diff options
Diffstat (limited to 'gl/sha1.c')
-rw-r--r-- | gl/sha1.c | 360 |
1 files changed, 0 insertions, 360 deletions
diff --git a/gl/sha1.c b/gl/sha1.c deleted file mode 100644 index 80f0b7a3..00000000 --- a/gl/sha1.c +++ /dev/null | |||
@@ -1,360 +0,0 @@ | |||
1 | /* sha1.c - Functions to compute SHA1 message digest of files or | ||
2 | memory blocks according to the NIST specification FIPS-180-1. | ||
3 | |||
4 | Copyright (C) 2000-2001, 2003-2006, 2008-2023 Free Software Foundation, Inc. | ||
5 | |||
6 | This file is free software: you can redistribute it and/or modify | ||
7 | it under the terms of the GNU Lesser General Public License as | ||
8 | published by the Free Software Foundation; either version 2.1 of the | ||
9 | License, or (at your option) any later version. | ||
10 | |||
11 | This file is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU Lesser General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU Lesser General Public License | ||
17 | along with this program. If not, see <https://www.gnu.org/licenses/>. */ | ||
18 | |||
19 | /* Written by Scott G. Miller | ||
20 | Credits: | ||
21 | Robert Klep <robert@ilse.nl> -- Expansion function fix | ||
22 | */ | ||
23 | |||
24 | #include <config.h> | ||
25 | |||
26 | /* Specification. */ | ||
27 | #if HAVE_OPENSSL_SHA1 | ||
28 | # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE | ||
29 | #endif | ||
30 | #include "sha1.h" | ||
31 | |||
32 | #include <stdint.h> | ||
33 | #include <string.h> | ||
34 | |||
35 | #include <byteswap.h> | ||
36 | #ifdef WORDS_BIGENDIAN | ||
37 | # define SWAP(n) (n) | ||
38 | #else | ||
39 | # define SWAP(n) bswap_32 (n) | ||
40 | #endif | ||
41 | |||
42 | #if ! HAVE_OPENSSL_SHA1 | ||
43 | |||
44 | /* This array contains the bytes used to pad the buffer to the next | ||
45 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | ||
46 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | ||
47 | |||
48 | |||
49 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and | ||
50 | initialize it to the start constants of the SHA1 algorithm. This | ||
51 | must be called before using hash in the call to sha1_hash. */ | ||
52 | void | ||
53 | sha1_init_ctx (struct sha1_ctx *ctx) | ||
54 | { | ||
55 | ctx->A = 0x67452301; | ||
56 | ctx->B = 0xefcdab89; | ||
57 | ctx->C = 0x98badcfe; | ||
58 | ctx->D = 0x10325476; | ||
59 | ctx->E = 0xc3d2e1f0; | ||
60 | |||
61 | ctx->total[0] = ctx->total[1] = 0; | ||
62 | ctx->buflen = 0; | ||
63 | } | ||
64 | |||
65 | /* Copy the 4 byte value from v into the memory location pointed to by *cp, | ||
66 | If your architecture allows unaligned access this is equivalent to | ||
67 | * (uint32_t *) cp = v */ | ||
68 | static void | ||
69 | set_uint32 (char *cp, uint32_t v) | ||
70 | { | ||
71 | memcpy (cp, &v, sizeof v); | ||
72 | } | ||
73 | |||
74 | /* Put result from CTX in first 20 bytes following RESBUF. The result | ||
75 | must be in little endian byte order. */ | ||
76 | void * | ||
77 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) | ||
78 | { | ||
79 | char *r = resbuf; | ||
80 | set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A)); | ||
81 | set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B)); | ||
82 | set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C)); | ||
83 | set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D)); | ||
84 | set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E)); | ||
85 | |||
86 | return resbuf; | ||
87 | } | ||
88 | |||
89 | /* Process the remaining bytes in the internal buffer and the usual | ||
90 | prolog according to the standard and write the result to RESBUF. */ | ||
91 | void * | ||
92 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) | ||
93 | { | ||
94 | /* Take yet unprocessed bytes into account. */ | ||
95 | uint32_t bytes = ctx->buflen; | ||
96 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | ||
97 | |||
98 | /* Now count remaining bytes. */ | ||
99 | ctx->total[0] += bytes; | ||
100 | if (ctx->total[0] < bytes) | ||
101 | ++ctx->total[1]; | ||
102 | |||
103 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | ||
104 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); | ||
105 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); | ||
106 | |||
107 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | ||
108 | |||
109 | /* Process last bytes. */ | ||
110 | sha1_process_block (ctx->buffer, size * 4, ctx); | ||
111 | |||
112 | return sha1_read_ctx (ctx, resbuf); | ||
113 | } | ||
114 | |||
115 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The | ||
116 | result is always in little endian byte order, so that a byte-wise | ||
117 | output yields to the wanted ASCII representation of the message | ||
118 | digest. */ | ||
119 | void * | ||
120 | sha1_buffer (const char *buffer, size_t len, void *resblock) | ||
121 | { | ||
122 | struct sha1_ctx ctx; | ||
123 | |||
124 | /* Initialize the computation context. */ | ||
125 | sha1_init_ctx (&ctx); | ||
126 | |||
127 | /* Process whole buffer but last len % 64 bytes. */ | ||
128 | sha1_process_bytes (buffer, len, &ctx); | ||
129 | |||
130 | /* Put result in desired memory area. */ | ||
131 | return sha1_finish_ctx (&ctx, resblock); | ||
132 | } | ||
133 | |||
134 | void | ||
135 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
136 | { | ||
137 | /* When we already have some bits in our internal buffer concatenate | ||
138 | both inputs first. */ | ||
139 | if (ctx->buflen != 0) | ||
140 | { | ||
141 | size_t left_over = ctx->buflen; | ||
142 | size_t add = 128 - left_over > len ? len : 128 - left_over; | ||
143 | |||
144 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | ||
145 | ctx->buflen += add; | ||
146 | |||
147 | if (ctx->buflen > 64) | ||
148 | { | ||
149 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | ||
150 | |||
151 | ctx->buflen &= 63; | ||
152 | /* The regions in the following copy operation cannot overlap, | ||
153 | because ctx->buflen < 64 ≤ (left_over + add) & ~63. */ | ||
154 | memcpy (ctx->buffer, | ||
155 | &((char *) ctx->buffer)[(left_over + add) & ~63], | ||
156 | ctx->buflen); | ||
157 | } | ||
158 | |||
159 | buffer = (const char *) buffer + add; | ||
160 | len -= add; | ||
161 | } | ||
162 | |||
163 | /* Process available complete blocks. */ | ||
164 | if (len >= 64) | ||
165 | { | ||
166 | #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned) | ||
167 | # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0) | ||
168 | if (UNALIGNED_P (buffer)) | ||
169 | while (len > 64) | ||
170 | { | ||
171 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | ||
172 | buffer = (const char *) buffer + 64; | ||
173 | len -= 64; | ||
174 | } | ||
175 | else | ||
176 | #endif | ||
177 | { | ||
178 | sha1_process_block (buffer, len & ~63, ctx); | ||
179 | buffer = (const char *) buffer + (len & ~63); | ||
180 | len &= 63; | ||
181 | } | ||
182 | } | ||
183 | |||
184 | /* Move remaining bytes in internal buffer. */ | ||
185 | if (len > 0) | ||
186 | { | ||
187 | size_t left_over = ctx->buflen; | ||
188 | |||
189 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | ||
190 | left_over += len; | ||
191 | if (left_over >= 64) | ||
192 | { | ||
193 | sha1_process_block (ctx->buffer, 64, ctx); | ||
194 | left_over -= 64; | ||
195 | /* The regions in the following copy operation cannot overlap, | ||
196 | because left_over ≤ 64. */ | ||
197 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | ||
198 | } | ||
199 | ctx->buflen = left_over; | ||
200 | } | ||
201 | } | ||
202 | |||
203 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ | ||
204 | |||
205 | /* SHA1 round constants */ | ||
206 | #define K1 0x5a827999 | ||
207 | #define K2 0x6ed9eba1 | ||
208 | #define K3 0x8f1bbcdc | ||
209 | #define K4 0xca62c1d6 | ||
210 | |||
211 | /* Round functions. Note that F2 is the same as F4. */ | ||
212 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) | ||
213 | #define F2(B,C,D) (B ^ C ^ D) | ||
214 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) | ||
215 | #define F4(B,C,D) (B ^ C ^ D) | ||
216 | |||
217 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | ||
218 | It is assumed that LEN % 64 == 0. | ||
219 | Most of this code comes from GnuPG's cipher/sha1.c. */ | ||
220 | |||
221 | void | ||
222 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
223 | { | ||
224 | const uint32_t *words = buffer; | ||
225 | size_t nwords = len / sizeof (uint32_t); | ||
226 | const uint32_t *endp = words + nwords; | ||
227 | uint32_t x[16]; | ||
228 | uint32_t a = ctx->A; | ||
229 | uint32_t b = ctx->B; | ||
230 | uint32_t c = ctx->C; | ||
231 | uint32_t d = ctx->D; | ||
232 | uint32_t e = ctx->E; | ||
233 | uint32_t lolen = len; | ||
234 | |||
235 | /* First increment the byte count. RFC 1321 specifies the possible | ||
236 | length of the file up to 2^64 bits. Here we only compute the | ||
237 | number of bytes. Do a double word increment. */ | ||
238 | ctx->total[0] += lolen; | ||
239 | ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen); | ||
240 | |||
241 | #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) | ||
242 | |||
243 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ | ||
244 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ | ||
245 | , (x[I&0x0f] = rol(tm, 1)) ) | ||
246 | |||
247 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ | ||
248 | + F( B, C, D ) \ | ||
249 | + K \ | ||
250 | + M; \ | ||
251 | B = rol( B, 30 ); \ | ||
252 | } while(0) | ||
253 | |||
254 | while (words < endp) | ||
255 | { | ||
256 | uint32_t tm; | ||
257 | int t; | ||
258 | for (t = 0; t < 16; t++) | ||
259 | { | ||
260 | x[t] = SWAP (*words); | ||
261 | words++; | ||
262 | } | ||
263 | |||
264 | R( a, b, c, d, e, F1, K1, x[ 0] ); | ||
265 | R( e, a, b, c, d, F1, K1, x[ 1] ); | ||
266 | R( d, e, a, b, c, F1, K1, x[ 2] ); | ||
267 | R( c, d, e, a, b, F1, K1, x[ 3] ); | ||
268 | R( b, c, d, e, a, F1, K1, x[ 4] ); | ||
269 | R( a, b, c, d, e, F1, K1, x[ 5] ); | ||
270 | R( e, a, b, c, d, F1, K1, x[ 6] ); | ||
271 | R( d, e, a, b, c, F1, K1, x[ 7] ); | ||
272 | R( c, d, e, a, b, F1, K1, x[ 8] ); | ||
273 | R( b, c, d, e, a, F1, K1, x[ 9] ); | ||
274 | R( a, b, c, d, e, F1, K1, x[10] ); | ||
275 | R( e, a, b, c, d, F1, K1, x[11] ); | ||
276 | R( d, e, a, b, c, F1, K1, x[12] ); | ||
277 | R( c, d, e, a, b, F1, K1, x[13] ); | ||
278 | R( b, c, d, e, a, F1, K1, x[14] ); | ||
279 | R( a, b, c, d, e, F1, K1, x[15] ); | ||
280 | R( e, a, b, c, d, F1, K1, M(16) ); | ||
281 | R( d, e, a, b, c, F1, K1, M(17) ); | ||
282 | R( c, d, e, a, b, F1, K1, M(18) ); | ||
283 | R( b, c, d, e, a, F1, K1, M(19) ); | ||
284 | R( a, b, c, d, e, F2, K2, M(20) ); | ||
285 | R( e, a, b, c, d, F2, K2, M(21) ); | ||
286 | R( d, e, a, b, c, F2, K2, M(22) ); | ||
287 | R( c, d, e, a, b, F2, K2, M(23) ); | ||
288 | R( b, c, d, e, a, F2, K2, M(24) ); | ||
289 | R( a, b, c, d, e, F2, K2, M(25) ); | ||
290 | R( e, a, b, c, d, F2, K2, M(26) ); | ||
291 | R( d, e, a, b, c, F2, K2, M(27) ); | ||
292 | R( c, d, e, a, b, F2, K2, M(28) ); | ||
293 | R( b, c, d, e, a, F2, K2, M(29) ); | ||
294 | R( a, b, c, d, e, F2, K2, M(30) ); | ||
295 | R( e, a, b, c, d, F2, K2, M(31) ); | ||
296 | R( d, e, a, b, c, F2, K2, M(32) ); | ||
297 | R( c, d, e, a, b, F2, K2, M(33) ); | ||
298 | R( b, c, d, e, a, F2, K2, M(34) ); | ||
299 | R( a, b, c, d, e, F2, K2, M(35) ); | ||
300 | R( e, a, b, c, d, F2, K2, M(36) ); | ||
301 | R( d, e, a, b, c, F2, K2, M(37) ); | ||
302 | R( c, d, e, a, b, F2, K2, M(38) ); | ||
303 | R( b, c, d, e, a, F2, K2, M(39) ); | ||
304 | R( a, b, c, d, e, F3, K3, M(40) ); | ||
305 | R( e, a, b, c, d, F3, K3, M(41) ); | ||
306 | R( d, e, a, b, c, F3, K3, M(42) ); | ||
307 | R( c, d, e, a, b, F3, K3, M(43) ); | ||
308 | R( b, c, d, e, a, F3, K3, M(44) ); | ||
309 | R( a, b, c, d, e, F3, K3, M(45) ); | ||
310 | R( e, a, b, c, d, F3, K3, M(46) ); | ||
311 | R( d, e, a, b, c, F3, K3, M(47) ); | ||
312 | R( c, d, e, a, b, F3, K3, M(48) ); | ||
313 | R( b, c, d, e, a, F3, K3, M(49) ); | ||
314 | R( a, b, c, d, e, F3, K3, M(50) ); | ||
315 | R( e, a, b, c, d, F3, K3, M(51) ); | ||
316 | R( d, e, a, b, c, F3, K3, M(52) ); | ||
317 | R( c, d, e, a, b, F3, K3, M(53) ); | ||
318 | R( b, c, d, e, a, F3, K3, M(54) ); | ||
319 | R( a, b, c, d, e, F3, K3, M(55) ); | ||
320 | R( e, a, b, c, d, F3, K3, M(56) ); | ||
321 | R( d, e, a, b, c, F3, K3, M(57) ); | ||
322 | R( c, d, e, a, b, F3, K3, M(58) ); | ||
323 | R( b, c, d, e, a, F3, K3, M(59) ); | ||
324 | R( a, b, c, d, e, F4, K4, M(60) ); | ||
325 | R( e, a, b, c, d, F4, K4, M(61) ); | ||
326 | R( d, e, a, b, c, F4, K4, M(62) ); | ||
327 | R( c, d, e, a, b, F4, K4, M(63) ); | ||
328 | R( b, c, d, e, a, F4, K4, M(64) ); | ||
329 | R( a, b, c, d, e, F4, K4, M(65) ); | ||
330 | R( e, a, b, c, d, F4, K4, M(66) ); | ||
331 | R( d, e, a, b, c, F4, K4, M(67) ); | ||
332 | R( c, d, e, a, b, F4, K4, M(68) ); | ||
333 | R( b, c, d, e, a, F4, K4, M(69) ); | ||
334 | R( a, b, c, d, e, F4, K4, M(70) ); | ||
335 | R( e, a, b, c, d, F4, K4, M(71) ); | ||
336 | R( d, e, a, b, c, F4, K4, M(72) ); | ||
337 | R( c, d, e, a, b, F4, K4, M(73) ); | ||
338 | R( b, c, d, e, a, F4, K4, M(74) ); | ||
339 | R( a, b, c, d, e, F4, K4, M(75) ); | ||
340 | R( e, a, b, c, d, F4, K4, M(76) ); | ||
341 | R( d, e, a, b, c, F4, K4, M(77) ); | ||
342 | R( c, d, e, a, b, F4, K4, M(78) ); | ||
343 | R( b, c, d, e, a, F4, K4, M(79) ); | ||
344 | |||
345 | a = ctx->A += a; | ||
346 | b = ctx->B += b; | ||
347 | c = ctx->C += c; | ||
348 | d = ctx->D += d; | ||
349 | e = ctx->E += e; | ||
350 | } | ||
351 | } | ||
352 | |||
353 | #endif | ||
354 | |||
355 | /* | ||
356 | * Hey Emacs! | ||
357 | * Local Variables: | ||
358 | * coding: utf-8 | ||
359 | * End: | ||
360 | */ | ||