diff options
Diffstat (limited to 'gl/regexec.c')
-rw-r--r-- | gl/regexec.c | 4398 |
1 files changed, 4398 insertions, 0 deletions
diff --git a/gl/regexec.c b/gl/regexec.c new file mode 100644 index 00000000..7c186aa2 --- /dev/null +++ b/gl/regexec.c | |||
@@ -0,0 +1,4398 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along | ||
17 | with this program; if not, write to the Free Software Foundation, | ||
18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
19 | |||
20 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, | ||
21 | Idx n) internal_function; | ||
22 | static void match_ctx_clean (re_match_context_t *mctx) internal_function; | ||
23 | static void match_ctx_free (re_match_context_t *cache) internal_function; | ||
24 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node, | ||
25 | Idx str_idx, Idx from, Idx to) | ||
26 | internal_function; | ||
27 | static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) | ||
28 | internal_function; | ||
29 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node, | ||
30 | Idx str_idx) internal_function; | ||
31 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, | ||
32 | Idx node, Idx str_idx) | ||
33 | internal_function; | ||
34 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | ||
35 | re_dfastate_t **limited_sts, Idx last_node, | ||
36 | Idx last_str_idx) | ||
37 | internal_function; | ||
38 | static reg_errcode_t re_search_internal (const regex_t *preg, | ||
39 | const char *string, Idx length, | ||
40 | Idx start, Idx last_start, Idx stop, | ||
41 | size_t nmatch, regmatch_t pmatch[], | ||
42 | int eflags) internal_function; | ||
43 | static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp, | ||
44 | const char *string1, Idx length1, | ||
45 | const char *string2, Idx length2, | ||
46 | Idx start, regoff_t range, | ||
47 | struct re_registers *regs, | ||
48 | Idx stop, bool ret_len) internal_function; | ||
49 | static regoff_t re_search_stub (struct re_pattern_buffer *bufp, | ||
50 | const char *string, Idx length, Idx start, | ||
51 | regoff_t range, Idx stop, | ||
52 | struct re_registers *regs, | ||
53 | bool ret_len) internal_function; | ||
54 | static unsigned int re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, | ||
55 | Idx nregs, int regs_allocated) | ||
56 | internal_function; | ||
57 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx) | ||
58 | internal_function; | ||
59 | static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match, | ||
60 | Idx *p_match_first) internal_function; | ||
61 | static Idx check_halt_state_context (const re_match_context_t *mctx, | ||
62 | const re_dfastate_t *state, Idx idx) | ||
63 | internal_function; | ||
64 | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | ||
65 | regmatch_t *prev_idx_match, Idx cur_node, | ||
66 | Idx cur_idx, Idx nmatch) internal_function; | ||
67 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, | ||
68 | Idx str_idx, Idx dest_node, Idx nregs, | ||
69 | regmatch_t *regs, | ||
70 | re_node_set *eps_via_nodes) | ||
71 | internal_function; | ||
72 | static reg_errcode_t set_regs (const regex_t *preg, | ||
73 | const re_match_context_t *mctx, | ||
74 | size_t nmatch, regmatch_t *pmatch, | ||
75 | bool fl_backtrack) internal_function; | ||
76 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) | ||
77 | internal_function; | ||
78 | |||
79 | #ifdef RE_ENABLE_I18N | ||
80 | static int sift_states_iter_mb (const re_match_context_t *mctx, | ||
81 | re_sift_context_t *sctx, | ||
82 | Idx node_idx, Idx str_idx, Idx max_str_idx) | ||
83 | internal_function; | ||
84 | #endif /* RE_ENABLE_I18N */ | ||
85 | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, | ||
86 | re_sift_context_t *sctx) | ||
87 | internal_function; | ||
88 | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, | ||
89 | re_sift_context_t *sctx, Idx str_idx, | ||
90 | re_node_set *cur_dest) | ||
91 | internal_function; | ||
92 | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, | ||
93 | re_sift_context_t *sctx, | ||
94 | Idx str_idx, | ||
95 | re_node_set *dest_nodes) | ||
96 | internal_function; | ||
97 | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, | ||
98 | re_node_set *dest_nodes, | ||
99 | const re_node_set *candidates) | ||
100 | internal_function; | ||
101 | static bool check_dst_limits (const re_match_context_t *mctx, | ||
102 | const re_node_set *limits, | ||
103 | Idx dst_node, Idx dst_idx, Idx src_node, | ||
104 | Idx src_idx) internal_function; | ||
105 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, | ||
106 | int boundaries, Idx subexp_idx, | ||
107 | Idx from_node, Idx bkref_idx) | ||
108 | internal_function; | ||
109 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, | ||
110 | Idx limit, Idx subexp_idx, | ||
111 | Idx node, Idx str_idx, | ||
112 | Idx bkref_idx) internal_function; | ||
113 | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, | ||
114 | re_node_set *dest_nodes, | ||
115 | const re_node_set *candidates, | ||
116 | re_node_set *limits, | ||
117 | struct re_backref_cache_entry *bkref_ents, | ||
118 | Idx str_idx) internal_function; | ||
119 | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, | ||
120 | re_sift_context_t *sctx, | ||
121 | Idx str_idx, const re_node_set *candidates) | ||
122 | internal_function; | ||
123 | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, | ||
124 | re_dfastate_t **dst, | ||
125 | re_dfastate_t **src, Idx num) | ||
126 | internal_function; | ||
127 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, | ||
128 | re_match_context_t *mctx) internal_function; | ||
129 | static re_dfastate_t *transit_state (reg_errcode_t *err, | ||
130 | re_match_context_t *mctx, | ||
131 | re_dfastate_t *state) internal_function; | ||
132 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, | ||
133 | re_match_context_t *mctx, | ||
134 | re_dfastate_t *next_state) | ||
135 | internal_function; | ||
136 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, | ||
137 | re_node_set *cur_nodes, | ||
138 | Idx str_idx) internal_function; | ||
139 | #if 0 | ||
140 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, | ||
141 | re_match_context_t *mctx, | ||
142 | re_dfastate_t *pstate) | ||
143 | internal_function; | ||
144 | #endif | ||
145 | #ifdef RE_ENABLE_I18N | ||
146 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, | ||
147 | re_dfastate_t *pstate) | ||
148 | internal_function; | ||
149 | #endif /* RE_ENABLE_I18N */ | ||
150 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, | ||
151 | const re_node_set *nodes) | ||
152 | internal_function; | ||
153 | static reg_errcode_t get_subexp (re_match_context_t *mctx, | ||
154 | Idx bkref_node, Idx bkref_str_idx) | ||
155 | internal_function; | ||
156 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, | ||
157 | const re_sub_match_top_t *sub_top, | ||
158 | re_sub_match_last_t *sub_last, | ||
159 | Idx bkref_node, Idx bkref_str) | ||
160 | internal_function; | ||
161 | static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | ||
162 | Idx subexp_idx, int type) internal_function; | ||
163 | static reg_errcode_t check_arrival (re_match_context_t *mctx, | ||
164 | state_array_t *path, Idx top_node, | ||
165 | Idx top_str, Idx last_node, Idx last_str, | ||
166 | int type) internal_function; | ||
167 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, | ||
168 | Idx str_idx, | ||
169 | re_node_set *cur_nodes, | ||
170 | re_node_set *next_nodes) | ||
171 | internal_function; | ||
172 | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, | ||
173 | re_node_set *cur_nodes, | ||
174 | Idx ex_subexp, int type) | ||
175 | internal_function; | ||
176 | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, | ||
177 | re_node_set *dst_nodes, | ||
178 | Idx target, Idx ex_subexp, | ||
179 | int type) internal_function; | ||
180 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, | ||
181 | re_node_set *cur_nodes, Idx cur_str, | ||
182 | Idx subexp_num, int type) | ||
183 | internal_function; | ||
184 | static bool build_trtable (const re_dfa_t *dfa, | ||
185 | re_dfastate_t *state) internal_function; | ||
186 | #ifdef RE_ENABLE_I18N | ||
187 | static int check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, | ||
188 | const re_string_t *input, Idx idx) | ||
189 | internal_function; | ||
190 | # ifdef _LIBC | ||
191 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, | ||
192 | size_t name_len) | ||
193 | internal_function; | ||
194 | # endif /* _LIBC */ | ||
195 | #endif /* RE_ENABLE_I18N */ | ||
196 | static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa, | ||
197 | const re_dfastate_t *state, | ||
198 | re_node_set *states_node, | ||
199 | bitset_t *states_ch) internal_function; | ||
200 | static bool check_node_accept (const re_match_context_t *mctx, | ||
201 | const re_token_t *node, Idx idx) | ||
202 | internal_function; | ||
203 | static reg_errcode_t extend_buffers (re_match_context_t *mctx) | ||
204 | internal_function; | ||
205 | |||
206 | /* Entry point for POSIX code. */ | ||
207 | |||
208 | /* regexec searches for a given pattern, specified by PREG, in the | ||
209 | string STRING. | ||
210 | |||
211 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | ||
212 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | ||
213 | least NMATCH elements, and we set them to the offsets of the | ||
214 | corresponding matched substrings. | ||
215 | |||
216 | EFLAGS specifies `execution flags' which affect matching: if | ||
217 | REG_NOTBOL is set, then ^ does not match at the beginning of the | ||
218 | string; if REG_NOTEOL is set, then $ does not match at the end. | ||
219 | |||
220 | We return 0 if we find a match and REG_NOMATCH if not. */ | ||
221 | |||
222 | int | ||
223 | regexec (preg, string, nmatch, pmatch, eflags) | ||
224 | const regex_t *__restrict preg; | ||
225 | const char *__restrict string; | ||
226 | size_t nmatch; | ||
227 | regmatch_t pmatch[]; | ||
228 | int eflags; | ||
229 | { | ||
230 | reg_errcode_t err; | ||
231 | Idx start, length; | ||
232 | #ifdef _LIBC | ||
233 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
234 | #endif | ||
235 | |||
236 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) | ||
237 | return REG_BADPAT; | ||
238 | |||
239 | if (eflags & REG_STARTEND) | ||
240 | { | ||
241 | start = pmatch[0].rm_so; | ||
242 | length = pmatch[0].rm_eo; | ||
243 | } | ||
244 | else | ||
245 | { | ||
246 | start = 0; | ||
247 | length = strlen (string); | ||
248 | } | ||
249 | |||
250 | __libc_lock_lock (dfa->lock); | ||
251 | if (preg->no_sub) | ||
252 | err = re_search_internal (preg, string, length, start, length, | ||
253 | length, 0, NULL, eflags); | ||
254 | else | ||
255 | err = re_search_internal (preg, string, length, start, length, | ||
256 | length, nmatch, pmatch, eflags); | ||
257 | __libc_lock_unlock (dfa->lock); | ||
258 | return err != REG_NOERROR; | ||
259 | } | ||
260 | |||
261 | #ifdef _LIBC | ||
262 | # include <shlib-compat.h> | ||
263 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); | ||
264 | |||
265 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) | ||
266 | __typeof__ (__regexec) __compat_regexec; | ||
267 | |||
268 | int | ||
269 | attribute_compat_text_section | ||
270 | __compat_regexec (const regex_t *__restrict preg, | ||
271 | const char *__restrict string, size_t nmatch, | ||
272 | regmatch_t pmatch[], int eflags) | ||
273 | { | ||
274 | return regexec (preg, string, nmatch, pmatch, | ||
275 | eflags & (REG_NOTBOL | REG_NOTEOL)); | ||
276 | } | ||
277 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); | ||
278 | # endif | ||
279 | #endif | ||
280 | |||
281 | /* Entry points for GNU code. */ | ||
282 | |||
283 | /* re_match, re_search, re_match_2, re_search_2 | ||
284 | |||
285 | The former two functions operate on STRING with length LENGTH, | ||
286 | while the later two operate on concatenation of STRING1 and STRING2 | ||
287 | with lengths LENGTH1 and LENGTH2, respectively. | ||
288 | |||
289 | re_match() matches the compiled pattern in BUFP against the string, | ||
290 | starting at index START. | ||
291 | |||
292 | re_search() first tries matching at index START, then it tries to match | ||
293 | starting from index START + 1, and so on. The last start position tried | ||
294 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same | ||
295 | way as re_match().) | ||
296 | |||
297 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding | ||
298 | the first STOP characters of the concatenation of the strings should be | ||
299 | concerned. | ||
300 | |||
301 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match | ||
302 | and all groups is stored in REGS. (For the "_2" variants, the offsets are | ||
303 | computed relative to the concatenation, not relative to the individual | ||
304 | strings.) | ||
305 | |||
306 | On success, re_match* functions return the length of the match, re_search* | ||
307 | return the position of the start of the match. Return value -1 means no | ||
308 | match was found and -2 indicates an internal error. */ | ||
309 | |||
310 | regoff_t | ||
311 | re_match (bufp, string, length, start, regs) | ||
312 | struct re_pattern_buffer *bufp; | ||
313 | const char *string; | ||
314 | Idx length, start; | ||
315 | struct re_registers *regs; | ||
316 | { | ||
317 | return re_search_stub (bufp, string, length, start, 0, length, regs, true); | ||
318 | } | ||
319 | #ifdef _LIBC | ||
320 | weak_alias (__re_match, re_match) | ||
321 | #endif | ||
322 | |||
323 | regoff_t | ||
324 | re_search (bufp, string, length, start, range, regs) | ||
325 | struct re_pattern_buffer *bufp; | ||
326 | const char *string; | ||
327 | Idx length, start; | ||
328 | regoff_t range; | ||
329 | struct re_registers *regs; | ||
330 | { | ||
331 | return re_search_stub (bufp, string, length, start, range, length, regs, | ||
332 | false); | ||
333 | } | ||
334 | #ifdef _LIBC | ||
335 | weak_alias (__re_search, re_search) | ||
336 | #endif | ||
337 | |||
338 | regoff_t | ||
339 | re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop) | ||
340 | struct re_pattern_buffer *bufp; | ||
341 | const char *string1, *string2; | ||
342 | Idx length1, length2, start, stop; | ||
343 | struct re_registers *regs; | ||
344 | { | ||
345 | return re_search_2_stub (bufp, string1, length1, string2, length2, | ||
346 | start, 0, regs, stop, true); | ||
347 | } | ||
348 | #ifdef _LIBC | ||
349 | weak_alias (__re_match_2, re_match_2) | ||
350 | #endif | ||
351 | |||
352 | regoff_t | ||
353 | re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop) | ||
354 | struct re_pattern_buffer *bufp; | ||
355 | const char *string1, *string2; | ||
356 | Idx length1, length2, start, stop; | ||
357 | regoff_t range; | ||
358 | struct re_registers *regs; | ||
359 | { | ||
360 | return re_search_2_stub (bufp, string1, length1, string2, length2, | ||
361 | start, range, regs, stop, false); | ||
362 | } | ||
363 | #ifdef _LIBC | ||
364 | weak_alias (__re_search_2, re_search_2) | ||
365 | #endif | ||
366 | |||
367 | static regoff_t | ||
368 | internal_function | ||
369 | re_search_2_stub (struct re_pattern_buffer *bufp, | ||
370 | const char *string1, Idx length1, | ||
371 | const char *string2, Idx length2, | ||
372 | Idx start, regoff_t range, struct re_registers *regs, | ||
373 | Idx stop, bool ret_len) | ||
374 | { | ||
375 | const char *str; | ||
376 | regoff_t rval; | ||
377 | Idx len = length1 + length2; | ||
378 | char *s = NULL; | ||
379 | |||
380 | if (BE (length1 < 0 || length2 < 0 || stop < 0 || len < length1, 0)) | ||
381 | return -2; | ||
382 | |||
383 | /* Concatenate the strings. */ | ||
384 | if (length2 > 0) | ||
385 | if (length1 > 0) | ||
386 | { | ||
387 | s = re_malloc (char, len); | ||
388 | |||
389 | if (BE (s == NULL, 0)) | ||
390 | return -2; | ||
391 | #ifdef _LIBC | ||
392 | memcpy (__mempcpy (s, string1, length1), string2, length2); | ||
393 | #else | ||
394 | memcpy (s, string1, length1); | ||
395 | memcpy (s + length1, string2, length2); | ||
396 | #endif | ||
397 | str = s; | ||
398 | } | ||
399 | else | ||
400 | str = string2; | ||
401 | else | ||
402 | str = string1; | ||
403 | |||
404 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, | ||
405 | ret_len); | ||
406 | re_free (s); | ||
407 | return rval; | ||
408 | } | ||
409 | |||
410 | /* The parameters have the same meaning as those of re_search. | ||
411 | Additional parameters: | ||
412 | If RET_LEN is true the length of the match is returned (re_match style); | ||
413 | otherwise the position of the match is returned. */ | ||
414 | |||
415 | static regoff_t | ||
416 | internal_function | ||
417 | re_search_stub (struct re_pattern_buffer *bufp, | ||
418 | const char *string, Idx length, | ||
419 | Idx start, regoff_t range, Idx stop, struct re_registers *regs, | ||
420 | bool ret_len) | ||
421 | { | ||
422 | reg_errcode_t result; | ||
423 | regmatch_t *pmatch; | ||
424 | Idx nregs; | ||
425 | regoff_t rval; | ||
426 | int eflags = 0; | ||
427 | #ifdef _LIBC | ||
428 | re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | ||
429 | #endif | ||
430 | Idx last_start = start + range; | ||
431 | |||
432 | /* Check for out-of-range. */ | ||
433 | if (BE (start < 0 || start > length, 0)) | ||
434 | return -1; | ||
435 | if (BE (length < last_start || (0 <= range && last_start < start), 0)) | ||
436 | last_start = length; | ||
437 | else if (BE (last_start < 0 || (range < 0 && start <= last_start), 0)) | ||
438 | last_start = 0; | ||
439 | |||
440 | __libc_lock_lock (dfa->lock); | ||
441 | |||
442 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; | ||
443 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; | ||
444 | |||
445 | /* Compile fastmap if we haven't yet. */ | ||
446 | if (start < last_start && bufp->fastmap != NULL && !bufp->fastmap_accurate) | ||
447 | re_compile_fastmap (bufp); | ||
448 | |||
449 | if (BE (bufp->no_sub, 0)) | ||
450 | regs = NULL; | ||
451 | |||
452 | /* We need at least 1 register. */ | ||
453 | if (regs == NULL) | ||
454 | nregs = 1; | ||
455 | else if (BE (bufp->regs_allocated == REGS_FIXED | ||
456 | && regs->num_regs <= bufp->re_nsub, 0)) | ||
457 | { | ||
458 | nregs = regs->num_regs; | ||
459 | if (BE (nregs < 1, 0)) | ||
460 | { | ||
461 | /* Nothing can be copied to regs. */ | ||
462 | regs = NULL; | ||
463 | nregs = 1; | ||
464 | } | ||
465 | } | ||
466 | else | ||
467 | nregs = bufp->re_nsub + 1; | ||
468 | pmatch = re_malloc (regmatch_t, nregs); | ||
469 | if (BE (pmatch == NULL, 0)) | ||
470 | { | ||
471 | rval = -2; | ||
472 | goto out; | ||
473 | } | ||
474 | |||
475 | result = re_search_internal (bufp, string, length, start, last_start, stop, | ||
476 | nregs, pmatch, eflags); | ||
477 | |||
478 | rval = 0; | ||
479 | |||
480 | /* I hope we needn't fill ther regs with -1's when no match was found. */ | ||
481 | if (result != REG_NOERROR) | ||
482 | rval = -1; | ||
483 | else if (regs != NULL) | ||
484 | { | ||
485 | /* If caller wants register contents data back, copy them. */ | ||
486 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, | ||
487 | bufp->regs_allocated); | ||
488 | if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) | ||
489 | rval = -2; | ||
490 | } | ||
491 | |||
492 | if (BE (rval == 0, 1)) | ||
493 | { | ||
494 | if (ret_len) | ||
495 | { | ||
496 | assert (pmatch[0].rm_so == start); | ||
497 | rval = pmatch[0].rm_eo - start; | ||
498 | } | ||
499 | else | ||
500 | rval = pmatch[0].rm_so; | ||
501 | } | ||
502 | re_free (pmatch); | ||
503 | out: | ||
504 | __libc_lock_unlock (dfa->lock); | ||
505 | return rval; | ||
506 | } | ||
507 | |||
508 | static unsigned int | ||
509 | internal_function | ||
510 | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs, | ||
511 | int regs_allocated) | ||
512 | { | ||
513 | int rval = REGS_REALLOCATE; | ||
514 | Idx i; | ||
515 | Idx need_regs = nregs + 1; | ||
516 | /* We need one extra element beyond `num_regs' for the `-1' marker GNU code | ||
517 | uses. */ | ||
518 | |||
519 | /* Have the register data arrays been allocated? */ | ||
520 | if (regs_allocated == REGS_UNALLOCATED) | ||
521 | { /* No. So allocate them with malloc. */ | ||
522 | regs->start = re_malloc (regoff_t, need_regs); | ||
523 | if (BE (regs->start == NULL, 0)) | ||
524 | return REGS_UNALLOCATED; | ||
525 | regs->end = re_malloc (regoff_t, need_regs); | ||
526 | if (BE (regs->end == NULL, 0)) | ||
527 | { | ||
528 | re_free (regs->start); | ||
529 | return REGS_UNALLOCATED; | ||
530 | } | ||
531 | regs->num_regs = need_regs; | ||
532 | } | ||
533 | else if (regs_allocated == REGS_REALLOCATE) | ||
534 | { /* Yes. If we need more elements than were already | ||
535 | allocated, reallocate them. If we need fewer, just | ||
536 | leave it alone. */ | ||
537 | if (BE (need_regs > regs->num_regs, 0)) | ||
538 | { | ||
539 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); | ||
540 | regoff_t *new_end; | ||
541 | if (BE (new_start == NULL, 0)) | ||
542 | return REGS_UNALLOCATED; | ||
543 | new_end = re_realloc (regs->end, regoff_t, need_regs); | ||
544 | if (BE (new_end == NULL, 0)) | ||
545 | { | ||
546 | re_free (new_start); | ||
547 | return REGS_UNALLOCATED; | ||
548 | } | ||
549 | regs->start = new_start; | ||
550 | regs->end = new_end; | ||
551 | regs->num_regs = need_regs; | ||
552 | } | ||
553 | } | ||
554 | else | ||
555 | { | ||
556 | assert (regs_allocated == REGS_FIXED); | ||
557 | /* This function may not be called with REGS_FIXED and nregs too big. */ | ||
558 | assert (regs->num_regs >= nregs); | ||
559 | rval = REGS_FIXED; | ||
560 | } | ||
561 | |||
562 | /* Copy the regs. */ | ||
563 | for (i = 0; i < nregs; ++i) | ||
564 | { | ||
565 | regs->start[i] = pmatch[i].rm_so; | ||
566 | regs->end[i] = pmatch[i].rm_eo; | ||
567 | } | ||
568 | for ( ; i < regs->num_regs; ++i) | ||
569 | regs->start[i] = regs->end[i] = -1; | ||
570 | |||
571 | return rval; | ||
572 | } | ||
573 | |||
574 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
575 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | ||
576 | this memory for recording register information. STARTS and ENDS | ||
577 | must be allocated using the malloc library routine, and must each | ||
578 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | ||
579 | |||
580 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
581 | register data. | ||
582 | |||
583 | Unless this function is called, the first search or match using | ||
584 | PATTERN_BUFFER will allocate its own register data, without | ||
585 | freeing the old data. */ | ||
586 | |||
587 | void | ||
588 | re_set_registers (bufp, regs, num_regs, starts, ends) | ||
589 | struct re_pattern_buffer *bufp; | ||
590 | struct re_registers *regs; | ||
591 | __re_size_t num_regs; | ||
592 | regoff_t *starts, *ends; | ||
593 | { | ||
594 | if (num_regs) | ||
595 | { | ||
596 | bufp->regs_allocated = REGS_REALLOCATE; | ||
597 | regs->num_regs = num_regs; | ||
598 | regs->start = starts; | ||
599 | regs->end = ends; | ||
600 | } | ||
601 | else | ||
602 | { | ||
603 | bufp->regs_allocated = REGS_UNALLOCATED; | ||
604 | regs->num_regs = 0; | ||
605 | regs->start = regs->end = NULL; | ||
606 | } | ||
607 | } | ||
608 | #ifdef _LIBC | ||
609 | weak_alias (__re_set_registers, re_set_registers) | ||
610 | #endif | ||
611 | |||
612 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
613 | them unless specifically requested. */ | ||
614 | |||
615 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
616 | int | ||
617 | # ifdef _LIBC | ||
618 | weak_function | ||
619 | # endif | ||
620 | re_exec (s) | ||
621 | const char *s; | ||
622 | { | ||
623 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); | ||
624 | } | ||
625 | #endif /* _REGEX_RE_COMP */ | ||
626 | |||
627 | /* Internal entry point. */ | ||
628 | |||
629 | /* Searches for a compiled pattern PREG in the string STRING, whose | ||
630 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same | ||
631 | meaning as with regexec. LAST_START is START + RANGE, where | ||
632 | START and RANGE have the same meaning as with re_search. | ||
633 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, | ||
634 | otherwise return the error code. | ||
635 | Note: We assume front end functions already check ranges. | ||
636 | (0 <= LAST_START && LAST_START <= LENGTH) */ | ||
637 | |||
638 | static reg_errcode_t | ||
639 | internal_function | ||
640 | re_search_internal (const regex_t *preg, | ||
641 | const char *string, Idx length, | ||
642 | Idx start, Idx last_start, Idx stop, | ||
643 | size_t nmatch, regmatch_t pmatch[], | ||
644 | int eflags) | ||
645 | { | ||
646 | reg_errcode_t err; | ||
647 | const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | ||
648 | Idx left_lim, right_lim; | ||
649 | int incr; | ||
650 | bool fl_longest_match; | ||
651 | int match_kind; | ||
652 | Idx match_first; | ||
653 | Idx match_last = REG_MISSING; | ||
654 | Idx extra_nmatch; | ||
655 | bool sb; | ||
656 | int ch; | ||
657 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) | ||
658 | re_match_context_t mctx = { .dfa = dfa }; | ||
659 | #else | ||
660 | re_match_context_t mctx; | ||
661 | #endif | ||
662 | char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate | ||
663 | && start != last_start && !preg->can_be_null) | ||
664 | ? preg->fastmap : NULL); | ||
665 | RE_TRANSLATE_TYPE t = preg->translate; | ||
666 | |||
667 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) | ||
668 | memset (&mctx, '\0', sizeof (re_match_context_t)); | ||
669 | mctx.dfa = dfa; | ||
670 | #endif | ||
671 | |||
672 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; | ||
673 | nmatch -= extra_nmatch; | ||
674 | |||
675 | /* Check if the DFA haven't been compiled. */ | ||
676 | if (BE (preg->used == 0 || dfa->init_state == NULL | ||
677 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL | ||
678 | || dfa->init_state_begbuf == NULL, 0)) | ||
679 | return REG_NOMATCH; | ||
680 | |||
681 | #ifdef DEBUG | ||
682 | /* We assume front-end functions already check them. */ | ||
683 | assert (0 <= last_start && last_start <= length); | ||
684 | #endif | ||
685 | |||
686 | /* If initial states with non-begbuf contexts have no elements, | ||
687 | the regex must be anchored. If preg->newline_anchor is set, | ||
688 | we'll never use init_state_nl, so do not check it. */ | ||
689 | if (dfa->init_state->nodes.nelem == 0 | ||
690 | && dfa->init_state_word->nodes.nelem == 0 | ||
691 | && (dfa->init_state_nl->nodes.nelem == 0 | ||
692 | || !preg->newline_anchor)) | ||
693 | { | ||
694 | if (start != 0 && last_start != 0) | ||
695 | return REG_NOMATCH; | ||
696 | start = last_start = 0; | ||
697 | } | ||
698 | |||
699 | /* We must check the longest matching, if nmatch > 0. */ | ||
700 | fl_longest_match = (nmatch != 0 || dfa->nbackref); | ||
701 | |||
702 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, | ||
703 | preg->translate, preg->syntax & RE_ICASE, dfa); | ||
704 | if (BE (err != REG_NOERROR, 0)) | ||
705 | goto free_return; | ||
706 | mctx.input.stop = stop; | ||
707 | mctx.input.raw_stop = stop; | ||
708 | mctx.input.newline_anchor = preg->newline_anchor; | ||
709 | |||
710 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); | ||
711 | if (BE (err != REG_NOERROR, 0)) | ||
712 | goto free_return; | ||
713 | |||
714 | /* We will log all the DFA states through which the dfa pass, | ||
715 | if nmatch > 1, or this dfa has "multibyte node", which is a | ||
716 | back-reference or a node which can accept multibyte character or | ||
717 | multi character collating element. */ | ||
718 | if (nmatch > 1 || dfa->has_mb_node) | ||
719 | { | ||
720 | /* Avoid overflow. */ | ||
721 | if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0)) | ||
722 | { | ||
723 | err = REG_ESPACE; | ||
724 | goto free_return; | ||
725 | } | ||
726 | |||
727 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); | ||
728 | if (BE (mctx.state_log == NULL, 0)) | ||
729 | { | ||
730 | err = REG_ESPACE; | ||
731 | goto free_return; | ||
732 | } | ||
733 | } | ||
734 | else | ||
735 | mctx.state_log = NULL; | ||
736 | |||
737 | match_first = start; | ||
738 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | ||
739 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; | ||
740 | |||
741 | /* Check incrementally whether of not the input string match. */ | ||
742 | incr = (last_start < start) ? -1 : 1; | ||
743 | left_lim = (last_start < start) ? last_start : start; | ||
744 | right_lim = (last_start < start) ? start : last_start; | ||
745 | sb = dfa->mb_cur_max == 1; | ||
746 | match_kind = | ||
747 | (fastmap | ||
748 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) | ||
749 | | (start <= last_start ? 2 : 0) | ||
750 | | (t != NULL ? 1 : 0)) | ||
751 | : 8); | ||
752 | |||
753 | for (;; match_first += incr) | ||
754 | { | ||
755 | err = REG_NOMATCH; | ||
756 | if (match_first < left_lim || right_lim < match_first) | ||
757 | goto free_return; | ||
758 | |||
759 | /* Advance as rapidly as possible through the string, until we | ||
760 | find a plausible place to start matching. This may be done | ||
761 | with varying efficiency, so there are various possibilities: | ||
762 | only the most common of them are specialized, in order to | ||
763 | save on code size. We use a switch statement for speed. */ | ||
764 | switch (match_kind) | ||
765 | { | ||
766 | case 8: | ||
767 | /* No fastmap. */ | ||
768 | break; | ||
769 | |||
770 | case 7: | ||
771 | /* Fastmap with single-byte translation, match forward. */ | ||
772 | while (BE (match_first < right_lim, 1) | ||
773 | && !fastmap[t[(unsigned char) string[match_first]]]) | ||
774 | ++match_first; | ||
775 | goto forward_match_found_start_or_reached_end; | ||
776 | |||
777 | case 6: | ||
778 | /* Fastmap without translation, match forward. */ | ||
779 | while (BE (match_first < right_lim, 1) | ||
780 | && !fastmap[(unsigned char) string[match_first]]) | ||
781 | ++match_first; | ||
782 | |||
783 | forward_match_found_start_or_reached_end: | ||
784 | if (BE (match_first == right_lim, 0)) | ||
785 | { | ||
786 | ch = match_first >= length | ||
787 | ? 0 : (unsigned char) string[match_first]; | ||
788 | if (!fastmap[t ? t[ch] : ch]) | ||
789 | goto free_return; | ||
790 | } | ||
791 | break; | ||
792 | |||
793 | case 4: | ||
794 | case 5: | ||
795 | /* Fastmap without multi-byte translation, match backwards. */ | ||
796 | while (match_first >= left_lim) | ||
797 | { | ||
798 | ch = match_first >= length | ||
799 | ? 0 : (unsigned char) string[match_first]; | ||
800 | if (fastmap[t ? t[ch] : ch]) | ||
801 | break; | ||
802 | --match_first; | ||
803 | } | ||
804 | if (match_first < left_lim) | ||
805 | goto free_return; | ||
806 | break; | ||
807 | |||
808 | default: | ||
809 | /* In this case, we can't determine easily the current byte, | ||
810 | since it might be a component byte of a multibyte | ||
811 | character. Then we use the constructed buffer instead. */ | ||
812 | for (;;) | ||
813 | { | ||
814 | /* If MATCH_FIRST is out of the valid range, reconstruct the | ||
815 | buffers. */ | ||
816 | __re_size_t offset = match_first - mctx.input.raw_mbs_idx; | ||
817 | if (BE (offset >= (__re_size_t) mctx.input.valid_raw_len, 0)) | ||
818 | { | ||
819 | err = re_string_reconstruct (&mctx.input, match_first, | ||
820 | eflags); | ||
821 | if (BE (err != REG_NOERROR, 0)) | ||
822 | goto free_return; | ||
823 | |||
824 | offset = match_first - mctx.input.raw_mbs_idx; | ||
825 | } | ||
826 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. | ||
827 | Note that MATCH_FIRST must not be smaller than 0. */ | ||
828 | ch = (match_first >= length | ||
829 | ? 0 : re_string_byte_at (&mctx.input, offset)); | ||
830 | if (fastmap[ch]) | ||
831 | break; | ||
832 | match_first += incr; | ||
833 | if (match_first < left_lim || match_first > right_lim) | ||
834 | { | ||
835 | err = REG_NOMATCH; | ||
836 | goto free_return; | ||
837 | } | ||
838 | } | ||
839 | break; | ||
840 | } | ||
841 | |||
842 | /* Reconstruct the buffers so that the matcher can assume that | ||
843 | the matching starts from the beginning of the buffer. */ | ||
844 | err = re_string_reconstruct (&mctx.input, match_first, eflags); | ||
845 | if (BE (err != REG_NOERROR, 0)) | ||
846 | goto free_return; | ||
847 | |||
848 | #ifdef RE_ENABLE_I18N | ||
849 | /* Don't consider this char as a possible match start if it part, | ||
850 | yet isn't the head, of a multibyte character. */ | ||
851 | if (!sb && !re_string_first_byte (&mctx.input, 0)) | ||
852 | continue; | ||
853 | #endif | ||
854 | |||
855 | /* It seems to be appropriate one, then use the matcher. */ | ||
856 | /* We assume that the matching starts from 0. */ | ||
857 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; | ||
858 | match_last = check_matching (&mctx, fl_longest_match, | ||
859 | start <= last_start ? &match_first : NULL); | ||
860 | if (match_last != REG_MISSING) | ||
861 | { | ||
862 | if (BE (match_last == REG_ERROR, 0)) | ||
863 | { | ||
864 | err = REG_ESPACE; | ||
865 | goto free_return; | ||
866 | } | ||
867 | else | ||
868 | { | ||
869 | mctx.match_last = match_last; | ||
870 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) | ||
871 | { | ||
872 | re_dfastate_t *pstate = mctx.state_log[match_last]; | ||
873 | mctx.last_node = check_halt_state_context (&mctx, pstate, | ||
874 | match_last); | ||
875 | } | ||
876 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) | ||
877 | || dfa->nbackref) | ||
878 | { | ||
879 | err = prune_impossible_nodes (&mctx); | ||
880 | if (err == REG_NOERROR) | ||
881 | break; | ||
882 | if (BE (err != REG_NOMATCH, 0)) | ||
883 | goto free_return; | ||
884 | match_last = REG_MISSING; | ||
885 | } | ||
886 | else | ||
887 | break; /* We found a match. */ | ||
888 | } | ||
889 | } | ||
890 | |||
891 | match_ctx_clean (&mctx); | ||
892 | } | ||
893 | |||
894 | #ifdef DEBUG | ||
895 | assert (match_last != REG_MISSING); | ||
896 | assert (err == REG_NOERROR); | ||
897 | #endif | ||
898 | |||
899 | /* Set pmatch[] if we need. */ | ||
900 | if (nmatch > 0) | ||
901 | { | ||
902 | Idx reg_idx; | ||
903 | |||
904 | /* Initialize registers. */ | ||
905 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) | ||
906 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; | ||
907 | |||
908 | /* Set the points where matching start/end. */ | ||
909 | pmatch[0].rm_so = 0; | ||
910 | pmatch[0].rm_eo = mctx.match_last; | ||
911 | /* FIXME: This function should fail if mctx.match_last exceeds | ||
912 | the maximum possible regoff_t value. We need a new error | ||
913 | code REG_OVERFLOW. */ | ||
914 | |||
915 | if (!preg->no_sub && nmatch > 1) | ||
916 | { | ||
917 | err = set_regs (preg, &mctx, nmatch, pmatch, | ||
918 | dfa->has_plural_match && dfa->nbackref > 0); | ||
919 | if (BE (err != REG_NOERROR, 0)) | ||
920 | goto free_return; | ||
921 | } | ||
922 | |||
923 | /* At last, add the offset to the each registers, since we slided | ||
924 | the buffers so that we could assume that the matching starts | ||
925 | from 0. */ | ||
926 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | ||
927 | if (pmatch[reg_idx].rm_so != -1) | ||
928 | { | ||
929 | #ifdef RE_ENABLE_I18N | ||
930 | if (BE (mctx.input.offsets_needed != 0, 0)) | ||
931 | { | ||
932 | pmatch[reg_idx].rm_so = | ||
933 | (pmatch[reg_idx].rm_so == mctx.input.valid_len | ||
934 | ? mctx.input.valid_raw_len | ||
935 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); | ||
936 | pmatch[reg_idx].rm_eo = | ||
937 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len | ||
938 | ? mctx.input.valid_raw_len | ||
939 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); | ||
940 | } | ||
941 | #else | ||
942 | assert (mctx.input.offsets_needed == 0); | ||
943 | #endif | ||
944 | pmatch[reg_idx].rm_so += match_first; | ||
945 | pmatch[reg_idx].rm_eo += match_first; | ||
946 | } | ||
947 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) | ||
948 | { | ||
949 | pmatch[nmatch + reg_idx].rm_so = -1; | ||
950 | pmatch[nmatch + reg_idx].rm_eo = -1; | ||
951 | } | ||
952 | |||
953 | if (dfa->subexp_map) | ||
954 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) | ||
955 | if (dfa->subexp_map[reg_idx] != reg_idx) | ||
956 | { | ||
957 | pmatch[reg_idx + 1].rm_so | ||
958 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; | ||
959 | pmatch[reg_idx + 1].rm_eo | ||
960 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; | ||
961 | } | ||
962 | } | ||
963 | |||
964 | free_return: | ||
965 | re_free (mctx.state_log); | ||
966 | if (dfa->nbackref) | ||
967 | match_ctx_free (&mctx); | ||
968 | re_string_destruct (&mctx.input); | ||
969 | return err; | ||
970 | } | ||
971 | |||
972 | static reg_errcode_t | ||
973 | internal_function | ||
974 | prune_impossible_nodes (re_match_context_t *mctx) | ||
975 | { | ||
976 | const re_dfa_t *const dfa = mctx->dfa; | ||
977 | Idx halt_node, match_last; | ||
978 | reg_errcode_t ret; | ||
979 | re_dfastate_t **sifted_states; | ||
980 | re_dfastate_t **lim_states = NULL; | ||
981 | re_sift_context_t sctx; | ||
982 | #ifdef DEBUG | ||
983 | assert (mctx->state_log != NULL); | ||
984 | #endif | ||
985 | match_last = mctx->match_last; | ||
986 | halt_node = mctx->last_node; | ||
987 | |||
988 | /* Avoid overflow. */ | ||
989 | if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0)) | ||
990 | return REG_ESPACE; | ||
991 | |||
992 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1); | ||
993 | if (BE (sifted_states == NULL, 0)) | ||
994 | { | ||
995 | ret = REG_ESPACE; | ||
996 | goto free_return; | ||
997 | } | ||
998 | if (dfa->nbackref) | ||
999 | { | ||
1000 | lim_states = re_malloc (re_dfastate_t *, match_last + 1); | ||
1001 | if (BE (lim_states == NULL, 0)) | ||
1002 | { | ||
1003 | ret = REG_ESPACE; | ||
1004 | goto free_return; | ||
1005 | } | ||
1006 | while (1) | ||
1007 | { | ||
1008 | memset (lim_states, '\0', | ||
1009 | sizeof (re_dfastate_t *) * (match_last + 1)); | ||
1010 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, | ||
1011 | match_last); | ||
1012 | ret = sift_states_backward (mctx, &sctx); | ||
1013 | re_node_set_free (&sctx.limits); | ||
1014 | if (BE (ret != REG_NOERROR, 0)) | ||
1015 | goto free_return; | ||
1016 | if (sifted_states[0] != NULL || lim_states[0] != NULL) | ||
1017 | break; | ||
1018 | do | ||
1019 | { | ||
1020 | --match_last; | ||
1021 | if (! REG_VALID_INDEX (match_last)) | ||
1022 | { | ||
1023 | ret = REG_NOMATCH; | ||
1024 | goto free_return; | ||
1025 | } | ||
1026 | } while (mctx->state_log[match_last] == NULL | ||
1027 | || !mctx->state_log[match_last]->halt); | ||
1028 | halt_node = check_halt_state_context (mctx, | ||
1029 | mctx->state_log[match_last], | ||
1030 | match_last); | ||
1031 | } | ||
1032 | ret = merge_state_array (dfa, sifted_states, lim_states, | ||
1033 | match_last + 1); | ||
1034 | re_free (lim_states); | ||
1035 | lim_states = NULL; | ||
1036 | if (BE (ret != REG_NOERROR, 0)) | ||
1037 | goto free_return; | ||
1038 | } | ||
1039 | else | ||
1040 | { | ||
1041 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); | ||
1042 | ret = sift_states_backward (mctx, &sctx); | ||
1043 | re_node_set_free (&sctx.limits); | ||
1044 | if (BE (ret != REG_NOERROR, 0)) | ||
1045 | goto free_return; | ||
1046 | } | ||
1047 | re_free (mctx->state_log); | ||
1048 | mctx->state_log = sifted_states; | ||
1049 | sifted_states = NULL; | ||
1050 | mctx->last_node = halt_node; | ||
1051 | mctx->match_last = match_last; | ||
1052 | ret = REG_NOERROR; | ||
1053 | free_return: | ||
1054 | re_free (sifted_states); | ||
1055 | re_free (lim_states); | ||
1056 | return ret; | ||
1057 | } | ||
1058 | |||
1059 | /* Acquire an initial state and return it. | ||
1060 | We must select appropriate initial state depending on the context, | ||
1061 | since initial states may have constraints like "\<", "^", etc.. */ | ||
1062 | |||
1063 | static inline re_dfastate_t * | ||
1064 | __attribute ((always_inline)) internal_function | ||
1065 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, | ||
1066 | Idx idx) | ||
1067 | { | ||
1068 | const re_dfa_t *const dfa = mctx->dfa; | ||
1069 | if (dfa->init_state->has_constraint) | ||
1070 | { | ||
1071 | unsigned int context; | ||
1072 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); | ||
1073 | if (IS_WORD_CONTEXT (context)) | ||
1074 | return dfa->init_state_word; | ||
1075 | else if (IS_ORDINARY_CONTEXT (context)) | ||
1076 | return dfa->init_state; | ||
1077 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) | ||
1078 | return dfa->init_state_begbuf; | ||
1079 | else if (IS_NEWLINE_CONTEXT (context)) | ||
1080 | return dfa->init_state_nl; | ||
1081 | else if (IS_BEGBUF_CONTEXT (context)) | ||
1082 | { | ||
1083 | /* It is relatively rare case, then calculate on demand. */ | ||
1084 | return re_acquire_state_context (err, dfa, | ||
1085 | dfa->init_state->entrance_nodes, | ||
1086 | context); | ||
1087 | } | ||
1088 | else | ||
1089 | /* Must not happen? */ | ||
1090 | return dfa->init_state; | ||
1091 | } | ||
1092 | else | ||
1093 | return dfa->init_state; | ||
1094 | } | ||
1095 | |||
1096 | /* Check whether the regular expression match input string INPUT or not, | ||
1097 | and return the index where the matching end. Return REG_MISSING if | ||
1098 | there is no match, and return REG_ERROR in case of an error. | ||
1099 | FL_LONGEST_MATCH means we want the POSIX longest matching. | ||
1100 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the | ||
1101 | next place where we may want to try matching. | ||
1102 | Note that the matcher assume that the maching starts from the current | ||
1103 | index of the buffer. */ | ||
1104 | |||
1105 | static Idx | ||
1106 | internal_function | ||
1107 | check_matching (re_match_context_t *mctx, bool fl_longest_match, | ||
1108 | Idx *p_match_first) | ||
1109 | { | ||
1110 | const re_dfa_t *const dfa = mctx->dfa; | ||
1111 | reg_errcode_t err; | ||
1112 | Idx match = 0; | ||
1113 | Idx match_last = REG_MISSING; | ||
1114 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
1115 | re_dfastate_t *cur_state; | ||
1116 | bool at_init_state = p_match_first != NULL; | ||
1117 | Idx next_start_idx = cur_str_idx; | ||
1118 | |||
1119 | err = REG_NOERROR; | ||
1120 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); | ||
1121 | /* An initial state must not be NULL (invalid). */ | ||
1122 | if (BE (cur_state == NULL, 0)) | ||
1123 | { | ||
1124 | assert (err == REG_ESPACE); | ||
1125 | return REG_ERROR; | ||
1126 | } | ||
1127 | |||
1128 | if (mctx->state_log != NULL) | ||
1129 | { | ||
1130 | mctx->state_log[cur_str_idx] = cur_state; | ||
1131 | |||
1132 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them | ||
1133 | later. E.g. Processing back references. */ | ||
1134 | if (BE (dfa->nbackref, 0)) | ||
1135 | { | ||
1136 | at_init_state = false; | ||
1137 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); | ||
1138 | if (BE (err != REG_NOERROR, 0)) | ||
1139 | return err; | ||
1140 | |||
1141 | if (cur_state->has_backref) | ||
1142 | { | ||
1143 | err = transit_state_bkref (mctx, &cur_state->nodes); | ||
1144 | if (BE (err != REG_NOERROR, 0)) | ||
1145 | return err; | ||
1146 | } | ||
1147 | } | ||
1148 | } | ||
1149 | |||
1150 | /* If the RE accepts NULL string. */ | ||
1151 | if (BE (cur_state->halt, 0)) | ||
1152 | { | ||
1153 | if (!cur_state->has_constraint | ||
1154 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) | ||
1155 | { | ||
1156 | if (!fl_longest_match) | ||
1157 | return cur_str_idx; | ||
1158 | else | ||
1159 | { | ||
1160 | match_last = cur_str_idx; | ||
1161 | match = 1; | ||
1162 | } | ||
1163 | } | ||
1164 | } | ||
1165 | |||
1166 | while (!re_string_eoi (&mctx->input)) | ||
1167 | { | ||
1168 | re_dfastate_t *old_state = cur_state; | ||
1169 | Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1; | ||
1170 | |||
1171 | if (BE (next_char_idx >= mctx->input.bufs_len, 0) | ||
1172 | || (BE (next_char_idx >= mctx->input.valid_len, 0) | ||
1173 | && mctx->input.valid_len < mctx->input.len)) | ||
1174 | { | ||
1175 | err = extend_buffers (mctx); | ||
1176 | if (BE (err != REG_NOERROR, 0)) | ||
1177 | { | ||
1178 | assert (err == REG_ESPACE); | ||
1179 | return REG_ERROR; | ||
1180 | } | ||
1181 | } | ||
1182 | |||
1183 | cur_state = transit_state (&err, mctx, cur_state); | ||
1184 | if (mctx->state_log != NULL) | ||
1185 | cur_state = merge_state_with_log (&err, mctx, cur_state); | ||
1186 | |||
1187 | if (cur_state == NULL) | ||
1188 | { | ||
1189 | /* Reached the invalid state or an error. Try to recover a valid | ||
1190 | state using the state log, if available and if we have not | ||
1191 | already found a valid (even if not the longest) match. */ | ||
1192 | if (BE (err != REG_NOERROR, 0)) | ||
1193 | return REG_ERROR; | ||
1194 | |||
1195 | if (mctx->state_log == NULL | ||
1196 | || (match && !fl_longest_match) | ||
1197 | || (cur_state = find_recover_state (&err, mctx)) == NULL) | ||
1198 | break; | ||
1199 | } | ||
1200 | |||
1201 | if (BE (at_init_state, 0)) | ||
1202 | { | ||
1203 | if (old_state == cur_state) | ||
1204 | next_start_idx = next_char_idx; | ||
1205 | else | ||
1206 | at_init_state = false; | ||
1207 | } | ||
1208 | |||
1209 | if (cur_state->halt) | ||
1210 | { | ||
1211 | /* Reached a halt state. | ||
1212 | Check the halt state can satisfy the current context. */ | ||
1213 | if (!cur_state->has_constraint | ||
1214 | || check_halt_state_context (mctx, cur_state, | ||
1215 | re_string_cur_idx (&mctx->input))) | ||
1216 | { | ||
1217 | /* We found an appropriate halt state. */ | ||
1218 | match_last = re_string_cur_idx (&mctx->input); | ||
1219 | match = 1; | ||
1220 | |||
1221 | /* We found a match, do not modify match_first below. */ | ||
1222 | p_match_first = NULL; | ||
1223 | if (!fl_longest_match) | ||
1224 | break; | ||
1225 | } | ||
1226 | } | ||
1227 | } | ||
1228 | |||
1229 | if (p_match_first) | ||
1230 | *p_match_first += next_start_idx; | ||
1231 | |||
1232 | return match_last; | ||
1233 | } | ||
1234 | |||
1235 | /* Check NODE match the current context. */ | ||
1236 | |||
1237 | static bool | ||
1238 | internal_function | ||
1239 | check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context) | ||
1240 | { | ||
1241 | re_token_type_t type = dfa->nodes[node].type; | ||
1242 | unsigned int constraint = dfa->nodes[node].constraint; | ||
1243 | if (type != END_OF_RE) | ||
1244 | return false; | ||
1245 | if (!constraint) | ||
1246 | return true; | ||
1247 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) | ||
1248 | return false; | ||
1249 | return true; | ||
1250 | } | ||
1251 | |||
1252 | /* Check the halt state STATE match the current context. | ||
1253 | Return 0 if not match, if the node, STATE has, is a halt node and | ||
1254 | match the context, return the node. */ | ||
1255 | |||
1256 | static Idx | ||
1257 | internal_function | ||
1258 | check_halt_state_context (const re_match_context_t *mctx, | ||
1259 | const re_dfastate_t *state, Idx idx) | ||
1260 | { | ||
1261 | Idx i; | ||
1262 | unsigned int context; | ||
1263 | #ifdef DEBUG | ||
1264 | assert (state->halt); | ||
1265 | #endif | ||
1266 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); | ||
1267 | for (i = 0; i < state->nodes.nelem; ++i) | ||
1268 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) | ||
1269 | return state->nodes.elems[i]; | ||
1270 | return 0; | ||
1271 | } | ||
1272 | |||
1273 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA | ||
1274 | corresponding to the DFA). | ||
1275 | Return the destination node, and update EPS_VIA_NODES; | ||
1276 | return REG_MISSING in case of errors. */ | ||
1277 | |||
1278 | static Idx | ||
1279 | internal_function | ||
1280 | proceed_next_node (const re_match_context_t *mctx, Idx nregs, regmatch_t *regs, | ||
1281 | Idx *pidx, Idx node, re_node_set *eps_via_nodes, | ||
1282 | struct re_fail_stack_t *fs) | ||
1283 | { | ||
1284 | const re_dfa_t *const dfa = mctx->dfa; | ||
1285 | Idx i; | ||
1286 | bool ok; | ||
1287 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) | ||
1288 | { | ||
1289 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; | ||
1290 | re_node_set *edests = &dfa->edests[node]; | ||
1291 | Idx dest_node; | ||
1292 | ok = re_node_set_insert (eps_via_nodes, node); | ||
1293 | if (BE (! ok, 0)) | ||
1294 | return REG_ERROR; | ||
1295 | /* Pick up a valid destination, or return REG_MISSING if none | ||
1296 | is found. */ | ||
1297 | for (dest_node = REG_MISSING, i = 0; i < edests->nelem; ++i) | ||
1298 | { | ||
1299 | Idx candidate = edests->elems[i]; | ||
1300 | if (!re_node_set_contains (cur_nodes, candidate)) | ||
1301 | continue; | ||
1302 | if (dest_node == REG_MISSING) | ||
1303 | dest_node = candidate; | ||
1304 | |||
1305 | else | ||
1306 | { | ||
1307 | /* In order to avoid infinite loop like "(a*)*", return the second | ||
1308 | epsilon-transition if the first was already considered. */ | ||
1309 | if (re_node_set_contains (eps_via_nodes, dest_node)) | ||
1310 | return candidate; | ||
1311 | |||
1312 | /* Otherwise, push the second epsilon-transition on the fail stack. */ | ||
1313 | else if (fs != NULL | ||
1314 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, | ||
1315 | eps_via_nodes)) | ||
1316 | return REG_ERROR; | ||
1317 | |||
1318 | /* We know we are going to exit. */ | ||
1319 | break; | ||
1320 | } | ||
1321 | } | ||
1322 | return dest_node; | ||
1323 | } | ||
1324 | else | ||
1325 | { | ||
1326 | Idx naccepted = 0; | ||
1327 | re_token_type_t type = dfa->nodes[node].type; | ||
1328 | |||
1329 | #ifdef RE_ENABLE_I18N | ||
1330 | if (dfa->nodes[node].accept_mb) | ||
1331 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); | ||
1332 | else | ||
1333 | #endif /* RE_ENABLE_I18N */ | ||
1334 | if (type == OP_BACK_REF) | ||
1335 | { | ||
1336 | Idx subexp_idx = dfa->nodes[node].opr.idx + 1; | ||
1337 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; | ||
1338 | if (fs != NULL) | ||
1339 | { | ||
1340 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) | ||
1341 | return REG_MISSING; | ||
1342 | else if (naccepted) | ||
1343 | { | ||
1344 | char *buf = (char *) re_string_get_buffer (&mctx->input); | ||
1345 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, | ||
1346 | naccepted) != 0) | ||
1347 | return REG_MISSING; | ||
1348 | } | ||
1349 | } | ||
1350 | |||
1351 | if (naccepted == 0) | ||
1352 | { | ||
1353 | Idx dest_node; | ||
1354 | ok = re_node_set_insert (eps_via_nodes, node); | ||
1355 | if (BE (! ok, 0)) | ||
1356 | return REG_ERROR; | ||
1357 | dest_node = dfa->edests[node].elems[0]; | ||
1358 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, | ||
1359 | dest_node)) | ||
1360 | return dest_node; | ||
1361 | } | ||
1362 | } | ||
1363 | |||
1364 | if (naccepted != 0 | ||
1365 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) | ||
1366 | { | ||
1367 | Idx dest_node = dfa->nexts[node]; | ||
1368 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; | ||
1369 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL | ||
1370 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, | ||
1371 | dest_node))) | ||
1372 | return REG_MISSING; | ||
1373 | re_node_set_empty (eps_via_nodes); | ||
1374 | return dest_node; | ||
1375 | } | ||
1376 | } | ||
1377 | return REG_MISSING; | ||
1378 | } | ||
1379 | |||
1380 | static reg_errcode_t | ||
1381 | internal_function | ||
1382 | push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node, | ||
1383 | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | ||
1384 | { | ||
1385 | reg_errcode_t err; | ||
1386 | Idx num = fs->num++; | ||
1387 | if (fs->num == fs->alloc) | ||
1388 | { | ||
1389 | struct re_fail_stack_ent_t *new_array; | ||
1390 | new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t) | ||
1391 | * fs->alloc * 2)); | ||
1392 | if (new_array == NULL) | ||
1393 | return REG_ESPACE; | ||
1394 | fs->alloc *= 2; | ||
1395 | fs->stack = new_array; | ||
1396 | } | ||
1397 | fs->stack[num].idx = str_idx; | ||
1398 | fs->stack[num].node = dest_node; | ||
1399 | fs->stack[num].regs = re_malloc (regmatch_t, nregs); | ||
1400 | if (fs->stack[num].regs == NULL) | ||
1401 | return REG_ESPACE; | ||
1402 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); | ||
1403 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); | ||
1404 | return err; | ||
1405 | } | ||
1406 | |||
1407 | static Idx | ||
1408 | internal_function | ||
1409 | pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, Idx nregs, | ||
1410 | regmatch_t *regs, re_node_set *eps_via_nodes) | ||
1411 | { | ||
1412 | Idx num = --fs->num; | ||
1413 | assert (REG_VALID_INDEX (num)); | ||
1414 | *pidx = fs->stack[num].idx; | ||
1415 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); | ||
1416 | re_node_set_free (eps_via_nodes); | ||
1417 | re_free (fs->stack[num].regs); | ||
1418 | *eps_via_nodes = fs->stack[num].eps_via_nodes; | ||
1419 | return fs->stack[num].node; | ||
1420 | } | ||
1421 | |||
1422 | /* Set the positions where the subexpressions are starts/ends to registers | ||
1423 | PMATCH. | ||
1424 | Note: We assume that pmatch[0] is already set, and | ||
1425 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ | ||
1426 | |||
1427 | static reg_errcode_t | ||
1428 | internal_function | ||
1429 | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, | ||
1430 | regmatch_t *pmatch, bool fl_backtrack) | ||
1431 | { | ||
1432 | const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | ||
1433 | Idx idx, cur_node; | ||
1434 | re_node_set eps_via_nodes; | ||
1435 | struct re_fail_stack_t *fs; | ||
1436 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; | ||
1437 | regmatch_t *prev_idx_match; | ||
1438 | bool prev_idx_match_malloced = false; | ||
1439 | |||
1440 | #ifdef DEBUG | ||
1441 | assert (nmatch > 1); | ||
1442 | assert (mctx->state_log != NULL); | ||
1443 | #endif | ||
1444 | if (fl_backtrack) | ||
1445 | { | ||
1446 | fs = &fs_body; | ||
1447 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); | ||
1448 | if (fs->stack == NULL) | ||
1449 | return REG_ESPACE; | ||
1450 | } | ||
1451 | else | ||
1452 | fs = NULL; | ||
1453 | |||
1454 | cur_node = dfa->init_node; | ||
1455 | re_node_set_init_empty (&eps_via_nodes); | ||
1456 | |||
1457 | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) | ||
1458 | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); | ||
1459 | else | ||
1460 | { | ||
1461 | prev_idx_match = re_malloc (regmatch_t, nmatch); | ||
1462 | if (prev_idx_match == NULL) | ||
1463 | { | ||
1464 | free_fail_stack_return (fs); | ||
1465 | return REG_ESPACE; | ||
1466 | } | ||
1467 | prev_idx_match_malloced = true; | ||
1468 | } | ||
1469 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | ||
1470 | |||
1471 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) | ||
1472 | { | ||
1473 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); | ||
1474 | |||
1475 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) | ||
1476 | { | ||
1477 | Idx reg_idx; | ||
1478 | if (fs) | ||
1479 | { | ||
1480 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | ||
1481 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) | ||
1482 | break; | ||
1483 | if (reg_idx == nmatch) | ||
1484 | { | ||
1485 | re_node_set_free (&eps_via_nodes); | ||
1486 | if (prev_idx_match_malloced) | ||
1487 | re_free (prev_idx_match); | ||
1488 | return free_fail_stack_return (fs); | ||
1489 | } | ||
1490 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | ||
1491 | &eps_via_nodes); | ||
1492 | } | ||
1493 | else | ||
1494 | { | ||
1495 | re_node_set_free (&eps_via_nodes); | ||
1496 | if (prev_idx_match_malloced) | ||
1497 | re_free (prev_idx_match); | ||
1498 | return REG_NOERROR; | ||
1499 | } | ||
1500 | } | ||
1501 | |||
1502 | /* Proceed to next node. */ | ||
1503 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, | ||
1504 | &eps_via_nodes, fs); | ||
1505 | |||
1506 | if (BE (! REG_VALID_INDEX (cur_node), 0)) | ||
1507 | { | ||
1508 | if (BE (cur_node == REG_ERROR, 0)) | ||
1509 | { | ||
1510 | re_node_set_free (&eps_via_nodes); | ||
1511 | if (prev_idx_match_malloced) | ||
1512 | re_free (prev_idx_match); | ||
1513 | free_fail_stack_return (fs); | ||
1514 | return REG_ESPACE; | ||
1515 | } | ||
1516 | if (fs) | ||
1517 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | ||
1518 | &eps_via_nodes); | ||
1519 | else | ||
1520 | { | ||
1521 | re_node_set_free (&eps_via_nodes); | ||
1522 | if (prev_idx_match_malloced) | ||
1523 | re_free (prev_idx_match); | ||
1524 | return REG_NOMATCH; | ||
1525 | } | ||
1526 | } | ||
1527 | } | ||
1528 | re_node_set_free (&eps_via_nodes); | ||
1529 | if (prev_idx_match_malloced) | ||
1530 | re_free (prev_idx_match); | ||
1531 | return free_fail_stack_return (fs); | ||
1532 | } | ||
1533 | |||
1534 | static reg_errcode_t | ||
1535 | internal_function | ||
1536 | free_fail_stack_return (struct re_fail_stack_t *fs) | ||
1537 | { | ||
1538 | if (fs) | ||
1539 | { | ||
1540 | Idx fs_idx; | ||
1541 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) | ||
1542 | { | ||
1543 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); | ||
1544 | re_free (fs->stack[fs_idx].regs); | ||
1545 | } | ||
1546 | re_free (fs->stack); | ||
1547 | } | ||
1548 | return REG_NOERROR; | ||
1549 | } | ||
1550 | |||
1551 | static void | ||
1552 | internal_function | ||
1553 | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | ||
1554 | regmatch_t *prev_idx_match, Idx cur_node, Idx cur_idx, Idx nmatch) | ||
1555 | { | ||
1556 | int type = dfa->nodes[cur_node].type; | ||
1557 | if (type == OP_OPEN_SUBEXP) | ||
1558 | { | ||
1559 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; | ||
1560 | |||
1561 | /* We are at the first node of this sub expression. */ | ||
1562 | if (reg_num < nmatch) | ||
1563 | { | ||
1564 | pmatch[reg_num].rm_so = cur_idx; | ||
1565 | pmatch[reg_num].rm_eo = -1; | ||
1566 | } | ||
1567 | } | ||
1568 | else if (type == OP_CLOSE_SUBEXP) | ||
1569 | { | ||
1570 | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; | ||
1571 | if (reg_num < nmatch) | ||
1572 | { | ||
1573 | /* We are at the last node of this sub expression. */ | ||
1574 | if (pmatch[reg_num].rm_so < cur_idx) | ||
1575 | { | ||
1576 | pmatch[reg_num].rm_eo = cur_idx; | ||
1577 | /* This is a non-empty match or we are not inside an optional | ||
1578 | subexpression. Accept this right away. */ | ||
1579 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | ||
1580 | } | ||
1581 | else | ||
1582 | { | ||
1583 | if (dfa->nodes[cur_node].opt_subexp | ||
1584 | && prev_idx_match[reg_num].rm_so != -1) | ||
1585 | /* We transited through an empty match for an optional | ||
1586 | subexpression, like (a?)*, and this is not the subexp's | ||
1587 | first match. Copy back the old content of the registers | ||
1588 | so that matches of an inner subexpression are undone as | ||
1589 | well, like in ((a?))*. */ | ||
1590 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); | ||
1591 | else | ||
1592 | /* We completed a subexpression, but it may be part of | ||
1593 | an optional one, so do not update PREV_IDX_MATCH. */ | ||
1594 | pmatch[reg_num].rm_eo = cur_idx; | ||
1595 | } | ||
1596 | } | ||
1597 | } | ||
1598 | } | ||
1599 | |||
1600 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 | ||
1601 | and sift the nodes in each states according to the following rules. | ||
1602 | Updated state_log will be wrote to STATE_LOG. | ||
1603 | |||
1604 | Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... | ||
1605 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): | ||
1606 | If `a' isn't the LAST_NODE and `a' can't epsilon transit to | ||
1607 | the LAST_NODE, we throw away the node `a'. | ||
1608 | 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts | ||
1609 | string `s' and transit to `b': | ||
1610 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw | ||
1611 | away the node `a'. | ||
1612 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is | ||
1613 | thrown away, we throw away the node `a'. | ||
1614 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': | ||
1615 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the | ||
1616 | node `a'. | ||
1617 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, | ||
1618 | we throw away the node `a'. */ | ||
1619 | |||
1620 | #define STATE_NODE_CONTAINS(state,node) \ | ||
1621 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) | ||
1622 | |||
1623 | static reg_errcode_t | ||
1624 | internal_function | ||
1625 | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) | ||
1626 | { | ||
1627 | reg_errcode_t err; | ||
1628 | int null_cnt = 0; | ||
1629 | Idx str_idx = sctx->last_str_idx; | ||
1630 | re_node_set cur_dest; | ||
1631 | |||
1632 | #ifdef DEBUG | ||
1633 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); | ||
1634 | #endif | ||
1635 | |||
1636 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon | ||
1637 | transit to the last_node and the last_node itself. */ | ||
1638 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); | ||
1639 | if (BE (err != REG_NOERROR, 0)) | ||
1640 | return err; | ||
1641 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | ||
1642 | if (BE (err != REG_NOERROR, 0)) | ||
1643 | goto free_return; | ||
1644 | |||
1645 | /* Then check each states in the state_log. */ | ||
1646 | while (str_idx > 0) | ||
1647 | { | ||
1648 | /* Update counters. */ | ||
1649 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; | ||
1650 | if (null_cnt > mctx->max_mb_elem_len) | ||
1651 | { | ||
1652 | memset (sctx->sifted_states, '\0', | ||
1653 | sizeof (re_dfastate_t *) * str_idx); | ||
1654 | re_node_set_free (&cur_dest); | ||
1655 | return REG_NOERROR; | ||
1656 | } | ||
1657 | re_node_set_empty (&cur_dest); | ||
1658 | --str_idx; | ||
1659 | |||
1660 | if (mctx->state_log[str_idx]) | ||
1661 | { | ||
1662 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); | ||
1663 | if (BE (err != REG_NOERROR, 0)) | ||
1664 | goto free_return; | ||
1665 | } | ||
1666 | |||
1667 | /* Add all the nodes which satisfy the following conditions: | ||
1668 | - It can epsilon transit to a node in CUR_DEST. | ||
1669 | - It is in CUR_SRC. | ||
1670 | And update state_log. */ | ||
1671 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | ||
1672 | if (BE (err != REG_NOERROR, 0)) | ||
1673 | goto free_return; | ||
1674 | } | ||
1675 | err = REG_NOERROR; | ||
1676 | free_return: | ||
1677 | re_node_set_free (&cur_dest); | ||
1678 | return err; | ||
1679 | } | ||
1680 | |||
1681 | static reg_errcode_t | ||
1682 | internal_function | ||
1683 | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, | ||
1684 | Idx str_idx, re_node_set *cur_dest) | ||
1685 | { | ||
1686 | const re_dfa_t *const dfa = mctx->dfa; | ||
1687 | const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; | ||
1688 | Idx i; | ||
1689 | |||
1690 | /* Then build the next sifted state. | ||
1691 | We build the next sifted state on `cur_dest', and update | ||
1692 | `sifted_states[str_idx]' with `cur_dest'. | ||
1693 | Note: | ||
1694 | `cur_dest' is the sifted state from `state_log[str_idx + 1]'. | ||
1695 | `cur_src' points the node_set of the old `state_log[str_idx]' | ||
1696 | (with the epsilon nodes pre-filtered out). */ | ||
1697 | for (i = 0; i < cur_src->nelem; i++) | ||
1698 | { | ||
1699 | Idx prev_node = cur_src->elems[i]; | ||
1700 | int naccepted = 0; | ||
1701 | bool ok; | ||
1702 | |||
1703 | #ifdef DEBUG | ||
1704 | re_token_type_t type = dfa->nodes[prev_node].type; | ||
1705 | assert (!IS_EPSILON_NODE (type)); | ||
1706 | #endif | ||
1707 | #ifdef RE_ENABLE_I18N | ||
1708 | /* If the node may accept `multi byte'. */ | ||
1709 | if (dfa->nodes[prev_node].accept_mb) | ||
1710 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, | ||
1711 | str_idx, sctx->last_str_idx); | ||
1712 | #endif /* RE_ENABLE_I18N */ | ||
1713 | |||
1714 | /* We don't check backreferences here. | ||
1715 | See update_cur_sifted_state(). */ | ||
1716 | if (!naccepted | ||
1717 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) | ||
1718 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], | ||
1719 | dfa->nexts[prev_node])) | ||
1720 | naccepted = 1; | ||
1721 | |||
1722 | if (naccepted == 0) | ||
1723 | continue; | ||
1724 | |||
1725 | if (sctx->limits.nelem) | ||
1726 | { | ||
1727 | Idx to_idx = str_idx + naccepted; | ||
1728 | if (check_dst_limits (mctx, &sctx->limits, | ||
1729 | dfa->nexts[prev_node], to_idx, | ||
1730 | prev_node, str_idx)) | ||
1731 | continue; | ||
1732 | } | ||
1733 | ok = re_node_set_insert (cur_dest, prev_node); | ||
1734 | if (BE (! ok, 0)) | ||
1735 | return REG_ESPACE; | ||
1736 | } | ||
1737 | |||
1738 | return REG_NOERROR; | ||
1739 | } | ||
1740 | |||
1741 | /* Helper functions. */ | ||
1742 | |||
1743 | static reg_errcode_t | ||
1744 | internal_function | ||
1745 | clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx) | ||
1746 | { | ||
1747 | Idx top = mctx->state_log_top; | ||
1748 | |||
1749 | if (next_state_log_idx >= mctx->input.bufs_len | ||
1750 | || (next_state_log_idx >= mctx->input.valid_len | ||
1751 | && mctx->input.valid_len < mctx->input.len)) | ||
1752 | { | ||
1753 | reg_errcode_t err; | ||
1754 | err = extend_buffers (mctx); | ||
1755 | if (BE (err != REG_NOERROR, 0)) | ||
1756 | return err; | ||
1757 | } | ||
1758 | |||
1759 | if (top < next_state_log_idx) | ||
1760 | { | ||
1761 | memset (mctx->state_log + top + 1, '\0', | ||
1762 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); | ||
1763 | mctx->state_log_top = next_state_log_idx; | ||
1764 | } | ||
1765 | return REG_NOERROR; | ||
1766 | } | ||
1767 | |||
1768 | static reg_errcode_t | ||
1769 | internal_function | ||
1770 | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, | ||
1771 | re_dfastate_t **src, Idx num) | ||
1772 | { | ||
1773 | Idx st_idx; | ||
1774 | reg_errcode_t err; | ||
1775 | for (st_idx = 0; st_idx < num; ++st_idx) | ||
1776 | { | ||
1777 | if (dst[st_idx] == NULL) | ||
1778 | dst[st_idx] = src[st_idx]; | ||
1779 | else if (src[st_idx] != NULL) | ||
1780 | { | ||
1781 | re_node_set merged_set; | ||
1782 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, | ||
1783 | &src[st_idx]->nodes); | ||
1784 | if (BE (err != REG_NOERROR, 0)) | ||
1785 | return err; | ||
1786 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); | ||
1787 | re_node_set_free (&merged_set); | ||
1788 | if (BE (err != REG_NOERROR, 0)) | ||
1789 | return err; | ||
1790 | } | ||
1791 | } | ||
1792 | return REG_NOERROR; | ||
1793 | } | ||
1794 | |||
1795 | static reg_errcode_t | ||
1796 | internal_function | ||
1797 | update_cur_sifted_state (const re_match_context_t *mctx, | ||
1798 | re_sift_context_t *sctx, Idx str_idx, | ||
1799 | re_node_set *dest_nodes) | ||
1800 | { | ||
1801 | const re_dfa_t *const dfa = mctx->dfa; | ||
1802 | reg_errcode_t err = REG_NOERROR; | ||
1803 | const re_node_set *candidates; | ||
1804 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL | ||
1805 | : &mctx->state_log[str_idx]->nodes); | ||
1806 | |||
1807 | if (dest_nodes->nelem == 0) | ||
1808 | sctx->sifted_states[str_idx] = NULL; | ||
1809 | else | ||
1810 | { | ||
1811 | if (candidates) | ||
1812 | { | ||
1813 | /* At first, add the nodes which can epsilon transit to a node in | ||
1814 | DEST_NODE. */ | ||
1815 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); | ||
1816 | if (BE (err != REG_NOERROR, 0)) | ||
1817 | return err; | ||
1818 | |||
1819 | /* Then, check the limitations in the current sift_context. */ | ||
1820 | if (sctx->limits.nelem) | ||
1821 | { | ||
1822 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, | ||
1823 | mctx->bkref_ents, str_idx); | ||
1824 | if (BE (err != REG_NOERROR, 0)) | ||
1825 | return err; | ||
1826 | } | ||
1827 | } | ||
1828 | |||
1829 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); | ||
1830 | if (BE (err != REG_NOERROR, 0)) | ||
1831 | return err; | ||
1832 | } | ||
1833 | |||
1834 | if (candidates && mctx->state_log[str_idx]->has_backref) | ||
1835 | { | ||
1836 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); | ||
1837 | if (BE (err != REG_NOERROR, 0)) | ||
1838 | return err; | ||
1839 | } | ||
1840 | return REG_NOERROR; | ||
1841 | } | ||
1842 | |||
1843 | static reg_errcode_t | ||
1844 | internal_function | ||
1845 | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, | ||
1846 | const re_node_set *candidates) | ||
1847 | { | ||
1848 | reg_errcode_t err = REG_NOERROR; | ||
1849 | Idx i; | ||
1850 | |||
1851 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); | ||
1852 | if (BE (err != REG_NOERROR, 0)) | ||
1853 | return err; | ||
1854 | |||
1855 | if (!state->inveclosure.alloc) | ||
1856 | { | ||
1857 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); | ||
1858 | if (BE (err != REG_NOERROR, 0)) | ||
1859 | return REG_ESPACE; | ||
1860 | for (i = 0; i < dest_nodes->nelem; i++) | ||
1861 | re_node_set_merge (&state->inveclosure, | ||
1862 | dfa->inveclosures + dest_nodes->elems[i]); | ||
1863 | } | ||
1864 | return re_node_set_add_intersect (dest_nodes, candidates, | ||
1865 | &state->inveclosure); | ||
1866 | } | ||
1867 | |||
1868 | static reg_errcode_t | ||
1869 | internal_function | ||
1870 | sub_epsilon_src_nodes (const re_dfa_t *dfa, Idx node, re_node_set *dest_nodes, | ||
1871 | const re_node_set *candidates) | ||
1872 | { | ||
1873 | Idx ecl_idx; | ||
1874 | reg_errcode_t err; | ||
1875 | re_node_set *inv_eclosure = dfa->inveclosures + node; | ||
1876 | re_node_set except_nodes; | ||
1877 | re_node_set_init_empty (&except_nodes); | ||
1878 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | ||
1879 | { | ||
1880 | Idx cur_node = inv_eclosure->elems[ecl_idx]; | ||
1881 | if (cur_node == node) | ||
1882 | continue; | ||
1883 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) | ||
1884 | { | ||
1885 | Idx edst1 = dfa->edests[cur_node].elems[0]; | ||
1886 | Idx edst2 = ((dfa->edests[cur_node].nelem > 1) | ||
1887 | ? dfa->edests[cur_node].elems[1] : REG_MISSING); | ||
1888 | if ((!re_node_set_contains (inv_eclosure, edst1) | ||
1889 | && re_node_set_contains (dest_nodes, edst1)) | ||
1890 | || (REG_VALID_NONZERO_INDEX (edst2) | ||
1891 | && !re_node_set_contains (inv_eclosure, edst2) | ||
1892 | && re_node_set_contains (dest_nodes, edst2))) | ||
1893 | { | ||
1894 | err = re_node_set_add_intersect (&except_nodes, candidates, | ||
1895 | dfa->inveclosures + cur_node); | ||
1896 | if (BE (err != REG_NOERROR, 0)) | ||
1897 | { | ||
1898 | re_node_set_free (&except_nodes); | ||
1899 | return err; | ||
1900 | } | ||
1901 | } | ||
1902 | } | ||
1903 | } | ||
1904 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | ||
1905 | { | ||
1906 | Idx cur_node = inv_eclosure->elems[ecl_idx]; | ||
1907 | if (!re_node_set_contains (&except_nodes, cur_node)) | ||
1908 | { | ||
1909 | Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1; | ||
1910 | re_node_set_remove_at (dest_nodes, idx); | ||
1911 | } | ||
1912 | } | ||
1913 | re_node_set_free (&except_nodes); | ||
1914 | return REG_NOERROR; | ||
1915 | } | ||
1916 | |||
1917 | static bool | ||
1918 | internal_function | ||
1919 | check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits, | ||
1920 | Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx) | ||
1921 | { | ||
1922 | const re_dfa_t *const dfa = mctx->dfa; | ||
1923 | Idx lim_idx, src_pos, dst_pos; | ||
1924 | |||
1925 | Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); | ||
1926 | Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); | ||
1927 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | ||
1928 | { | ||
1929 | Idx subexp_idx; | ||
1930 | struct re_backref_cache_entry *ent; | ||
1931 | ent = mctx->bkref_ents + limits->elems[lim_idx]; | ||
1932 | subexp_idx = dfa->nodes[ent->node].opr.idx; | ||
1933 | |||
1934 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | ||
1935 | subexp_idx, dst_node, dst_idx, | ||
1936 | dst_bkref_idx); | ||
1937 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | ||
1938 | subexp_idx, src_node, src_idx, | ||
1939 | src_bkref_idx); | ||
1940 | |||
1941 | /* In case of: | ||
1942 | <src> <dst> ( <subexp> ) | ||
1943 | ( <subexp> ) <src> <dst> | ||
1944 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ | ||
1945 | if (src_pos == dst_pos) | ||
1946 | continue; /* This is unrelated limitation. */ | ||
1947 | else | ||
1948 | return true; | ||
1949 | } | ||
1950 | return false; | ||
1951 | } | ||
1952 | |||
1953 | static int | ||
1954 | internal_function | ||
1955 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, | ||
1956 | Idx subexp_idx, Idx from_node, Idx bkref_idx) | ||
1957 | { | ||
1958 | const re_dfa_t *const dfa = mctx->dfa; | ||
1959 | const re_node_set *eclosures = dfa->eclosures + from_node; | ||
1960 | Idx node_idx; | ||
1961 | |||
1962 | /* Else, we are on the boundary: examine the nodes on the epsilon | ||
1963 | closure. */ | ||
1964 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) | ||
1965 | { | ||
1966 | Idx node = eclosures->elems[node_idx]; | ||
1967 | switch (dfa->nodes[node].type) | ||
1968 | { | ||
1969 | case OP_BACK_REF: | ||
1970 | if (bkref_idx != REG_MISSING) | ||
1971 | { | ||
1972 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; | ||
1973 | do | ||
1974 | { | ||
1975 | Idx dst; | ||
1976 | int cpos; | ||
1977 | |||
1978 | if (ent->node != node) | ||
1979 | continue; | ||
1980 | |||
1981 | if (subexp_idx < BITSET_WORD_BITS | ||
1982 | && !(ent->eps_reachable_subexps_map | ||
1983 | & ((bitset_word_t) 1 << subexp_idx))) | ||
1984 | continue; | ||
1985 | |||
1986 | /* Recurse trying to reach the OP_OPEN_SUBEXP and | ||
1987 | OP_CLOSE_SUBEXP cases below. But, if the | ||
1988 | destination node is the same node as the source | ||
1989 | node, don't recurse because it would cause an | ||
1990 | infinite loop: a regex that exhibits this behavior | ||
1991 | is ()\1*\1* */ | ||
1992 | dst = dfa->edests[node].elems[0]; | ||
1993 | if (dst == from_node) | ||
1994 | { | ||
1995 | if (boundaries & 1) | ||
1996 | return -1; | ||
1997 | else /* if (boundaries & 2) */ | ||
1998 | return 0; | ||
1999 | } | ||
2000 | |||
2001 | cpos = | ||
2002 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | ||
2003 | dst, bkref_idx); | ||
2004 | if (cpos == -1 /* && (boundaries & 1) */) | ||
2005 | return -1; | ||
2006 | if (cpos == 0 && (boundaries & 2)) | ||
2007 | return 0; | ||
2008 | |||
2009 | if (subexp_idx < BITSET_WORD_BITS) | ||
2010 | ent->eps_reachable_subexps_map | ||
2011 | &= ~((bitset_word_t) 1 << subexp_idx); | ||
2012 | } | ||
2013 | while (ent++->more); | ||
2014 | } | ||
2015 | break; | ||
2016 | |||
2017 | case OP_OPEN_SUBEXP: | ||
2018 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) | ||
2019 | return -1; | ||
2020 | break; | ||
2021 | |||
2022 | case OP_CLOSE_SUBEXP: | ||
2023 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) | ||
2024 | return 0; | ||
2025 | break; | ||
2026 | |||
2027 | default: | ||
2028 | break; | ||
2029 | } | ||
2030 | } | ||
2031 | |||
2032 | return (boundaries & 2) ? 1 : 0; | ||
2033 | } | ||
2034 | |||
2035 | static int | ||
2036 | internal_function | ||
2037 | check_dst_limits_calc_pos (const re_match_context_t *mctx, Idx limit, | ||
2038 | Idx subexp_idx, Idx from_node, Idx str_idx, | ||
2039 | Idx bkref_idx) | ||
2040 | { | ||
2041 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; | ||
2042 | int boundaries; | ||
2043 | |||
2044 | /* If we are outside the range of the subexpression, return -1 or 1. */ | ||
2045 | if (str_idx < lim->subexp_from) | ||
2046 | return -1; | ||
2047 | |||
2048 | if (lim->subexp_to < str_idx) | ||
2049 | return 1; | ||
2050 | |||
2051 | /* If we are within the subexpression, return 0. */ | ||
2052 | boundaries = (str_idx == lim->subexp_from); | ||
2053 | boundaries |= (str_idx == lim->subexp_to) << 1; | ||
2054 | if (boundaries == 0) | ||
2055 | return 0; | ||
2056 | |||
2057 | /* Else, examine epsilon closure. */ | ||
2058 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | ||
2059 | from_node, bkref_idx); | ||
2060 | } | ||
2061 | |||
2062 | /* Check the limitations of sub expressions LIMITS, and remove the nodes | ||
2063 | which are against limitations from DEST_NODES. */ | ||
2064 | |||
2065 | static reg_errcode_t | ||
2066 | internal_function | ||
2067 | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, | ||
2068 | const re_node_set *candidates, re_node_set *limits, | ||
2069 | struct re_backref_cache_entry *bkref_ents, Idx str_idx) | ||
2070 | { | ||
2071 | reg_errcode_t err; | ||
2072 | Idx node_idx, lim_idx; | ||
2073 | |||
2074 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | ||
2075 | { | ||
2076 | Idx subexp_idx; | ||
2077 | struct re_backref_cache_entry *ent; | ||
2078 | ent = bkref_ents + limits->elems[lim_idx]; | ||
2079 | |||
2080 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) | ||
2081 | continue; /* This is unrelated limitation. */ | ||
2082 | |||
2083 | subexp_idx = dfa->nodes[ent->node].opr.idx; | ||
2084 | if (ent->subexp_to == str_idx) | ||
2085 | { | ||
2086 | Idx ops_node = REG_MISSING; | ||
2087 | Idx cls_node = REG_MISSING; | ||
2088 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2089 | { | ||
2090 | Idx node = dest_nodes->elems[node_idx]; | ||
2091 | re_token_type_t type = dfa->nodes[node].type; | ||
2092 | if (type == OP_OPEN_SUBEXP | ||
2093 | && subexp_idx == dfa->nodes[node].opr.idx) | ||
2094 | ops_node = node; | ||
2095 | else if (type == OP_CLOSE_SUBEXP | ||
2096 | && subexp_idx == dfa->nodes[node].opr.idx) | ||
2097 | cls_node = node; | ||
2098 | } | ||
2099 | |||
2100 | /* Check the limitation of the open subexpression. */ | ||
2101 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ | ||
2102 | if (REG_VALID_INDEX (ops_node)) | ||
2103 | { | ||
2104 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, | ||
2105 | candidates); | ||
2106 | if (BE (err != REG_NOERROR, 0)) | ||
2107 | return err; | ||
2108 | } | ||
2109 | |||
2110 | /* Check the limitation of the close subexpression. */ | ||
2111 | if (REG_VALID_INDEX (cls_node)) | ||
2112 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2113 | { | ||
2114 | Idx node = dest_nodes->elems[node_idx]; | ||
2115 | if (!re_node_set_contains (dfa->inveclosures + node, | ||
2116 | cls_node) | ||
2117 | && !re_node_set_contains (dfa->eclosures + node, | ||
2118 | cls_node)) | ||
2119 | { | ||
2120 | /* It is against this limitation. | ||
2121 | Remove it form the current sifted state. */ | ||
2122 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | ||
2123 | candidates); | ||
2124 | if (BE (err != REG_NOERROR, 0)) | ||
2125 | return err; | ||
2126 | --node_idx; | ||
2127 | } | ||
2128 | } | ||
2129 | } | ||
2130 | else /* (ent->subexp_to != str_idx) */ | ||
2131 | { | ||
2132 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2133 | { | ||
2134 | Idx node = dest_nodes->elems[node_idx]; | ||
2135 | re_token_type_t type = dfa->nodes[node].type; | ||
2136 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) | ||
2137 | { | ||
2138 | if (subexp_idx != dfa->nodes[node].opr.idx) | ||
2139 | continue; | ||
2140 | /* It is against this limitation. | ||
2141 | Remove it form the current sifted state. */ | ||
2142 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | ||
2143 | candidates); | ||
2144 | if (BE (err != REG_NOERROR, 0)) | ||
2145 | return err; | ||
2146 | } | ||
2147 | } | ||
2148 | } | ||
2149 | } | ||
2150 | return REG_NOERROR; | ||
2151 | } | ||
2152 | |||
2153 | static reg_errcode_t | ||
2154 | internal_function | ||
2155 | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, | ||
2156 | Idx str_idx, const re_node_set *candidates) | ||
2157 | { | ||
2158 | const re_dfa_t *const dfa = mctx->dfa; | ||
2159 | reg_errcode_t err; | ||
2160 | Idx node_idx, node; | ||
2161 | re_sift_context_t local_sctx; | ||
2162 | Idx first_idx = search_cur_bkref_entry (mctx, str_idx); | ||
2163 | |||
2164 | if (first_idx == REG_MISSING) | ||
2165 | return REG_NOERROR; | ||
2166 | |||
2167 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ | ||
2168 | |||
2169 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) | ||
2170 | { | ||
2171 | Idx enabled_idx; | ||
2172 | re_token_type_t type; | ||
2173 | struct re_backref_cache_entry *entry; | ||
2174 | node = candidates->elems[node_idx]; | ||
2175 | type = dfa->nodes[node].type; | ||
2176 | /* Avoid infinite loop for the REs like "()\1+". */ | ||
2177 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) | ||
2178 | continue; | ||
2179 | if (type != OP_BACK_REF) | ||
2180 | continue; | ||
2181 | |||
2182 | entry = mctx->bkref_ents + first_idx; | ||
2183 | enabled_idx = first_idx; | ||
2184 | do | ||
2185 | { | ||
2186 | Idx subexp_len; | ||
2187 | Idx to_idx; | ||
2188 | Idx dst_node; | ||
2189 | bool ok; | ||
2190 | re_dfastate_t *cur_state; | ||
2191 | |||
2192 | if (entry->node != node) | ||
2193 | continue; | ||
2194 | subexp_len = entry->subexp_to - entry->subexp_from; | ||
2195 | to_idx = str_idx + subexp_len; | ||
2196 | dst_node = (subexp_len ? dfa->nexts[node] | ||
2197 | : dfa->edests[node].elems[0]); | ||
2198 | |||
2199 | if (to_idx > sctx->last_str_idx | ||
2200 | || sctx->sifted_states[to_idx] == NULL | ||
2201 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) | ||
2202 | || check_dst_limits (mctx, &sctx->limits, node, | ||
2203 | str_idx, dst_node, to_idx)) | ||
2204 | continue; | ||
2205 | |||
2206 | if (local_sctx.sifted_states == NULL) | ||
2207 | { | ||
2208 | local_sctx = *sctx; | ||
2209 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); | ||
2210 | if (BE (err != REG_NOERROR, 0)) | ||
2211 | goto free_return; | ||
2212 | } | ||
2213 | local_sctx.last_node = node; | ||
2214 | local_sctx.last_str_idx = str_idx; | ||
2215 | ok = re_node_set_insert (&local_sctx.limits, enabled_idx); | ||
2216 | if (BE (! ok, 0)) | ||
2217 | { | ||
2218 | err = REG_ESPACE; | ||
2219 | goto free_return; | ||
2220 | } | ||
2221 | cur_state = local_sctx.sifted_states[str_idx]; | ||
2222 | err = sift_states_backward (mctx, &local_sctx); | ||
2223 | if (BE (err != REG_NOERROR, 0)) | ||
2224 | goto free_return; | ||
2225 | if (sctx->limited_states != NULL) | ||
2226 | { | ||
2227 | err = merge_state_array (dfa, sctx->limited_states, | ||
2228 | local_sctx.sifted_states, | ||
2229 | str_idx + 1); | ||
2230 | if (BE (err != REG_NOERROR, 0)) | ||
2231 | goto free_return; | ||
2232 | } | ||
2233 | local_sctx.sifted_states[str_idx] = cur_state; | ||
2234 | re_node_set_remove (&local_sctx.limits, enabled_idx); | ||
2235 | |||
2236 | /* mctx->bkref_ents may have changed, reload the pointer. */ | ||
2237 | entry = mctx->bkref_ents + enabled_idx; | ||
2238 | } | ||
2239 | while (enabled_idx++, entry++->more); | ||
2240 | } | ||
2241 | err = REG_NOERROR; | ||
2242 | free_return: | ||
2243 | if (local_sctx.sifted_states != NULL) | ||
2244 | { | ||
2245 | re_node_set_free (&local_sctx.limits); | ||
2246 | } | ||
2247 | |||
2248 | return err; | ||
2249 | } | ||
2250 | |||
2251 | |||
2252 | #ifdef RE_ENABLE_I18N | ||
2253 | static int | ||
2254 | internal_function | ||
2255 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, | ||
2256 | Idx node_idx, Idx str_idx, Idx max_str_idx) | ||
2257 | { | ||
2258 | const re_dfa_t *const dfa = mctx->dfa; | ||
2259 | int naccepted; | ||
2260 | /* Check the node can accept `multi byte'. */ | ||
2261 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); | ||
2262 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && | ||
2263 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], | ||
2264 | dfa->nexts[node_idx])) | ||
2265 | /* The node can't accept the `multi byte', or the | ||
2266 | destination was already thrown away, then the node | ||
2267 | could't accept the current input `multi byte'. */ | ||
2268 | naccepted = 0; | ||
2269 | /* Otherwise, it is sure that the node could accept | ||
2270 | `naccepted' bytes input. */ | ||
2271 | return naccepted; | ||
2272 | } | ||
2273 | #endif /* RE_ENABLE_I18N */ | ||
2274 | |||
2275 | |||
2276 | /* Functions for state transition. */ | ||
2277 | |||
2278 | /* Return the next state to which the current state STATE will transit by | ||
2279 | accepting the current input byte, and update STATE_LOG if necessary. | ||
2280 | If STATE can accept a multibyte char/collating element/back reference | ||
2281 | update the destination of STATE_LOG. */ | ||
2282 | |||
2283 | static re_dfastate_t * | ||
2284 | internal_function | ||
2285 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, | ||
2286 | re_dfastate_t *state) | ||
2287 | { | ||
2288 | re_dfastate_t **trtable; | ||
2289 | unsigned char ch; | ||
2290 | |||
2291 | #ifdef RE_ENABLE_I18N | ||
2292 | /* If the current state can accept multibyte. */ | ||
2293 | if (BE (state->accept_mb, 0)) | ||
2294 | { | ||
2295 | *err = transit_state_mb (mctx, state); | ||
2296 | if (BE (*err != REG_NOERROR, 0)) | ||
2297 | return NULL; | ||
2298 | } | ||
2299 | #endif /* RE_ENABLE_I18N */ | ||
2300 | |||
2301 | /* Then decide the next state with the single byte. */ | ||
2302 | #if 0 | ||
2303 | if (0) | ||
2304 | /* don't use transition table */ | ||
2305 | return transit_state_sb (err, mctx, state); | ||
2306 | #endif | ||
2307 | |||
2308 | /* Use transition table */ | ||
2309 | ch = re_string_fetch_byte (&mctx->input); | ||
2310 | for (;;) | ||
2311 | { | ||
2312 | trtable = state->trtable; | ||
2313 | if (BE (trtable != NULL, 1)) | ||
2314 | return trtable[ch]; | ||
2315 | |||
2316 | trtable = state->word_trtable; | ||
2317 | if (BE (trtable != NULL, 1)) | ||
2318 | { | ||
2319 | unsigned int context; | ||
2320 | context | ||
2321 | = re_string_context_at (&mctx->input, | ||
2322 | re_string_cur_idx (&mctx->input) - 1, | ||
2323 | mctx->eflags); | ||
2324 | if (IS_WORD_CONTEXT (context)) | ||
2325 | return trtable[ch + SBC_MAX]; | ||
2326 | else | ||
2327 | return trtable[ch]; | ||
2328 | } | ||
2329 | |||
2330 | if (!build_trtable (mctx->dfa, state)) | ||
2331 | { | ||
2332 | *err = REG_ESPACE; | ||
2333 | return NULL; | ||
2334 | } | ||
2335 | |||
2336 | /* Retry, we now have a transition table. */ | ||
2337 | } | ||
2338 | } | ||
2339 | |||
2340 | /* Update the state_log if we need */ | ||
2341 | re_dfastate_t * | ||
2342 | internal_function | ||
2343 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, | ||
2344 | re_dfastate_t *next_state) | ||
2345 | { | ||
2346 | const re_dfa_t *const dfa = mctx->dfa; | ||
2347 | Idx cur_idx = re_string_cur_idx (&mctx->input); | ||
2348 | |||
2349 | if (cur_idx > mctx->state_log_top) | ||
2350 | { | ||
2351 | mctx->state_log[cur_idx] = next_state; | ||
2352 | mctx->state_log_top = cur_idx; | ||
2353 | } | ||
2354 | else if (mctx->state_log[cur_idx] == 0) | ||
2355 | { | ||
2356 | mctx->state_log[cur_idx] = next_state; | ||
2357 | } | ||
2358 | else | ||
2359 | { | ||
2360 | re_dfastate_t *pstate; | ||
2361 | unsigned int context; | ||
2362 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; | ||
2363 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is | ||
2364 | the destination of a multibyte char/collating element/ | ||
2365 | back reference. Then the next state is the union set of | ||
2366 | these destinations and the results of the transition table. */ | ||
2367 | pstate = mctx->state_log[cur_idx]; | ||
2368 | log_nodes = pstate->entrance_nodes; | ||
2369 | if (next_state != NULL) | ||
2370 | { | ||
2371 | table_nodes = next_state->entrance_nodes; | ||
2372 | *err = re_node_set_init_union (&next_nodes, table_nodes, | ||
2373 | log_nodes); | ||
2374 | if (BE (*err != REG_NOERROR, 0)) | ||
2375 | return NULL; | ||
2376 | } | ||
2377 | else | ||
2378 | next_nodes = *log_nodes; | ||
2379 | /* Note: We already add the nodes of the initial state, | ||
2380 | then we don't need to add them here. */ | ||
2381 | |||
2382 | context = re_string_context_at (&mctx->input, | ||
2383 | re_string_cur_idx (&mctx->input) - 1, | ||
2384 | mctx->eflags); | ||
2385 | next_state = mctx->state_log[cur_idx] | ||
2386 | = re_acquire_state_context (err, dfa, &next_nodes, context); | ||
2387 | /* We don't need to check errors here, since the return value of | ||
2388 | this function is next_state and ERR is already set. */ | ||
2389 | |||
2390 | if (table_nodes != NULL) | ||
2391 | re_node_set_free (&next_nodes); | ||
2392 | } | ||
2393 | |||
2394 | if (BE (dfa->nbackref, 0) && next_state != NULL) | ||
2395 | { | ||
2396 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them | ||
2397 | later. We must check them here, since the back references in the | ||
2398 | next state might use them. */ | ||
2399 | *err = check_subexp_matching_top (mctx, &next_state->nodes, | ||
2400 | cur_idx); | ||
2401 | if (BE (*err != REG_NOERROR, 0)) | ||
2402 | return NULL; | ||
2403 | |||
2404 | /* If the next state has back references. */ | ||
2405 | if (next_state->has_backref) | ||
2406 | { | ||
2407 | *err = transit_state_bkref (mctx, &next_state->nodes); | ||
2408 | if (BE (*err != REG_NOERROR, 0)) | ||
2409 | return NULL; | ||
2410 | next_state = mctx->state_log[cur_idx]; | ||
2411 | } | ||
2412 | } | ||
2413 | |||
2414 | return next_state; | ||
2415 | } | ||
2416 | |||
2417 | /* Skip bytes in the input that correspond to part of a | ||
2418 | multi-byte match, then look in the log for a state | ||
2419 | from which to restart matching. */ | ||
2420 | static re_dfastate_t * | ||
2421 | internal_function | ||
2422 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) | ||
2423 | { | ||
2424 | re_dfastate_t *cur_state; | ||
2425 | do | ||
2426 | { | ||
2427 | Idx max = mctx->state_log_top; | ||
2428 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2429 | |||
2430 | do | ||
2431 | { | ||
2432 | if (++cur_str_idx > max) | ||
2433 | return NULL; | ||
2434 | re_string_skip_bytes (&mctx->input, 1); | ||
2435 | } | ||
2436 | while (mctx->state_log[cur_str_idx] == NULL); | ||
2437 | |||
2438 | cur_state = merge_state_with_log (err, mctx, NULL); | ||
2439 | } | ||
2440 | while (*err == REG_NOERROR && cur_state == NULL); | ||
2441 | return cur_state; | ||
2442 | } | ||
2443 | |||
2444 | /* Helper functions for transit_state. */ | ||
2445 | |||
2446 | /* From the node set CUR_NODES, pick up the nodes whose types are | ||
2447 | OP_OPEN_SUBEXP and which have corresponding back references in the regular | ||
2448 | expression. And register them to use them later for evaluating the | ||
2449 | correspoding back references. */ | ||
2450 | |||
2451 | static reg_errcode_t | ||
2452 | internal_function | ||
2453 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, | ||
2454 | Idx str_idx) | ||
2455 | { | ||
2456 | const re_dfa_t *const dfa = mctx->dfa; | ||
2457 | Idx node_idx; | ||
2458 | reg_errcode_t err; | ||
2459 | |||
2460 | /* TODO: This isn't efficient. | ||
2461 | Because there might be more than one nodes whose types are | ||
2462 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | ||
2463 | nodes. | ||
2464 | E.g. RE: (a){2} */ | ||
2465 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) | ||
2466 | { | ||
2467 | Idx node = cur_nodes->elems[node_idx]; | ||
2468 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP | ||
2469 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS | ||
2470 | && (dfa->used_bkref_map | ||
2471 | & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) | ||
2472 | { | ||
2473 | err = match_ctx_add_subtop (mctx, node, str_idx); | ||
2474 | if (BE (err != REG_NOERROR, 0)) | ||
2475 | return err; | ||
2476 | } | ||
2477 | } | ||
2478 | return REG_NOERROR; | ||
2479 | } | ||
2480 | |||
2481 | #if 0 | ||
2482 | /* Return the next state to which the current state STATE will transit by | ||
2483 | accepting the current input byte. */ | ||
2484 | |||
2485 | static re_dfastate_t * | ||
2486 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, | ||
2487 | re_dfastate_t *state) | ||
2488 | { | ||
2489 | const re_dfa_t *const dfa = mctx->dfa; | ||
2490 | re_node_set next_nodes; | ||
2491 | re_dfastate_t *next_state; | ||
2492 | Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2493 | unsigned int context; | ||
2494 | |||
2495 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); | ||
2496 | if (BE (*err != REG_NOERROR, 0)) | ||
2497 | return NULL; | ||
2498 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) | ||
2499 | { | ||
2500 | Idx cur_node = state->nodes.elems[node_cnt]; | ||
2501 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) | ||
2502 | { | ||
2503 | *err = re_node_set_merge (&next_nodes, | ||
2504 | dfa->eclosures + dfa->nexts[cur_node]); | ||
2505 | if (BE (*err != REG_NOERROR, 0)) | ||
2506 | { | ||
2507 | re_node_set_free (&next_nodes); | ||
2508 | return NULL; | ||
2509 | } | ||
2510 | } | ||
2511 | } | ||
2512 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); | ||
2513 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); | ||
2514 | /* We don't need to check errors here, since the return value of | ||
2515 | this function is next_state and ERR is already set. */ | ||
2516 | |||
2517 | re_node_set_free (&next_nodes); | ||
2518 | re_string_skip_bytes (&mctx->input, 1); | ||
2519 | return next_state; | ||
2520 | } | ||
2521 | #endif | ||
2522 | |||
2523 | #ifdef RE_ENABLE_I18N | ||
2524 | static reg_errcode_t | ||
2525 | internal_function | ||
2526 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) | ||
2527 | { | ||
2528 | const re_dfa_t *const dfa = mctx->dfa; | ||
2529 | reg_errcode_t err; | ||
2530 | Idx i; | ||
2531 | |||
2532 | for (i = 0; i < pstate->nodes.nelem; ++i) | ||
2533 | { | ||
2534 | re_node_set dest_nodes, *new_nodes; | ||
2535 | Idx cur_node_idx = pstate->nodes.elems[i]; | ||
2536 | int naccepted; | ||
2537 | Idx dest_idx; | ||
2538 | unsigned int context; | ||
2539 | re_dfastate_t *dest_state; | ||
2540 | |||
2541 | if (!dfa->nodes[cur_node_idx].accept_mb) | ||
2542 | continue; | ||
2543 | |||
2544 | if (dfa->nodes[cur_node_idx].constraint) | ||
2545 | { | ||
2546 | context = re_string_context_at (&mctx->input, | ||
2547 | re_string_cur_idx (&mctx->input), | ||
2548 | mctx->eflags); | ||
2549 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, | ||
2550 | context)) | ||
2551 | continue; | ||
2552 | } | ||
2553 | |||
2554 | /* How many bytes the node can accept? */ | ||
2555 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, | ||
2556 | re_string_cur_idx (&mctx->input)); | ||
2557 | if (naccepted == 0) | ||
2558 | continue; | ||
2559 | |||
2560 | /* The node can accepts `naccepted' bytes. */ | ||
2561 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; | ||
2562 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted | ||
2563 | : mctx->max_mb_elem_len); | ||
2564 | err = clean_state_log_if_needed (mctx, dest_idx); | ||
2565 | if (BE (err != REG_NOERROR, 0)) | ||
2566 | return err; | ||
2567 | #ifdef DEBUG | ||
2568 | assert (dfa->nexts[cur_node_idx] != REG_MISSING); | ||
2569 | #endif | ||
2570 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; | ||
2571 | |||
2572 | dest_state = mctx->state_log[dest_idx]; | ||
2573 | if (dest_state == NULL) | ||
2574 | dest_nodes = *new_nodes; | ||
2575 | else | ||
2576 | { | ||
2577 | err = re_node_set_init_union (&dest_nodes, | ||
2578 | dest_state->entrance_nodes, new_nodes); | ||
2579 | if (BE (err != REG_NOERROR, 0)) | ||
2580 | return err; | ||
2581 | } | ||
2582 | context = re_string_context_at (&mctx->input, dest_idx - 1, | ||
2583 | mctx->eflags); | ||
2584 | mctx->state_log[dest_idx] | ||
2585 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | ||
2586 | if (dest_state != NULL) | ||
2587 | re_node_set_free (&dest_nodes); | ||
2588 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) | ||
2589 | return err; | ||
2590 | } | ||
2591 | return REG_NOERROR; | ||
2592 | } | ||
2593 | #endif /* RE_ENABLE_I18N */ | ||
2594 | |||
2595 | static reg_errcode_t | ||
2596 | internal_function | ||
2597 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) | ||
2598 | { | ||
2599 | const re_dfa_t *const dfa = mctx->dfa; | ||
2600 | reg_errcode_t err; | ||
2601 | Idx i; | ||
2602 | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2603 | |||
2604 | for (i = 0; i < nodes->nelem; ++i) | ||
2605 | { | ||
2606 | Idx dest_str_idx, prev_nelem, bkc_idx; | ||
2607 | Idx node_idx = nodes->elems[i]; | ||
2608 | unsigned int context; | ||
2609 | const re_token_t *node = dfa->nodes + node_idx; | ||
2610 | re_node_set *new_dest_nodes; | ||
2611 | |||
2612 | /* Check whether `node' is a backreference or not. */ | ||
2613 | if (node->type != OP_BACK_REF) | ||
2614 | continue; | ||
2615 | |||
2616 | if (node->constraint) | ||
2617 | { | ||
2618 | context = re_string_context_at (&mctx->input, cur_str_idx, | ||
2619 | mctx->eflags); | ||
2620 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | ||
2621 | continue; | ||
2622 | } | ||
2623 | |||
2624 | /* `node' is a backreference. | ||
2625 | Check the substring which the substring matched. */ | ||
2626 | bkc_idx = mctx->nbkref_ents; | ||
2627 | err = get_subexp (mctx, node_idx, cur_str_idx); | ||
2628 | if (BE (err != REG_NOERROR, 0)) | ||
2629 | goto free_return; | ||
2630 | |||
2631 | /* And add the epsilon closures (which is `new_dest_nodes') of | ||
2632 | the backreference to appropriate state_log. */ | ||
2633 | #ifdef DEBUG | ||
2634 | assert (dfa->nexts[node_idx] != REG_MISSING); | ||
2635 | #endif | ||
2636 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) | ||
2637 | { | ||
2638 | Idx subexp_len; | ||
2639 | re_dfastate_t *dest_state; | ||
2640 | struct re_backref_cache_entry *bkref_ent; | ||
2641 | bkref_ent = mctx->bkref_ents + bkc_idx; | ||
2642 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) | ||
2643 | continue; | ||
2644 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; | ||
2645 | new_dest_nodes = (subexp_len == 0 | ||
2646 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] | ||
2647 | : dfa->eclosures + dfa->nexts[node_idx]); | ||
2648 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to | ||
2649 | - bkref_ent->subexp_from); | ||
2650 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, | ||
2651 | mctx->eflags); | ||
2652 | dest_state = mctx->state_log[dest_str_idx]; | ||
2653 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 | ||
2654 | : mctx->state_log[cur_str_idx]->nodes.nelem); | ||
2655 | /* Add `new_dest_node' to state_log. */ | ||
2656 | if (dest_state == NULL) | ||
2657 | { | ||
2658 | mctx->state_log[dest_str_idx] | ||
2659 | = re_acquire_state_context (&err, dfa, new_dest_nodes, | ||
2660 | context); | ||
2661 | if (BE (mctx->state_log[dest_str_idx] == NULL | ||
2662 | && err != REG_NOERROR, 0)) | ||
2663 | goto free_return; | ||
2664 | } | ||
2665 | else | ||
2666 | { | ||
2667 | re_node_set dest_nodes; | ||
2668 | err = re_node_set_init_union (&dest_nodes, | ||
2669 | dest_state->entrance_nodes, | ||
2670 | new_dest_nodes); | ||
2671 | if (BE (err != REG_NOERROR, 0)) | ||
2672 | { | ||
2673 | re_node_set_free (&dest_nodes); | ||
2674 | goto free_return; | ||
2675 | } | ||
2676 | mctx->state_log[dest_str_idx] | ||
2677 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | ||
2678 | re_node_set_free (&dest_nodes); | ||
2679 | if (BE (mctx->state_log[dest_str_idx] == NULL | ||
2680 | && err != REG_NOERROR, 0)) | ||
2681 | goto free_return; | ||
2682 | } | ||
2683 | /* We need to check recursively if the backreference can epsilon | ||
2684 | transit. */ | ||
2685 | if (subexp_len == 0 | ||
2686 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) | ||
2687 | { | ||
2688 | err = check_subexp_matching_top (mctx, new_dest_nodes, | ||
2689 | cur_str_idx); | ||
2690 | if (BE (err != REG_NOERROR, 0)) | ||
2691 | goto free_return; | ||
2692 | err = transit_state_bkref (mctx, new_dest_nodes); | ||
2693 | if (BE (err != REG_NOERROR, 0)) | ||
2694 | goto free_return; | ||
2695 | } | ||
2696 | } | ||
2697 | } | ||
2698 | err = REG_NOERROR; | ||
2699 | free_return: | ||
2700 | return err; | ||
2701 | } | ||
2702 | |||
2703 | /* Enumerate all the candidates which the backreference BKREF_NODE can match | ||
2704 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). | ||
2705 | Note that we might collect inappropriate candidates here. | ||
2706 | However, the cost of checking them strictly here is too high, then we | ||
2707 | delay these checking for prune_impossible_nodes(). */ | ||
2708 | |||
2709 | static reg_errcode_t | ||
2710 | internal_function | ||
2711 | get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx) | ||
2712 | { | ||
2713 | const re_dfa_t *const dfa = mctx->dfa; | ||
2714 | Idx subexp_num, sub_top_idx; | ||
2715 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2716 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ | ||
2717 | Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); | ||
2718 | if (cache_idx != REG_MISSING) | ||
2719 | { | ||
2720 | const struct re_backref_cache_entry *entry | ||
2721 | = mctx->bkref_ents + cache_idx; | ||
2722 | do | ||
2723 | if (entry->node == bkref_node) | ||
2724 | return REG_NOERROR; /* We already checked it. */ | ||
2725 | while (entry++->more); | ||
2726 | } | ||
2727 | |||
2728 | subexp_num = dfa->nodes[bkref_node].opr.idx; | ||
2729 | |||
2730 | /* For each sub expression */ | ||
2731 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) | ||
2732 | { | ||
2733 | reg_errcode_t err; | ||
2734 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; | ||
2735 | re_sub_match_last_t *sub_last; | ||
2736 | Idx sub_last_idx, sl_str, bkref_str_off; | ||
2737 | |||
2738 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) | ||
2739 | continue; /* It isn't related. */ | ||
2740 | |||
2741 | sl_str = sub_top->str_idx; | ||
2742 | bkref_str_off = bkref_str_idx; | ||
2743 | /* At first, check the last node of sub expressions we already | ||
2744 | evaluated. */ | ||
2745 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) | ||
2746 | { | ||
2747 | regoff_t sl_str_diff; | ||
2748 | sub_last = sub_top->lasts[sub_last_idx]; | ||
2749 | sl_str_diff = sub_last->str_idx - sl_str; | ||
2750 | /* The matched string by the sub expression match with the substring | ||
2751 | at the back reference? */ | ||
2752 | if (sl_str_diff > 0) | ||
2753 | { | ||
2754 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) | ||
2755 | { | ||
2756 | /* Not enough chars for a successful match. */ | ||
2757 | if (bkref_str_off + sl_str_diff > mctx->input.len) | ||
2758 | break; | ||
2759 | |||
2760 | err = clean_state_log_if_needed (mctx, | ||
2761 | bkref_str_off | ||
2762 | + sl_str_diff); | ||
2763 | if (BE (err != REG_NOERROR, 0)) | ||
2764 | return err; | ||
2765 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2766 | } | ||
2767 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) | ||
2768 | /* We don't need to search this sub expression any more. */ | ||
2769 | break; | ||
2770 | } | ||
2771 | bkref_str_off += sl_str_diff; | ||
2772 | sl_str += sl_str_diff; | ||
2773 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | ||
2774 | bkref_str_idx); | ||
2775 | |||
2776 | /* Reload buf, since the preceding call might have reallocated | ||
2777 | the buffer. */ | ||
2778 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2779 | |||
2780 | if (err == REG_NOMATCH) | ||
2781 | continue; | ||
2782 | if (BE (err != REG_NOERROR, 0)) | ||
2783 | return err; | ||
2784 | } | ||
2785 | |||
2786 | if (sub_last_idx < sub_top->nlasts) | ||
2787 | continue; | ||
2788 | if (sub_last_idx > 0) | ||
2789 | ++sl_str; | ||
2790 | /* Then, search for the other last nodes of the sub expression. */ | ||
2791 | for (; sl_str <= bkref_str_idx; ++sl_str) | ||
2792 | { | ||
2793 | Idx cls_node; | ||
2794 | regoff_t sl_str_off; | ||
2795 | const re_node_set *nodes; | ||
2796 | sl_str_off = sl_str - sub_top->str_idx; | ||
2797 | /* The matched string by the sub expression match with the substring | ||
2798 | at the back reference? */ | ||
2799 | if (sl_str_off > 0) | ||
2800 | { | ||
2801 | if (BE (bkref_str_off >= mctx->input.valid_len, 0)) | ||
2802 | { | ||
2803 | /* If we are at the end of the input, we cannot match. */ | ||
2804 | if (bkref_str_off >= mctx->input.len) | ||
2805 | break; | ||
2806 | |||
2807 | err = extend_buffers (mctx); | ||
2808 | if (BE (err != REG_NOERROR, 0)) | ||
2809 | return err; | ||
2810 | |||
2811 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2812 | } | ||
2813 | if (buf [bkref_str_off++] != buf[sl_str - 1]) | ||
2814 | break; /* We don't need to search this sub expression | ||
2815 | any more. */ | ||
2816 | } | ||
2817 | if (mctx->state_log[sl_str] == NULL) | ||
2818 | continue; | ||
2819 | /* Does this state have a ')' of the sub expression? */ | ||
2820 | nodes = &mctx->state_log[sl_str]->nodes; | ||
2821 | cls_node = find_subexp_node (dfa, nodes, subexp_num, | ||
2822 | OP_CLOSE_SUBEXP); | ||
2823 | if (cls_node == REG_MISSING) | ||
2824 | continue; /* No. */ | ||
2825 | if (sub_top->path == NULL) | ||
2826 | { | ||
2827 | sub_top->path = calloc (sizeof (state_array_t), | ||
2828 | sl_str - sub_top->str_idx + 1); | ||
2829 | if (sub_top->path == NULL) | ||
2830 | return REG_ESPACE; | ||
2831 | } | ||
2832 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node | ||
2833 | in the current context? */ | ||
2834 | err = check_arrival (mctx, sub_top->path, sub_top->node, | ||
2835 | sub_top->str_idx, cls_node, sl_str, | ||
2836 | OP_CLOSE_SUBEXP); | ||
2837 | if (err == REG_NOMATCH) | ||
2838 | continue; | ||
2839 | if (BE (err != REG_NOERROR, 0)) | ||
2840 | return err; | ||
2841 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); | ||
2842 | if (BE (sub_last == NULL, 0)) | ||
2843 | return REG_ESPACE; | ||
2844 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | ||
2845 | bkref_str_idx); | ||
2846 | if (err == REG_NOMATCH) | ||
2847 | continue; | ||
2848 | } | ||
2849 | } | ||
2850 | return REG_NOERROR; | ||
2851 | } | ||
2852 | |||
2853 | /* Helper functions for get_subexp(). */ | ||
2854 | |||
2855 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. | ||
2856 | If it can arrive, register the sub expression expressed with SUB_TOP | ||
2857 | and SUB_LAST. */ | ||
2858 | |||
2859 | static reg_errcode_t | ||
2860 | internal_function | ||
2861 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, | ||
2862 | re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str) | ||
2863 | { | ||
2864 | reg_errcode_t err; | ||
2865 | Idx to_idx; | ||
2866 | /* Can the subexpression arrive the back reference? */ | ||
2867 | err = check_arrival (mctx, &sub_last->path, sub_last->node, | ||
2868 | sub_last->str_idx, bkref_node, bkref_str, | ||
2869 | OP_OPEN_SUBEXP); | ||
2870 | if (err != REG_NOERROR) | ||
2871 | return err; | ||
2872 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, | ||
2873 | sub_last->str_idx); | ||
2874 | if (BE (err != REG_NOERROR, 0)) | ||
2875 | return err; | ||
2876 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; | ||
2877 | return clean_state_log_if_needed (mctx, to_idx); | ||
2878 | } | ||
2879 | |||
2880 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. | ||
2881 | Search '(' if FL_OPEN, or search ')' otherwise. | ||
2882 | TODO: This function isn't efficient... | ||
2883 | Because there might be more than one nodes whose types are | ||
2884 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | ||
2885 | nodes. | ||
2886 | E.g. RE: (a){2} */ | ||
2887 | |||
2888 | static Idx | ||
2889 | internal_function | ||
2890 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | ||
2891 | Idx subexp_idx, int type) | ||
2892 | { | ||
2893 | Idx cls_idx; | ||
2894 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) | ||
2895 | { | ||
2896 | Idx cls_node = nodes->elems[cls_idx]; | ||
2897 | const re_token_t *node = dfa->nodes + cls_node; | ||
2898 | if (node->type == type | ||
2899 | && node->opr.idx == subexp_idx) | ||
2900 | return cls_node; | ||
2901 | } | ||
2902 | return REG_MISSING; | ||
2903 | } | ||
2904 | |||
2905 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node | ||
2906 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be | ||
2907 | heavily reused. | ||
2908 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */ | ||
2909 | |||
2910 | static reg_errcode_t | ||
2911 | internal_function | ||
2912 | check_arrival (re_match_context_t *mctx, state_array_t *path, Idx top_node, | ||
2913 | Idx top_str, Idx last_node, Idx last_str, int type) | ||
2914 | { | ||
2915 | const re_dfa_t *const dfa = mctx->dfa; | ||
2916 | reg_errcode_t err = REG_NOERROR; | ||
2917 | Idx subexp_num, backup_cur_idx, str_idx, null_cnt; | ||
2918 | re_dfastate_t *cur_state = NULL; | ||
2919 | re_node_set *cur_nodes, next_nodes; | ||
2920 | re_dfastate_t **backup_state_log; | ||
2921 | unsigned int context; | ||
2922 | |||
2923 | subexp_num = dfa->nodes[top_node].opr.idx; | ||
2924 | /* Extend the buffer if we need. */ | ||
2925 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) | ||
2926 | { | ||
2927 | re_dfastate_t **new_array; | ||
2928 | Idx old_alloc = path->alloc; | ||
2929 | Idx new_alloc = old_alloc + last_str + mctx->max_mb_elem_len + 1; | ||
2930 | if (BE (new_alloc < old_alloc, 0) | ||
2931 | || BE (SIZE_MAX / sizeof (re_dfastate_t *) < new_alloc, 0)) | ||
2932 | return REG_ESPACE; | ||
2933 | new_array = re_realloc (path->array, re_dfastate_t *, new_alloc); | ||
2934 | if (BE (new_array == NULL, 0)) | ||
2935 | return REG_ESPACE; | ||
2936 | path->array = new_array; | ||
2937 | path->alloc = new_alloc; | ||
2938 | memset (new_array + old_alloc, '\0', | ||
2939 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); | ||
2940 | } | ||
2941 | |||
2942 | str_idx = path->next_idx ? path->next_idx : top_str; | ||
2943 | |||
2944 | /* Temporary modify MCTX. */ | ||
2945 | backup_state_log = mctx->state_log; | ||
2946 | backup_cur_idx = mctx->input.cur_idx; | ||
2947 | mctx->state_log = path->array; | ||
2948 | mctx->input.cur_idx = str_idx; | ||
2949 | |||
2950 | /* Setup initial node set. */ | ||
2951 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | ||
2952 | if (str_idx == top_str) | ||
2953 | { | ||
2954 | err = re_node_set_init_1 (&next_nodes, top_node); | ||
2955 | if (BE (err != REG_NOERROR, 0)) | ||
2956 | return err; | ||
2957 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | ||
2958 | if (BE (err != REG_NOERROR, 0)) | ||
2959 | { | ||
2960 | re_node_set_free (&next_nodes); | ||
2961 | return err; | ||
2962 | } | ||
2963 | } | ||
2964 | else | ||
2965 | { | ||
2966 | cur_state = mctx->state_log[str_idx]; | ||
2967 | if (cur_state && cur_state->has_backref) | ||
2968 | { | ||
2969 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); | ||
2970 | if (BE (err != REG_NOERROR, 0)) | ||
2971 | return err; | ||
2972 | } | ||
2973 | else | ||
2974 | re_node_set_init_empty (&next_nodes); | ||
2975 | } | ||
2976 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) | ||
2977 | { | ||
2978 | if (next_nodes.nelem) | ||
2979 | { | ||
2980 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | ||
2981 | subexp_num, type); | ||
2982 | if (BE (err != REG_NOERROR, 0)) | ||
2983 | { | ||
2984 | re_node_set_free (&next_nodes); | ||
2985 | return err; | ||
2986 | } | ||
2987 | } | ||
2988 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | ||
2989 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | ||
2990 | { | ||
2991 | re_node_set_free (&next_nodes); | ||
2992 | return err; | ||
2993 | } | ||
2994 | mctx->state_log[str_idx] = cur_state; | ||
2995 | } | ||
2996 | |||
2997 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) | ||
2998 | { | ||
2999 | re_node_set_empty (&next_nodes); | ||
3000 | if (mctx->state_log[str_idx + 1]) | ||
3001 | { | ||
3002 | err = re_node_set_merge (&next_nodes, | ||
3003 | &mctx->state_log[str_idx + 1]->nodes); | ||
3004 | if (BE (err != REG_NOERROR, 0)) | ||
3005 | { | ||
3006 | re_node_set_free (&next_nodes); | ||
3007 | return err; | ||
3008 | } | ||
3009 | } | ||
3010 | if (cur_state) | ||
3011 | { | ||
3012 | err = check_arrival_add_next_nodes (mctx, str_idx, | ||
3013 | &cur_state->non_eps_nodes, | ||
3014 | &next_nodes); | ||
3015 | if (BE (err != REG_NOERROR, 0)) | ||
3016 | { | ||
3017 | re_node_set_free (&next_nodes); | ||
3018 | return err; | ||
3019 | } | ||
3020 | } | ||
3021 | ++str_idx; | ||
3022 | if (next_nodes.nelem) | ||
3023 | { | ||
3024 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | ||
3025 | if (BE (err != REG_NOERROR, 0)) | ||
3026 | { | ||
3027 | re_node_set_free (&next_nodes); | ||
3028 | return err; | ||
3029 | } | ||
3030 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | ||
3031 | subexp_num, type); | ||
3032 | if (BE (err != REG_NOERROR, 0)) | ||
3033 | { | ||
3034 | re_node_set_free (&next_nodes); | ||
3035 | return err; | ||
3036 | } | ||
3037 | } | ||
3038 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | ||
3039 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | ||
3040 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | ||
3041 | { | ||
3042 | re_node_set_free (&next_nodes); | ||
3043 | return err; | ||
3044 | } | ||
3045 | mctx->state_log[str_idx] = cur_state; | ||
3046 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; | ||
3047 | } | ||
3048 | re_node_set_free (&next_nodes); | ||
3049 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL | ||
3050 | : &mctx->state_log[last_str]->nodes); | ||
3051 | path->next_idx = str_idx; | ||
3052 | |||
3053 | /* Fix MCTX. */ | ||
3054 | mctx->state_log = backup_state_log; | ||
3055 | mctx->input.cur_idx = backup_cur_idx; | ||
3056 | |||
3057 | /* Then check the current node set has the node LAST_NODE. */ | ||
3058 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) | ||
3059 | return REG_NOERROR; | ||
3060 | |||
3061 | return REG_NOMATCH; | ||
3062 | } | ||
3063 | |||
3064 | /* Helper functions for check_arrival. */ | ||
3065 | |||
3066 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them | ||
3067 | to NEXT_NODES. | ||
3068 | TODO: This function is similar to the functions transit_state*(), | ||
3069 | however this function has many additional works. | ||
3070 | Can't we unify them? */ | ||
3071 | |||
3072 | static reg_errcode_t | ||
3073 | internal_function | ||
3074 | check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx, | ||
3075 | re_node_set *cur_nodes, re_node_set *next_nodes) | ||
3076 | { | ||
3077 | const re_dfa_t *const dfa = mctx->dfa; | ||
3078 | bool ok; | ||
3079 | Idx cur_idx; | ||
3080 | reg_errcode_t err = REG_NOERROR; | ||
3081 | re_node_set union_set; | ||
3082 | re_node_set_init_empty (&union_set); | ||
3083 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) | ||
3084 | { | ||
3085 | int naccepted = 0; | ||
3086 | Idx cur_node = cur_nodes->elems[cur_idx]; | ||
3087 | #ifdef DEBUG | ||
3088 | re_token_type_t type = dfa->nodes[cur_node].type; | ||
3089 | assert (!IS_EPSILON_NODE (type)); | ||
3090 | #endif | ||
3091 | #ifdef RE_ENABLE_I18N | ||
3092 | /* If the node may accept `multi byte'. */ | ||
3093 | if (dfa->nodes[cur_node].accept_mb) | ||
3094 | { | ||
3095 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, | ||
3096 | str_idx); | ||
3097 | if (naccepted > 1) | ||
3098 | { | ||
3099 | re_dfastate_t *dest_state; | ||
3100 | Idx next_node = dfa->nexts[cur_node]; | ||
3101 | Idx next_idx = str_idx + naccepted; | ||
3102 | dest_state = mctx->state_log[next_idx]; | ||
3103 | re_node_set_empty (&union_set); | ||
3104 | if (dest_state) | ||
3105 | { | ||
3106 | err = re_node_set_merge (&union_set, &dest_state->nodes); | ||
3107 | if (BE (err != REG_NOERROR, 0)) | ||
3108 | { | ||
3109 | re_node_set_free (&union_set); | ||
3110 | return err; | ||
3111 | } | ||
3112 | } | ||
3113 | ok = re_node_set_insert (&union_set, next_node); | ||
3114 | if (BE (! ok, 0)) | ||
3115 | { | ||
3116 | re_node_set_free (&union_set); | ||
3117 | return REG_ESPACE; | ||
3118 | } | ||
3119 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, | ||
3120 | &union_set); | ||
3121 | if (BE (mctx->state_log[next_idx] == NULL | ||
3122 | && err != REG_NOERROR, 0)) | ||
3123 | { | ||
3124 | re_node_set_free (&union_set); | ||
3125 | return err; | ||
3126 | } | ||
3127 | } | ||
3128 | } | ||
3129 | #endif /* RE_ENABLE_I18N */ | ||
3130 | if (naccepted | ||
3131 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) | ||
3132 | { | ||
3133 | ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); | ||
3134 | if (BE (! ok, 0)) | ||
3135 | { | ||
3136 | re_node_set_free (&union_set); | ||
3137 | return REG_ESPACE; | ||
3138 | } | ||
3139 | } | ||
3140 | } | ||
3141 | re_node_set_free (&union_set); | ||
3142 | return REG_NOERROR; | ||
3143 | } | ||
3144 | |||
3145 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to | ||
3146 | CUR_NODES, however exclude the nodes which are: | ||
3147 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. | ||
3148 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. | ||
3149 | */ | ||
3150 | |||
3151 | static reg_errcode_t | ||
3152 | internal_function | ||
3153 | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, | ||
3154 | Idx ex_subexp, int type) | ||
3155 | { | ||
3156 | reg_errcode_t err; | ||
3157 | Idx idx, outside_node; | ||
3158 | re_node_set new_nodes; | ||
3159 | #ifdef DEBUG | ||
3160 | assert (cur_nodes->nelem); | ||
3161 | #endif | ||
3162 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); | ||
3163 | if (BE (err != REG_NOERROR, 0)) | ||
3164 | return err; | ||
3165 | /* Create a new node set NEW_NODES with the nodes which are epsilon | ||
3166 | closures of the node in CUR_NODES. */ | ||
3167 | |||
3168 | for (idx = 0; idx < cur_nodes->nelem; ++idx) | ||
3169 | { | ||
3170 | Idx cur_node = cur_nodes->elems[idx]; | ||
3171 | const re_node_set *eclosure = dfa->eclosures + cur_node; | ||
3172 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); | ||
3173 | if (outside_node == REG_MISSING) | ||
3174 | { | ||
3175 | /* There are no problematic nodes, just merge them. */ | ||
3176 | err = re_node_set_merge (&new_nodes, eclosure); | ||
3177 | if (BE (err != REG_NOERROR, 0)) | ||
3178 | { | ||
3179 | re_node_set_free (&new_nodes); | ||
3180 | return err; | ||
3181 | } | ||
3182 | } | ||
3183 | else | ||
3184 | { | ||
3185 | /* There are problematic nodes, re-calculate incrementally. */ | ||
3186 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, | ||
3187 | ex_subexp, type); | ||
3188 | if (BE (err != REG_NOERROR, 0)) | ||
3189 | { | ||
3190 | re_node_set_free (&new_nodes); | ||
3191 | return err; | ||
3192 | } | ||
3193 | } | ||
3194 | } | ||
3195 | re_node_set_free (cur_nodes); | ||
3196 | *cur_nodes = new_nodes; | ||
3197 | return REG_NOERROR; | ||
3198 | } | ||
3199 | |||
3200 | /* Helper function for check_arrival_expand_ecl. | ||
3201 | Check incrementally the epsilon closure of TARGET, and if it isn't | ||
3202 | problematic append it to DST_NODES. */ | ||
3203 | |||
3204 | static reg_errcode_t | ||
3205 | internal_function | ||
3206 | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, | ||
3207 | Idx target, Idx ex_subexp, int type) | ||
3208 | { | ||
3209 | Idx cur_node; | ||
3210 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) | ||
3211 | { | ||
3212 | bool ok; | ||
3213 | |||
3214 | if (dfa->nodes[cur_node].type == type | ||
3215 | && dfa->nodes[cur_node].opr.idx == ex_subexp) | ||
3216 | { | ||
3217 | if (type == OP_CLOSE_SUBEXP) | ||
3218 | { | ||
3219 | ok = re_node_set_insert (dst_nodes, cur_node); | ||
3220 | if (BE (! ok, 0)) | ||
3221 | return REG_ESPACE; | ||
3222 | } | ||
3223 | break; | ||
3224 | } | ||
3225 | ok = re_node_set_insert (dst_nodes, cur_node); | ||
3226 | if (BE (! ok, 0)) | ||
3227 | return REG_ESPACE; | ||
3228 | if (dfa->edests[cur_node].nelem == 0) | ||
3229 | break; | ||
3230 | if (dfa->edests[cur_node].nelem == 2) | ||
3231 | { | ||
3232 | reg_errcode_t err; | ||
3233 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes, | ||
3234 | dfa->edests[cur_node].elems[1], | ||
3235 | ex_subexp, type); | ||
3236 | if (BE (err != REG_NOERROR, 0)) | ||
3237 | return err; | ||
3238 | } | ||
3239 | cur_node = dfa->edests[cur_node].elems[0]; | ||
3240 | } | ||
3241 | return REG_NOERROR; | ||
3242 | } | ||
3243 | |||
3244 | |||
3245 | /* For all the back references in the current state, calculate the | ||
3246 | destination of the back references by the appropriate entry | ||
3247 | in MCTX->BKREF_ENTS. */ | ||
3248 | |||
3249 | static reg_errcode_t | ||
3250 | internal_function | ||
3251 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, | ||
3252 | Idx cur_str, Idx subexp_num, int type) | ||
3253 | { | ||
3254 | const re_dfa_t *const dfa = mctx->dfa; | ||
3255 | reg_errcode_t err; | ||
3256 | Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str); | ||
3257 | struct re_backref_cache_entry *ent; | ||
3258 | |||
3259 | if (cache_idx_start == REG_MISSING) | ||
3260 | return REG_NOERROR; | ||
3261 | |||
3262 | restart: | ||
3263 | ent = mctx->bkref_ents + cache_idx_start; | ||
3264 | do | ||
3265 | { | ||
3266 | Idx to_idx, next_node; | ||
3267 | |||
3268 | /* Is this entry ENT is appropriate? */ | ||
3269 | if (!re_node_set_contains (cur_nodes, ent->node)) | ||
3270 | continue; /* No. */ | ||
3271 | |||
3272 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; | ||
3273 | /* Calculate the destination of the back reference, and append it | ||
3274 | to MCTX->STATE_LOG. */ | ||
3275 | if (to_idx == cur_str) | ||
3276 | { | ||
3277 | /* The backreference did epsilon transit, we must re-check all the | ||
3278 | node in the current state. */ | ||
3279 | re_node_set new_dests; | ||
3280 | reg_errcode_t err2, err3; | ||
3281 | next_node = dfa->edests[ent->node].elems[0]; | ||
3282 | if (re_node_set_contains (cur_nodes, next_node)) | ||
3283 | continue; | ||
3284 | err = re_node_set_init_1 (&new_dests, next_node); | ||
3285 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); | ||
3286 | err3 = re_node_set_merge (cur_nodes, &new_dests); | ||
3287 | re_node_set_free (&new_dests); | ||
3288 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR | ||
3289 | || err3 != REG_NOERROR, 0)) | ||
3290 | { | ||
3291 | err = (err != REG_NOERROR ? err | ||
3292 | : (err2 != REG_NOERROR ? err2 : err3)); | ||
3293 | return err; | ||
3294 | } | ||
3295 | /* TODO: It is still inefficient... */ | ||
3296 | goto restart; | ||
3297 | } | ||
3298 | else | ||
3299 | { | ||
3300 | re_node_set union_set; | ||
3301 | next_node = dfa->nexts[ent->node]; | ||
3302 | if (mctx->state_log[to_idx]) | ||
3303 | { | ||
3304 | bool ok; | ||
3305 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, | ||
3306 | next_node)) | ||
3307 | continue; | ||
3308 | err = re_node_set_init_copy (&union_set, | ||
3309 | &mctx->state_log[to_idx]->nodes); | ||
3310 | ok = re_node_set_insert (&union_set, next_node); | ||
3311 | if (BE (err != REG_NOERROR || ! ok, 0)) | ||
3312 | { | ||
3313 | re_node_set_free (&union_set); | ||
3314 | err = err != REG_NOERROR ? err : REG_ESPACE; | ||
3315 | return err; | ||
3316 | } | ||
3317 | } | ||
3318 | else | ||
3319 | { | ||
3320 | err = re_node_set_init_1 (&union_set, next_node); | ||
3321 | if (BE (err != REG_NOERROR, 0)) | ||
3322 | return err; | ||
3323 | } | ||
3324 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); | ||
3325 | re_node_set_free (&union_set); | ||
3326 | if (BE (mctx->state_log[to_idx] == NULL | ||
3327 | && err != REG_NOERROR, 0)) | ||
3328 | return err; | ||
3329 | } | ||
3330 | } | ||
3331 | while (ent++->more); | ||
3332 | return REG_NOERROR; | ||
3333 | } | ||
3334 | |||
3335 | /* Build transition table for the state. | ||
3336 | Return true if successful. */ | ||
3337 | |||
3338 | static bool | ||
3339 | internal_function | ||
3340 | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) | ||
3341 | { | ||
3342 | reg_errcode_t err; | ||
3343 | Idx i, j; | ||
3344 | int ch; | ||
3345 | bool need_word_trtable = false; | ||
3346 | bitset_word_t elem, mask; | ||
3347 | bool dests_node_malloced = false; | ||
3348 | bool dest_states_malloced = false; | ||
3349 | Idx ndests; /* Number of the destination states from `state'. */ | ||
3350 | re_dfastate_t **trtable; | ||
3351 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; | ||
3352 | re_node_set follows, *dests_node; | ||
3353 | bitset_t *dests_ch; | ||
3354 | bitset_t acceptable; | ||
3355 | |||
3356 | struct dests_alloc | ||
3357 | { | ||
3358 | re_node_set dests_node[SBC_MAX]; | ||
3359 | bitset_t dests_ch[SBC_MAX]; | ||
3360 | } *dests_alloc; | ||
3361 | |||
3362 | /* We build DFA states which corresponds to the destination nodes | ||
3363 | from `state'. `dests_node[i]' represents the nodes which i-th | ||
3364 | destination state contains, and `dests_ch[i]' represents the | ||
3365 | characters which i-th destination state accepts. */ | ||
3366 | if (__libc_use_alloca (sizeof (struct dests_alloc))) | ||
3367 | dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); | ||
3368 | else | ||
3369 | { | ||
3370 | dests_alloc = re_malloc (struct dests_alloc, 1); | ||
3371 | if (BE (dests_alloc == NULL, 0)) | ||
3372 | return false; | ||
3373 | dests_node_malloced = true; | ||
3374 | } | ||
3375 | dests_node = dests_alloc->dests_node; | ||
3376 | dests_ch = dests_alloc->dests_ch; | ||
3377 | |||
3378 | /* Initialize transiton table. */ | ||
3379 | state->word_trtable = state->trtable = NULL; | ||
3380 | |||
3381 | /* At first, group all nodes belonging to `state' into several | ||
3382 | destinations. */ | ||
3383 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); | ||
3384 | if (BE (! REG_VALID_NONZERO_INDEX (ndests), 0)) | ||
3385 | { | ||
3386 | if (dests_node_malloced) | ||
3387 | free (dests_alloc); | ||
3388 | if (ndests == 0) | ||
3389 | { | ||
3390 | state->trtable = (re_dfastate_t **) | ||
3391 | calloc (sizeof (re_dfastate_t *), SBC_MAX); | ||
3392 | return true; | ||
3393 | } | ||
3394 | return false; | ||
3395 | } | ||
3396 | |||
3397 | err = re_node_set_alloc (&follows, ndests + 1); | ||
3398 | if (BE (err != REG_NOERROR, 0)) | ||
3399 | goto out_free; | ||
3400 | |||
3401 | /* Avoid arithmetic overflow in size calculation. */ | ||
3402 | if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX) | ||
3403 | / (3 * sizeof (re_dfastate_t *))) | ||
3404 | < ndests), | ||
3405 | 0)) | ||
3406 | goto out_free; | ||
3407 | |||
3408 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX | ||
3409 | + ndests * 3 * sizeof (re_dfastate_t *))) | ||
3410 | dest_states = (re_dfastate_t **) | ||
3411 | alloca (ndests * 3 * sizeof (re_dfastate_t *)); | ||
3412 | else | ||
3413 | { | ||
3414 | dest_states = (re_dfastate_t **) | ||
3415 | malloc (ndests * 3 * sizeof (re_dfastate_t *)); | ||
3416 | if (BE (dest_states == NULL, 0)) | ||
3417 | { | ||
3418 | out_free: | ||
3419 | if (dest_states_malloced) | ||
3420 | free (dest_states); | ||
3421 | re_node_set_free (&follows); | ||
3422 | for (i = 0; i < ndests; ++i) | ||
3423 | re_node_set_free (dests_node + i); | ||
3424 | if (dests_node_malloced) | ||
3425 | free (dests_alloc); | ||
3426 | return false; | ||
3427 | } | ||
3428 | dest_states_malloced = true; | ||
3429 | } | ||
3430 | dest_states_word = dest_states + ndests; | ||
3431 | dest_states_nl = dest_states_word + ndests; | ||
3432 | bitset_empty (acceptable); | ||
3433 | |||
3434 | /* Then build the states for all destinations. */ | ||
3435 | for (i = 0; i < ndests; ++i) | ||
3436 | { | ||
3437 | Idx next_node; | ||
3438 | re_node_set_empty (&follows); | ||
3439 | /* Merge the follows of this destination states. */ | ||
3440 | for (j = 0; j < dests_node[i].nelem; ++j) | ||
3441 | { | ||
3442 | next_node = dfa->nexts[dests_node[i].elems[j]]; | ||
3443 | if (next_node != REG_MISSING) | ||
3444 | { | ||
3445 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); | ||
3446 | if (BE (err != REG_NOERROR, 0)) | ||
3447 | goto out_free; | ||
3448 | } | ||
3449 | } | ||
3450 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); | ||
3451 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) | ||
3452 | goto out_free; | ||
3453 | /* If the new state has context constraint, | ||
3454 | build appropriate states for these contexts. */ | ||
3455 | if (dest_states[i]->has_constraint) | ||
3456 | { | ||
3457 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, | ||
3458 | CONTEXT_WORD); | ||
3459 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) | ||
3460 | goto out_free; | ||
3461 | |||
3462 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) | ||
3463 | need_word_trtable = true; | ||
3464 | |||
3465 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, | ||
3466 | CONTEXT_NEWLINE); | ||
3467 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) | ||
3468 | goto out_free; | ||
3469 | } | ||
3470 | else | ||
3471 | { | ||
3472 | dest_states_word[i] = dest_states[i]; | ||
3473 | dest_states_nl[i] = dest_states[i]; | ||
3474 | } | ||
3475 | bitset_merge (acceptable, dests_ch[i]); | ||
3476 | } | ||
3477 | |||
3478 | if (!BE (need_word_trtable, 0)) | ||
3479 | { | ||
3480 | /* We don't care about whether the following character is a word | ||
3481 | character, or we are in a single-byte character set so we can | ||
3482 | discern by looking at the character code: allocate a | ||
3483 | 256-entry transition table. */ | ||
3484 | trtable = state->trtable = | ||
3485 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); | ||
3486 | if (BE (trtable == NULL, 0)) | ||
3487 | goto out_free; | ||
3488 | |||
3489 | /* For all characters ch...: */ | ||
3490 | for (i = 0; i < BITSET_WORDS; ++i) | ||
3491 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | ||
3492 | elem; | ||
3493 | mask <<= 1, elem >>= 1, ++ch) | ||
3494 | if (BE (elem & 1, 0)) | ||
3495 | { | ||
3496 | /* There must be exactly one destination which accepts | ||
3497 | character ch. See group_nodes_into_DFAstates. */ | ||
3498 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | ||
3499 | ; | ||
3500 | |||
3501 | /* j-th destination accepts the word character ch. */ | ||
3502 | if (dfa->word_char[i] & mask) | ||
3503 | trtable[ch] = dest_states_word[j]; | ||
3504 | else | ||
3505 | trtable[ch] = dest_states[j]; | ||
3506 | } | ||
3507 | } | ||
3508 | else | ||
3509 | { | ||
3510 | /* We care about whether the following character is a word | ||
3511 | character, and we are in a multi-byte character set: discern | ||
3512 | by looking at the character code: build two 256-entry | ||
3513 | transition tables, one starting at trtable[0] and one | ||
3514 | starting at trtable[SBC_MAX]. */ | ||
3515 | trtable = state->word_trtable = | ||
3516 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); | ||
3517 | if (BE (trtable == NULL, 0)) | ||
3518 | goto out_free; | ||
3519 | |||
3520 | /* For all characters ch...: */ | ||
3521 | for (i = 0; i < BITSET_WORDS; ++i) | ||
3522 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | ||
3523 | elem; | ||
3524 | mask <<= 1, elem >>= 1, ++ch) | ||
3525 | if (BE (elem & 1, 0)) | ||
3526 | { | ||
3527 | /* There must be exactly one destination which accepts | ||
3528 | character ch. See group_nodes_into_DFAstates. */ | ||
3529 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | ||
3530 | ; | ||
3531 | |||
3532 | /* j-th destination accepts the word character ch. */ | ||
3533 | trtable[ch] = dest_states[j]; | ||
3534 | trtable[ch + SBC_MAX] = dest_states_word[j]; | ||
3535 | } | ||
3536 | } | ||
3537 | |||
3538 | /* new line */ | ||
3539 | if (bitset_contain (acceptable, NEWLINE_CHAR)) | ||
3540 | { | ||
3541 | /* The current state accepts newline character. */ | ||
3542 | for (j = 0; j < ndests; ++j) | ||
3543 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) | ||
3544 | { | ||
3545 | /* k-th destination accepts newline character. */ | ||
3546 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; | ||
3547 | if (need_word_trtable) | ||
3548 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; | ||
3549 | /* There must be only one destination which accepts | ||
3550 | newline. See group_nodes_into_DFAstates. */ | ||
3551 | break; | ||
3552 | } | ||
3553 | } | ||
3554 | |||
3555 | if (dest_states_malloced) | ||
3556 | free (dest_states); | ||
3557 | |||
3558 | re_node_set_free (&follows); | ||
3559 | for (i = 0; i < ndests; ++i) | ||
3560 | re_node_set_free (dests_node + i); | ||
3561 | |||
3562 | if (dests_node_malloced) | ||
3563 | free (dests_alloc); | ||
3564 | |||
3565 | return true; | ||
3566 | } | ||
3567 | |||
3568 | /* Group all nodes belonging to STATE into several destinations. | ||
3569 | Then for all destinations, set the nodes belonging to the destination | ||
3570 | to DESTS_NODE[i] and set the characters accepted by the destination | ||
3571 | to DEST_CH[i]. This function return the number of destinations. */ | ||
3572 | |||
3573 | static Idx | ||
3574 | internal_function | ||
3575 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, | ||
3576 | re_node_set *dests_node, bitset_t *dests_ch) | ||
3577 | { | ||
3578 | reg_errcode_t err; | ||
3579 | bool ok; | ||
3580 | Idx i, j, k; | ||
3581 | Idx ndests; /* Number of the destinations from `state'. */ | ||
3582 | bitset_t accepts; /* Characters a node can accept. */ | ||
3583 | const re_node_set *cur_nodes = &state->nodes; | ||
3584 | bitset_empty (accepts); | ||
3585 | ndests = 0; | ||
3586 | |||
3587 | /* For all the nodes belonging to `state', */ | ||
3588 | for (i = 0; i < cur_nodes->nelem; ++i) | ||
3589 | { | ||
3590 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; | ||
3591 | re_token_type_t type = node->type; | ||
3592 | unsigned int constraint = node->constraint; | ||
3593 | |||
3594 | /* Enumerate all single byte character this node can accept. */ | ||
3595 | if (type == CHARACTER) | ||
3596 | bitset_set (accepts, node->opr.c); | ||
3597 | else if (type == SIMPLE_BRACKET) | ||
3598 | { | ||
3599 | bitset_merge (accepts, node->opr.sbcset); | ||
3600 | } | ||
3601 | else if (type == OP_PERIOD) | ||
3602 | { | ||
3603 | #ifdef RE_ENABLE_I18N | ||
3604 | if (dfa->mb_cur_max > 1) | ||
3605 | bitset_merge (accepts, dfa->sb_char); | ||
3606 | else | ||
3607 | #endif | ||
3608 | bitset_set_all (accepts); | ||
3609 | if (!(dfa->syntax & RE_DOT_NEWLINE)) | ||
3610 | bitset_clear (accepts, '\n'); | ||
3611 | if (dfa->syntax & RE_DOT_NOT_NULL) | ||
3612 | bitset_clear (accepts, '\0'); | ||
3613 | } | ||
3614 | #ifdef RE_ENABLE_I18N | ||
3615 | else if (type == OP_UTF8_PERIOD) | ||
3616 | { | ||
3617 | if (ASCII_CHARS % BITSET_WORD_BITS == 0) | ||
3618 | memset (accepts, -1, ASCII_CHARS / CHAR_BIT); | ||
3619 | else | ||
3620 | bitset_merge (accepts, utf8_sb_map); | ||
3621 | if (!(dfa->syntax & RE_DOT_NEWLINE)) | ||
3622 | bitset_clear (accepts, '\n'); | ||
3623 | if (dfa->syntax & RE_DOT_NOT_NULL) | ||
3624 | bitset_clear (accepts, '\0'); | ||
3625 | } | ||
3626 | #endif | ||
3627 | else | ||
3628 | continue; | ||
3629 | |||
3630 | /* Check the `accepts' and sift the characters which are not | ||
3631 | match it the context. */ | ||
3632 | if (constraint) | ||
3633 | { | ||
3634 | if (constraint & NEXT_NEWLINE_CONSTRAINT) | ||
3635 | { | ||
3636 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); | ||
3637 | bitset_empty (accepts); | ||
3638 | if (accepts_newline) | ||
3639 | bitset_set (accepts, NEWLINE_CHAR); | ||
3640 | else | ||
3641 | continue; | ||
3642 | } | ||
3643 | if (constraint & NEXT_ENDBUF_CONSTRAINT) | ||
3644 | { | ||
3645 | bitset_empty (accepts); | ||
3646 | continue; | ||
3647 | } | ||
3648 | |||
3649 | if (constraint & NEXT_WORD_CONSTRAINT) | ||
3650 | { | ||
3651 | bitset_word_t any_set = 0; | ||
3652 | if (type == CHARACTER && !node->word_char) | ||
3653 | { | ||
3654 | bitset_empty (accepts); | ||
3655 | continue; | ||
3656 | } | ||
3657 | #ifdef RE_ENABLE_I18N | ||
3658 | if (dfa->mb_cur_max > 1) | ||
3659 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3660 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); | ||
3661 | else | ||
3662 | #endif | ||
3663 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3664 | any_set |= (accepts[j] &= dfa->word_char[j]); | ||
3665 | if (!any_set) | ||
3666 | continue; | ||
3667 | } | ||
3668 | if (constraint & NEXT_NOTWORD_CONSTRAINT) | ||
3669 | { | ||
3670 | bitset_word_t any_set = 0; | ||
3671 | if (type == CHARACTER && node->word_char) | ||
3672 | { | ||
3673 | bitset_empty (accepts); | ||
3674 | continue; | ||
3675 | } | ||
3676 | #ifdef RE_ENABLE_I18N | ||
3677 | if (dfa->mb_cur_max > 1) | ||
3678 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3679 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); | ||
3680 | else | ||
3681 | #endif | ||
3682 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3683 | any_set |= (accepts[j] &= ~dfa->word_char[j]); | ||
3684 | if (!any_set) | ||
3685 | continue; | ||
3686 | } | ||
3687 | } | ||
3688 | |||
3689 | /* Then divide `accepts' into DFA states, or create a new | ||
3690 | state. Above, we make sure that accepts is not empty. */ | ||
3691 | for (j = 0; j < ndests; ++j) | ||
3692 | { | ||
3693 | bitset_t intersec; /* Intersection sets, see below. */ | ||
3694 | bitset_t remains; | ||
3695 | /* Flags, see below. */ | ||
3696 | bitset_word_t has_intersec, not_subset, not_consumed; | ||
3697 | |||
3698 | /* Optimization, skip if this state doesn't accept the character. */ | ||
3699 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) | ||
3700 | continue; | ||
3701 | |||
3702 | /* Enumerate the intersection set of this state and `accepts'. */ | ||
3703 | has_intersec = 0; | ||
3704 | for (k = 0; k < BITSET_WORDS; ++k) | ||
3705 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; | ||
3706 | /* And skip if the intersection set is empty. */ | ||
3707 | if (!has_intersec) | ||
3708 | continue; | ||
3709 | |||
3710 | /* Then check if this state is a subset of `accepts'. */ | ||
3711 | not_subset = not_consumed = 0; | ||
3712 | for (k = 0; k < BITSET_WORDS; ++k) | ||
3713 | { | ||
3714 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; | ||
3715 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; | ||
3716 | } | ||
3717 | |||
3718 | /* If this state isn't a subset of `accepts', create a | ||
3719 | new group state, which has the `remains'. */ | ||
3720 | if (not_subset) | ||
3721 | { | ||
3722 | bitset_copy (dests_ch[ndests], remains); | ||
3723 | bitset_copy (dests_ch[j], intersec); | ||
3724 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); | ||
3725 | if (BE (err != REG_NOERROR, 0)) | ||
3726 | goto error_return; | ||
3727 | ++ndests; | ||
3728 | } | ||
3729 | |||
3730 | /* Put the position in the current group. */ | ||
3731 | ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); | ||
3732 | if (BE (! ok, 0)) | ||
3733 | goto error_return; | ||
3734 | |||
3735 | /* If all characters are consumed, go to next node. */ | ||
3736 | if (!not_consumed) | ||
3737 | break; | ||
3738 | } | ||
3739 | /* Some characters remain, create a new group. */ | ||
3740 | if (j == ndests) | ||
3741 | { | ||
3742 | bitset_copy (dests_ch[ndests], accepts); | ||
3743 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); | ||
3744 | if (BE (err != REG_NOERROR, 0)) | ||
3745 | goto error_return; | ||
3746 | ++ndests; | ||
3747 | bitset_empty (accepts); | ||
3748 | } | ||
3749 | } | ||
3750 | return ndests; | ||
3751 | error_return: | ||
3752 | for (j = 0; j < ndests; ++j) | ||
3753 | re_node_set_free (dests_node + j); | ||
3754 | return REG_MISSING; | ||
3755 | } | ||
3756 | |||
3757 | #ifdef RE_ENABLE_I18N | ||
3758 | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. | ||
3759 | Return the number of the bytes the node accepts. | ||
3760 | STR_IDX is the current index of the input string. | ||
3761 | |||
3762 | This function handles the nodes which can accept one character, or | ||
3763 | one collating element like '.', '[a-z]', opposite to the other nodes | ||
3764 | can only accept one byte. */ | ||
3765 | |||
3766 | static int | ||
3767 | internal_function | ||
3768 | check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, | ||
3769 | const re_string_t *input, Idx str_idx) | ||
3770 | { | ||
3771 | const re_token_t *node = dfa->nodes + node_idx; | ||
3772 | int char_len, elem_len; | ||
3773 | Idx i; | ||
3774 | |||
3775 | if (BE (node->type == OP_UTF8_PERIOD, 0)) | ||
3776 | { | ||
3777 | unsigned char c = re_string_byte_at (input, str_idx), d; | ||
3778 | if (BE (c < 0xc2, 1)) | ||
3779 | return 0; | ||
3780 | |||
3781 | if (str_idx + 2 > input->len) | ||
3782 | return 0; | ||
3783 | |||
3784 | d = re_string_byte_at (input, str_idx + 1); | ||
3785 | if (c < 0xe0) | ||
3786 | return (d < 0x80 || d > 0xbf) ? 0 : 2; | ||
3787 | else if (c < 0xf0) | ||
3788 | { | ||
3789 | char_len = 3; | ||
3790 | if (c == 0xe0 && d < 0xa0) | ||
3791 | return 0; | ||
3792 | } | ||
3793 | else if (c < 0xf8) | ||
3794 | { | ||
3795 | char_len = 4; | ||
3796 | if (c == 0xf0 && d < 0x90) | ||
3797 | return 0; | ||
3798 | } | ||
3799 | else if (c < 0xfc) | ||
3800 | { | ||
3801 | char_len = 5; | ||
3802 | if (c == 0xf8 && d < 0x88) | ||
3803 | return 0; | ||
3804 | } | ||
3805 | else if (c < 0xfe) | ||
3806 | { | ||
3807 | char_len = 6; | ||
3808 | if (c == 0xfc && d < 0x84) | ||
3809 | return 0; | ||
3810 | } | ||
3811 | else | ||
3812 | return 0; | ||
3813 | |||
3814 | if (str_idx + char_len > input->len) | ||
3815 | return 0; | ||
3816 | |||
3817 | for (i = 1; i < char_len; ++i) | ||
3818 | { | ||
3819 | d = re_string_byte_at (input, str_idx + i); | ||
3820 | if (d < 0x80 || d > 0xbf) | ||
3821 | return 0; | ||
3822 | } | ||
3823 | return char_len; | ||
3824 | } | ||
3825 | |||
3826 | char_len = re_string_char_size_at (input, str_idx); | ||
3827 | if (node->type == OP_PERIOD) | ||
3828 | { | ||
3829 | if (char_len <= 1) | ||
3830 | return 0; | ||
3831 | /* FIXME: I don't think this if is needed, as both '\n' | ||
3832 | and '\0' are char_len == 1. */ | ||
3833 | /* '.' accepts any one character except the following two cases. */ | ||
3834 | if ((!(dfa->syntax & RE_DOT_NEWLINE) && | ||
3835 | re_string_byte_at (input, str_idx) == '\n') || | ||
3836 | ((dfa->syntax & RE_DOT_NOT_NULL) && | ||
3837 | re_string_byte_at (input, str_idx) == '\0')) | ||
3838 | return 0; | ||
3839 | return char_len; | ||
3840 | } | ||
3841 | |||
3842 | elem_len = re_string_elem_size_at (input, str_idx); | ||
3843 | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) | ||
3844 | return 0; | ||
3845 | |||
3846 | if (node->type == COMPLEX_BRACKET) | ||
3847 | { | ||
3848 | const re_charset_t *cset = node->opr.mbcset; | ||
3849 | # ifdef _LIBC | ||
3850 | const unsigned char *pin | ||
3851 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); | ||
3852 | Idx j; | ||
3853 | uint32_t nrules; | ||
3854 | # endif /* _LIBC */ | ||
3855 | int match_len = 0; | ||
3856 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) | ||
3857 | ? re_string_wchar_at (input, str_idx) : 0); | ||
3858 | |||
3859 | /* match with multibyte character? */ | ||
3860 | for (i = 0; i < cset->nmbchars; ++i) | ||
3861 | if (wc == cset->mbchars[i]) | ||
3862 | { | ||
3863 | match_len = char_len; | ||
3864 | goto check_node_accept_bytes_match; | ||
3865 | } | ||
3866 | /* match with character_class? */ | ||
3867 | for (i = 0; i < cset->nchar_classes; ++i) | ||
3868 | { | ||
3869 | wctype_t wt = cset->char_classes[i]; | ||
3870 | if (__iswctype (wc, wt)) | ||
3871 | { | ||
3872 | match_len = char_len; | ||
3873 | goto check_node_accept_bytes_match; | ||
3874 | } | ||
3875 | } | ||
3876 | |||
3877 | # ifdef _LIBC | ||
3878 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3879 | if (nrules != 0) | ||
3880 | { | ||
3881 | unsigned int in_collseq = 0; | ||
3882 | const int32_t *table, *indirect; | ||
3883 | const unsigned char *weights, *extra; | ||
3884 | const char *collseqwc; | ||
3885 | int32_t idx; | ||
3886 | /* This #include defines a local function! */ | ||
3887 | # include <locale/weight.h> | ||
3888 | |||
3889 | /* match with collating_symbol? */ | ||
3890 | if (cset->ncoll_syms) | ||
3891 | extra = (const unsigned char *) | ||
3892 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | ||
3893 | for (i = 0; i < cset->ncoll_syms; ++i) | ||
3894 | { | ||
3895 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; | ||
3896 | /* Compare the length of input collating element and | ||
3897 | the length of current collating element. */ | ||
3898 | if (*coll_sym != elem_len) | ||
3899 | continue; | ||
3900 | /* Compare each bytes. */ | ||
3901 | for (j = 0; j < *coll_sym; j++) | ||
3902 | if (pin[j] != coll_sym[1 + j]) | ||
3903 | break; | ||
3904 | if (j == *coll_sym) | ||
3905 | { | ||
3906 | /* Match if every bytes is equal. */ | ||
3907 | match_len = j; | ||
3908 | goto check_node_accept_bytes_match; | ||
3909 | } | ||
3910 | } | ||
3911 | |||
3912 | if (cset->nranges) | ||
3913 | { | ||
3914 | if (elem_len <= char_len) | ||
3915 | { | ||
3916 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | ||
3917 | in_collseq = __collseq_table_lookup (collseqwc, wc); | ||
3918 | } | ||
3919 | else | ||
3920 | in_collseq = find_collation_sequence_value (pin, elem_len); | ||
3921 | } | ||
3922 | /* match with range expression? */ | ||
3923 | for (i = 0; i < cset->nranges; ++i) | ||
3924 | if (cset->range_starts[i] <= in_collseq | ||
3925 | && in_collseq <= cset->range_ends[i]) | ||
3926 | { | ||
3927 | match_len = elem_len; | ||
3928 | goto check_node_accept_bytes_match; | ||
3929 | } | ||
3930 | |||
3931 | /* match with equivalence_class? */ | ||
3932 | if (cset->nequiv_classes) | ||
3933 | { | ||
3934 | const unsigned char *cp = pin; | ||
3935 | table = (const int32_t *) | ||
3936 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
3937 | weights = (const unsigned char *) | ||
3938 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); | ||
3939 | extra = (const unsigned char *) | ||
3940 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | ||
3941 | indirect = (const int32_t *) | ||
3942 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); | ||
3943 | idx = findidx (&cp); | ||
3944 | if (idx > 0) | ||
3945 | for (i = 0; i < cset->nequiv_classes; ++i) | ||
3946 | { | ||
3947 | int32_t equiv_class_idx = cset->equiv_classes[i]; | ||
3948 | size_t weight_len = weights[idx]; | ||
3949 | if (weight_len == weights[equiv_class_idx]) | ||
3950 | { | ||
3951 | Idx cnt = 0; | ||
3952 | while (cnt <= weight_len | ||
3953 | && (weights[equiv_class_idx + 1 + cnt] | ||
3954 | == weights[idx + 1 + cnt])) | ||
3955 | ++cnt; | ||
3956 | if (cnt > weight_len) | ||
3957 | { | ||
3958 | match_len = elem_len; | ||
3959 | goto check_node_accept_bytes_match; | ||
3960 | } | ||
3961 | } | ||
3962 | } | ||
3963 | } | ||
3964 | } | ||
3965 | else | ||
3966 | # endif /* _LIBC */ | ||
3967 | { | ||
3968 | /* match with range expression? */ | ||
3969 | #if __GNUC__ >= 2 && ! (__STDC_VERSION__ < 199901L && __STRICT_ANSI__) | ||
3970 | wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'}; | ||
3971 | #else | ||
3972 | wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | ||
3973 | cmp_buf[2] = wc; | ||
3974 | #endif | ||
3975 | for (i = 0; i < cset->nranges; ++i) | ||
3976 | { | ||
3977 | cmp_buf[0] = cset->range_starts[i]; | ||
3978 | cmp_buf[4] = cset->range_ends[i]; | ||
3979 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | ||
3980 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | ||
3981 | { | ||
3982 | match_len = char_len; | ||
3983 | goto check_node_accept_bytes_match; | ||
3984 | } | ||
3985 | } | ||
3986 | } | ||
3987 | check_node_accept_bytes_match: | ||
3988 | if (!cset->non_match) | ||
3989 | return match_len; | ||
3990 | else | ||
3991 | { | ||
3992 | if (match_len > 0) | ||
3993 | return 0; | ||
3994 | else | ||
3995 | return (elem_len > char_len) ? elem_len : char_len; | ||
3996 | } | ||
3997 | } | ||
3998 | return 0; | ||
3999 | } | ||
4000 | |||
4001 | # ifdef _LIBC | ||
4002 | static unsigned int | ||
4003 | internal_function | ||
4004 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) | ||
4005 | { | ||
4006 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
4007 | if (nrules == 0) | ||
4008 | { | ||
4009 | if (mbs_len == 1) | ||
4010 | { | ||
4011 | /* No valid character. Match it as a single byte character. */ | ||
4012 | const unsigned char *collseq = (const unsigned char *) | ||
4013 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | ||
4014 | return collseq[mbs[0]]; | ||
4015 | } | ||
4016 | return UINT_MAX; | ||
4017 | } | ||
4018 | else | ||
4019 | { | ||
4020 | int32_t idx; | ||
4021 | const unsigned char *extra = (const unsigned char *) | ||
4022 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | ||
4023 | int32_t extrasize = (const unsigned char *) | ||
4024 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; | ||
4025 | |||
4026 | for (idx = 0; idx < extrasize;) | ||
4027 | { | ||
4028 | int mbs_cnt; | ||
4029 | bool found = false; | ||
4030 | int32_t elem_mbs_len; | ||
4031 | /* Skip the name of collating element name. */ | ||
4032 | idx = idx + extra[idx] + 1; | ||
4033 | elem_mbs_len = extra[idx++]; | ||
4034 | if (mbs_len == elem_mbs_len) | ||
4035 | { | ||
4036 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) | ||
4037 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) | ||
4038 | break; | ||
4039 | if (mbs_cnt == elem_mbs_len) | ||
4040 | /* Found the entry. */ | ||
4041 | found = true; | ||
4042 | } | ||
4043 | /* Skip the byte sequence of the collating element. */ | ||
4044 | idx += elem_mbs_len; | ||
4045 | /* Adjust for the alignment. */ | ||
4046 | idx = (idx + 3) & ~3; | ||
4047 | /* Skip the collation sequence value. */ | ||
4048 | idx += sizeof (uint32_t); | ||
4049 | /* Skip the wide char sequence of the collating element. */ | ||
4050 | idx = idx + sizeof (uint32_t) * (extra[idx] + 1); | ||
4051 | /* If we found the entry, return the sequence value. */ | ||
4052 | if (found) | ||
4053 | return *(uint32_t *) (extra + idx); | ||
4054 | /* Skip the collation sequence value. */ | ||
4055 | idx += sizeof (uint32_t); | ||
4056 | } | ||
4057 | return UINT_MAX; | ||
4058 | } | ||
4059 | } | ||
4060 | # endif /* _LIBC */ | ||
4061 | #endif /* RE_ENABLE_I18N */ | ||
4062 | |||
4063 | /* Check whether the node accepts the byte which is IDX-th | ||
4064 | byte of the INPUT. */ | ||
4065 | |||
4066 | static bool | ||
4067 | internal_function | ||
4068 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, | ||
4069 | Idx idx) | ||
4070 | { | ||
4071 | unsigned char ch; | ||
4072 | ch = re_string_byte_at (&mctx->input, idx); | ||
4073 | switch (node->type) | ||
4074 | { | ||
4075 | case CHARACTER: | ||
4076 | if (node->opr.c != ch) | ||
4077 | return false; | ||
4078 | break; | ||
4079 | |||
4080 | case SIMPLE_BRACKET: | ||
4081 | if (!bitset_contain (node->opr.sbcset, ch)) | ||
4082 | return false; | ||
4083 | break; | ||
4084 | |||
4085 | #ifdef RE_ENABLE_I18N | ||
4086 | case OP_UTF8_PERIOD: | ||
4087 | if (ch >= ASCII_CHARS) | ||
4088 | return false; | ||
4089 | /* FALLTHROUGH */ | ||
4090 | #endif | ||
4091 | case OP_PERIOD: | ||
4092 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) | ||
4093 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) | ||
4094 | return false; | ||
4095 | break; | ||
4096 | |||
4097 | default: | ||
4098 | return false; | ||
4099 | } | ||
4100 | |||
4101 | if (node->constraint) | ||
4102 | { | ||
4103 | /* The node has constraints. Check whether the current context | ||
4104 | satisfies the constraints. */ | ||
4105 | unsigned int context = re_string_context_at (&mctx->input, idx, | ||
4106 | mctx->eflags); | ||
4107 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | ||
4108 | return false; | ||
4109 | } | ||
4110 | |||
4111 | return true; | ||
4112 | } | ||
4113 | |||
4114 | /* Extend the buffers, if the buffers have run out. */ | ||
4115 | |||
4116 | static reg_errcode_t | ||
4117 | internal_function | ||
4118 | extend_buffers (re_match_context_t *mctx) | ||
4119 | { | ||
4120 | reg_errcode_t ret; | ||
4121 | re_string_t *pstr = &mctx->input; | ||
4122 | |||
4123 | /* Avoid overflow. */ | ||
4124 | if (BE (SIZE_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0)) | ||
4125 | return REG_ESPACE; | ||
4126 | |||
4127 | /* Double the lengthes of the buffers. */ | ||
4128 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | ||
4129 | if (BE (ret != REG_NOERROR, 0)) | ||
4130 | return ret; | ||
4131 | |||
4132 | if (mctx->state_log != NULL) | ||
4133 | { | ||
4134 | /* And double the length of state_log. */ | ||
4135 | /* XXX We have no indication of the size of this buffer. If this | ||
4136 | allocation fail we have no indication that the state_log array | ||
4137 | does not have the right size. */ | ||
4138 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, | ||
4139 | pstr->bufs_len + 1); | ||
4140 | if (BE (new_array == NULL, 0)) | ||
4141 | return REG_ESPACE; | ||
4142 | mctx->state_log = new_array; | ||
4143 | } | ||
4144 | |||
4145 | /* Then reconstruct the buffers. */ | ||
4146 | if (pstr->icase) | ||
4147 | { | ||
4148 | #ifdef RE_ENABLE_I18N | ||
4149 | if (pstr->mb_cur_max > 1) | ||
4150 | { | ||
4151 | ret = build_wcs_upper_buffer (pstr); | ||
4152 | if (BE (ret != REG_NOERROR, 0)) | ||
4153 | return ret; | ||
4154 | } | ||
4155 | else | ||
4156 | #endif /* RE_ENABLE_I18N */ | ||
4157 | build_upper_buffer (pstr); | ||
4158 | } | ||
4159 | else | ||
4160 | { | ||
4161 | #ifdef RE_ENABLE_I18N | ||
4162 | if (pstr->mb_cur_max > 1) | ||
4163 | build_wcs_buffer (pstr); | ||
4164 | else | ||
4165 | #endif /* RE_ENABLE_I18N */ | ||
4166 | { | ||
4167 | if (pstr->trans != NULL) | ||
4168 | re_string_translate_buffer (pstr); | ||
4169 | } | ||
4170 | } | ||
4171 | return REG_NOERROR; | ||
4172 | } | ||
4173 | |||
4174 | |||
4175 | /* Functions for matching context. */ | ||
4176 | |||
4177 | /* Initialize MCTX. */ | ||
4178 | |||
4179 | static reg_errcode_t | ||
4180 | internal_function | ||
4181 | match_ctx_init (re_match_context_t *mctx, int eflags, Idx n) | ||
4182 | { | ||
4183 | mctx->eflags = eflags; | ||
4184 | mctx->match_last = REG_MISSING; | ||
4185 | if (n > 0) | ||
4186 | { | ||
4187 | /* Avoid overflow. */ | ||
4188 | size_t max_object_size = | ||
4189 | MAX (sizeof (struct re_backref_cache_entry), | ||
4190 | sizeof (re_sub_match_top_t *)); | ||
4191 | if (BE (SIZE_MAX / max_object_size < n, 0)) | ||
4192 | return REG_ESPACE; | ||
4193 | |||
4194 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); | ||
4195 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); | ||
4196 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) | ||
4197 | return REG_ESPACE; | ||
4198 | } | ||
4199 | /* Already zero-ed by the caller. | ||
4200 | else | ||
4201 | mctx->bkref_ents = NULL; | ||
4202 | mctx->nbkref_ents = 0; | ||
4203 | mctx->nsub_tops = 0; */ | ||
4204 | mctx->abkref_ents = n; | ||
4205 | mctx->max_mb_elem_len = 1; | ||
4206 | mctx->asub_tops = n; | ||
4207 | return REG_NOERROR; | ||
4208 | } | ||
4209 | |||
4210 | /* Clean the entries which depend on the current input in MCTX. | ||
4211 | This function must be invoked when the matcher changes the start index | ||
4212 | of the input, or changes the input string. */ | ||
4213 | |||
4214 | static void | ||
4215 | internal_function | ||
4216 | match_ctx_clean (re_match_context_t *mctx) | ||
4217 | { | ||
4218 | Idx st_idx; | ||
4219 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) | ||
4220 | { | ||
4221 | Idx sl_idx; | ||
4222 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; | ||
4223 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) | ||
4224 | { | ||
4225 | re_sub_match_last_t *last = top->lasts[sl_idx]; | ||
4226 | re_free (last->path.array); | ||
4227 | re_free (last); | ||
4228 | } | ||
4229 | re_free (top->lasts); | ||
4230 | if (top->path) | ||
4231 | { | ||
4232 | re_free (top->path->array); | ||
4233 | re_free (top->path); | ||
4234 | } | ||
4235 | free (top); | ||
4236 | } | ||
4237 | |||
4238 | mctx->nsub_tops = 0; | ||
4239 | mctx->nbkref_ents = 0; | ||
4240 | } | ||
4241 | |||
4242 | /* Free all the memory associated with MCTX. */ | ||
4243 | |||
4244 | static void | ||
4245 | internal_function | ||
4246 | match_ctx_free (re_match_context_t *mctx) | ||
4247 | { | ||
4248 | /* First, free all the memory associated with MCTX->SUB_TOPS. */ | ||
4249 | match_ctx_clean (mctx); | ||
4250 | re_free (mctx->sub_tops); | ||
4251 | re_free (mctx->bkref_ents); | ||
4252 | } | ||
4253 | |||
4254 | /* Add a new backreference entry to MCTX. | ||
4255 | Note that we assume that caller never call this function with duplicate | ||
4256 | entry, and call with STR_IDX which isn't smaller than any existing entry. | ||
4257 | */ | ||
4258 | |||
4259 | static reg_errcode_t | ||
4260 | internal_function | ||
4261 | match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, Idx from, | ||
4262 | Idx to) | ||
4263 | { | ||
4264 | if (mctx->nbkref_ents >= mctx->abkref_ents) | ||
4265 | { | ||
4266 | struct re_backref_cache_entry* new_entry; | ||
4267 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, | ||
4268 | mctx->abkref_ents * 2); | ||
4269 | if (BE (new_entry == NULL, 0)) | ||
4270 | { | ||
4271 | re_free (mctx->bkref_ents); | ||
4272 | return REG_ESPACE; | ||
4273 | } | ||
4274 | mctx->bkref_ents = new_entry; | ||
4275 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', | ||
4276 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); | ||
4277 | mctx->abkref_ents *= 2; | ||
4278 | } | ||
4279 | if (mctx->nbkref_ents > 0 | ||
4280 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) | ||
4281 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; | ||
4282 | |||
4283 | mctx->bkref_ents[mctx->nbkref_ents].node = node; | ||
4284 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; | ||
4285 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; | ||
4286 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; | ||
4287 | |||
4288 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. | ||
4289 | If bit N is clear, means that this entry won't epsilon-transition to | ||
4290 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If | ||
4291 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one | ||
4292 | such node. | ||
4293 | |||
4294 | A backreference does not epsilon-transition unless it is empty, so set | ||
4295 | to all zeros if FROM != TO. */ | ||
4296 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map | ||
4297 | = (from == to ? -1 : 0); | ||
4298 | |||
4299 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; | ||
4300 | if (mctx->max_mb_elem_len < to - from) | ||
4301 | mctx->max_mb_elem_len = to - from; | ||
4302 | return REG_NOERROR; | ||
4303 | } | ||
4304 | |||
4305 | /* Return the first entry with the same str_idx, or REG_MISSING if none is | ||
4306 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ | ||
4307 | |||
4308 | static Idx | ||
4309 | internal_function | ||
4310 | search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) | ||
4311 | { | ||
4312 | Idx left, right, mid, last; | ||
4313 | last = right = mctx->nbkref_ents; | ||
4314 | for (left = 0; left < right;) | ||
4315 | { | ||
4316 | mid = (left + right) / 2; | ||
4317 | if (mctx->bkref_ents[mid].str_idx < str_idx) | ||
4318 | left = mid + 1; | ||
4319 | else | ||
4320 | right = mid; | ||
4321 | } | ||
4322 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) | ||
4323 | return left; | ||
4324 | else | ||
4325 | return REG_MISSING; | ||
4326 | } | ||
4327 | |||
4328 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches | ||
4329 | at STR_IDX. */ | ||
4330 | |||
4331 | static reg_errcode_t | ||
4332 | internal_function | ||
4333 | match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx) | ||
4334 | { | ||
4335 | #ifdef DEBUG | ||
4336 | assert (mctx->sub_tops != NULL); | ||
4337 | assert (mctx->asub_tops > 0); | ||
4338 | #endif | ||
4339 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) | ||
4340 | { | ||
4341 | Idx new_asub_tops = mctx->asub_tops * 2; | ||
4342 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, | ||
4343 | re_sub_match_top_t *, | ||
4344 | new_asub_tops); | ||
4345 | if (BE (new_array == NULL, 0)) | ||
4346 | return REG_ESPACE; | ||
4347 | mctx->sub_tops = new_array; | ||
4348 | mctx->asub_tops = new_asub_tops; | ||
4349 | } | ||
4350 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); | ||
4351 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) | ||
4352 | return REG_ESPACE; | ||
4353 | mctx->sub_tops[mctx->nsub_tops]->node = node; | ||
4354 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; | ||
4355 | return REG_NOERROR; | ||
4356 | } | ||
4357 | |||
4358 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches | ||
4359 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */ | ||
4360 | |||
4361 | static re_sub_match_last_t * | ||
4362 | internal_function | ||
4363 | match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx) | ||
4364 | { | ||
4365 | re_sub_match_last_t *new_entry; | ||
4366 | if (BE (subtop->nlasts == subtop->alasts, 0)) | ||
4367 | { | ||
4368 | Idx new_alasts = 2 * subtop->alasts + 1; | ||
4369 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts, | ||
4370 | re_sub_match_last_t *, | ||
4371 | new_alasts); | ||
4372 | if (BE (new_array == NULL, 0)) | ||
4373 | return NULL; | ||
4374 | subtop->lasts = new_array; | ||
4375 | subtop->alasts = new_alasts; | ||
4376 | } | ||
4377 | new_entry = calloc (1, sizeof (re_sub_match_last_t)); | ||
4378 | if (BE (new_entry != NULL, 1)) | ||
4379 | { | ||
4380 | subtop->lasts[subtop->nlasts] = new_entry; | ||
4381 | new_entry->node = node; | ||
4382 | new_entry->str_idx = str_idx; | ||
4383 | ++subtop->nlasts; | ||
4384 | } | ||
4385 | return new_entry; | ||
4386 | } | ||
4387 | |||
4388 | static void | ||
4389 | internal_function | ||
4390 | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | ||
4391 | re_dfastate_t **limited_sts, Idx last_node, Idx last_str_idx) | ||
4392 | { | ||
4393 | sctx->sifted_states = sifted_sts; | ||
4394 | sctx->limited_states = limited_sts; | ||
4395 | sctx->last_node = last_node; | ||
4396 | sctx->last_str_idx = last_str_idx; | ||
4397 | re_node_set_init_empty (&sctx->limits); | ||
4398 | } | ||