | (a->tm_hour ^ b->tm_hour)
535 | (a->tm_mday ^ b->tm_mday)
536 | (a->tm_mon ^ b->tm_mon)
537 | (a->tm_year ^ b->tm_year)
538 | (a->tm_yday ^ b->tm_yday)
539 | (a->tm_isdst ^ b->tm_isdst));
540}
541
542static void
543print_tm (const struct tm *tp)
544{
545 if (tp)
546 printf ("%04d-%02d-%02d %02d:%02d:%02d yday %03d wday %d isdst %d",
547 tp->tm_year + TM_YEAR_BASE, tp->tm_mon + 1, tp->tm_mday,
548 tp->tm_hour, tp->tm_min, tp->tm_sec,
549 tp->tm_yday, tp->tm_wday, tp->tm_isdst);
550 else
551 printf ("0");
552}
553
554static int
555check_result (time_t tk, struct tm tmk, time_t tl, const struct tm *lt)
556{
557 if (tk != tl || !lt || not_equal_tm (&tmk, lt))
558 {
559 printf ("mktime (");
560 print_tm (lt);
561 printf (")\nyields (");
562 print_tm (&tmk);
563 printf (") == %ld, should be %ld\n", (long int) tk, (long int) tl);
564 return 1;
565 }
566
567 return 0;
568}
569
570int
571main (int argc, char **argv)
572{
573 int status = 0;
574 struct tm tm, tmk, tml;
575 struct tm *lt;
576 time_t tk, tl, tl1;
577 char trailer;
578
579 if ((argc == 3 || argc == 4)
580 && (sscanf (argv[1], "%d-%d-%d%c",
581 &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer)
582 == 3)
583 && (sscanf (argv[2], "%d:%d:%d%c",
584 &tm.tm_hour, &tm.tm_min, &tm.tm_sec, &trailer)
585 == 3))
586 {
587 tm.tm_year -= TM_YEAR_BASE;
588 tm.tm_mon--;
589 tm.tm_isdst = argc == 3 ? -1 : atoi (argv[3]);
590 tmk = tm;
591 tl = mktime (&tmk);
592 lt = localtime (&tl);
593 if (lt)
594 {
595 tml = *lt;
596 lt = &tml;
597 }
598 printf ("mktime returns %ld == ", (long int) tl);
599 print_tm (&tmk);
600 printf ("\n");
601 status = check_result (tl, tmk, tl, lt);
602 }
603 else if (argc == 4 || (argc == 5 && strcmp (argv[4], "-") == 0))
604 {
605 time_t from = atol (argv[1]);
606 time_t by = atol (argv[2]);
607 time_t to = atol (argv[3]);
608
609 if (argc == 4)
610 for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
611 {
612 lt = localtime (&tl);
613 if (lt)
614 {
615 tmk = tml = *lt;
616 tk = mktime (&tmk);
617 status |= check_result (tk, tmk, tl, &tml);
618 }
619 else
620 {
621 printf ("localtime (%ld) yields 0\n", (long int) tl);
622 status = 1;
623 }
624 tl1 = tl + by;
625 if ((tl1 < tl) != (by < 0))
626 break;
627 }
628 else
629 for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
630 {
631 /* Null benchmark. */
632 lt = localtime (&tl);
633 if (lt)
634 {
635 tmk = tml = *lt;
636 tk = tl;
637 status |= check_result (tk, tmk, tl, &tml);
638 }
639 else
640 {
641 printf ("localtime (%ld) yields 0\n", (long int) tl);
642 status = 1;
643 }
644 tl1 = tl + by;
645 if ((tl1 < tl) != (by < 0))
646 break;
647 }
648 }
649 else
650 printf ("Usage:\
651\t%s YYYY-MM-DD HH:MM:SS [ISDST] # Test given time.\n\
652\t%s FROM BY TO # Test values FROM, FROM+BY, ..., TO.\n\
653\t%s FROM BY TO - # Do not test those values (for benchmark).\n",
654 argv[0], argv[0], argv[0]);
655
656 return status;
657}
658
659#endif /* DEBUG */
660
661/*
662Local Variables:
663compile-command: "gcc -DDEBUG -Wall -W -O -g mktime.c -o mktime"
664End:
665*/