/* xmalloc.c -- malloc with out of memory checking Copyright (C) 1990-2000, 2002-2006, 2008-2021 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. */ #include <config.h> #define XALLOC_INLINE _GL_EXTERN_INLINE #include "xalloc.h" #include "ialloc.h" #include "intprops.h" #include "minmax.h" #include <stdlib.h> #include <string.h> static void * _GL_ATTRIBUTE_PURE nonnull (void *p) { if (!p) xalloc_die (); return p; } /* Allocate S bytes of memory dynamically, with error checking. */ void * xmalloc (size_t s) { return nonnull (malloc (s)); } void * ximalloc (idx_t s) { return nonnull (imalloc (s)); } char * xcharalloc (size_t n) { return XNMALLOC (n, char); } /* Change the size of an allocated block of memory P to S bytes, with error checking. */ void * xrealloc (void *p, size_t s) { void *r = realloc (p, s); if (!r && (!p || s)) xalloc_die (); return r; } void * xirealloc (void *p, idx_t s) { return nonnull (irealloc (p, s)); } /* Change the size of an allocated block of memory P to an array of N objects each of S bytes, with error checking. */ void * xreallocarray (void *p, size_t n, size_t s) { void *r = reallocarray (p, n, s); if (!r && (!p || (n && s))) xalloc_die (); return r; } void * xireallocarray (void *p, idx_t n, idx_t s) { return nonnull (ireallocarray (p, n, s)); } /* Allocate an array of N objects, each with S bytes of memory, dynamically, with error checking. S must be nonzero. */ void * xnmalloc (size_t n, size_t s) { return xreallocarray (NULL, n, s); } void * xinmalloc (idx_t n, idx_t s) { return xireallocarray (NULL, n, s); } /* If P is null, allocate a block of at least *PS bytes; otherwise, reallocate P so that it contains more than *PS bytes. *PS must be nonzero unless P is null. Set *PS to the new block's size, and return the pointer to the new block. *PS is never set to zero, and the returned pointer is never null. */ void * x2realloc (void *p, size_t *ps) { return x2nrealloc (p, ps, 1); } /* If P is null, allocate a block of at least *PN such objects; otherwise, reallocate P so that it contains more than *PN objects each of S bytes. S must be nonzero. Set *PN to the new number of objects, and return the pointer to the new block. *PN is never set to zero, and the returned pointer is never null. Repeated reallocations are guaranteed to make progress, either by allocating an initial block with a nonzero size, or by allocating a larger block. In the following implementation, nonzero sizes are increased by a factor of approximately 1.5 so that repeated reallocations have O(N) overall cost rather than O(N**2) cost, but the specification for this function does not guarantee that rate. Here is an example of use: int *p = NULL; size_t used = 0; size_t allocated = 0; void append_int (int value) { if (used == allocated) p = x2nrealloc (p, &allocated, sizeof *p); p[used++] = value; } This causes x2nrealloc to allocate a block of some nonzero size the first time it is called. To have finer-grained control over the initial size, set *PN to a nonzero value before calling this function with P == NULL. For example: int *p = NULL; size_t used = 0; size_t allocated = 0; size_t allocated1 = 1000; void append_int (int value) { if (used == allocated) { p = x2nrealloc (p, &allocated1, sizeof *p); allocated = allocated1; } p[used++] = value; } */ void * x2nrealloc (void *p, size_t *pn, size_t s) { size_t n = *pn; if (! p) { if (! n) { /* The approximate size to use for initial small allocation requests, when the invoking code specifies an old size of zero. This is the largest "small" request for the GNU C library malloc. */ enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 }; n = DEFAULT_MXFAST / s; n += !n; } } else { /* Set N = floor (1.5 * N) + 1 to make progress even if N == 0. */ if (INT_ADD_WRAPV (n, (n >> 1) + 1, &n)) xalloc_die (); } p = xreallocarray (p, n, s); *pn = n; return p; } /* Grow PA, which points to an array of *PN items, and return the location of the reallocated array, updating *PN to reflect its new size. The new array will contain at least N_INCR_MIN more items, but will not contain more than N_MAX items total. S is the size of each item, in bytes. S and N_INCR_MIN must be positive. *PN must be nonnegative. If N_MAX is -1, it is treated as if it were infinity. If PA is null, then allocate a new array instead of reallocating the old one. Thus, to grow an array A without saving its old contents, do { free (A); A = xpalloc (NULL, &AITEMS, ...); }. */ void * xpalloc (void *pa, idx_t *pn, idx_t n_incr_min, ptrdiff_t n_max, idx_t s) { idx_t n0 = *pn; /* The approximate size to use for initial small allocation requests. This is the largest "small" request for the GNU C library malloc. */ enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 }; /* If the array is tiny, grow it to about (but no greater than) DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. Adjust the growth according to three constraints: N_INCR_MIN, N_MAX, and what the C language can represent safely. */ idx_t n; if (INT_ADD_WRAPV (n0, n0 >> 1, &n)) n = IDX_MAX; if (0 <= n_max && n_max < n) n = n_max; /* NBYTES is of a type suitable for holding the count of bytes in an object. This is typically idx_t, but it should be size_t on (theoretical?) platforms where SIZE_MAX < IDX_MAX so xpalloc does not pass values greater than SIZE_MAX to xrealloc. */ #if IDX_MAX <= SIZE_MAX idx_t nbytes; #else size_t nbytes; #endif idx_t adjusted_nbytes = (INT_MULTIPLY_WRAPV (n, s, &nbytes) ? MIN (IDX_MAX, SIZE_MAX) : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0); if (adjusted_nbytes) { n = adjusted_nbytes / s; nbytes = adjusted_nbytes - adjusted_nbytes % s; } if (! pa) *pn = 0; if (n - n0 < n_incr_min && (INT_ADD_WRAPV (n0, n_incr_min, &n) || (0 <= n_max && n_max < n) || INT_MULTIPLY_WRAPV (n, s, &nbytes))) xalloc_die (); pa = xrealloc (pa, nbytes); *pn = n; return pa; } /* Allocate S bytes of zeroed memory dynamically, with error checking. There's no need for xnzalloc (N, S), since it would be equivalent to xcalloc (N, S). */ void * xzalloc (size_t s) { return xcalloc (s, 1); } void * xizalloc (idx_t s) { return xicalloc (s, 1); } /* Allocate zeroed memory for N elements of S bytes, with error checking. S must be nonzero. */ void * xcalloc (size_t n, size_t s) { return nonnull (calloc (n, s)); } void * xicalloc (idx_t n, idx_t s) { return nonnull (icalloc (n, s)); } /* Clone an object P of size S, with error checking. There's no need for xnmemdup (P, N, S), since xmemdup (P, N * S) works without any need for an arithmetic overflow check. */ void * xmemdup (void const *p, size_t s) { return memcpy (xmalloc (s), p, s); } void * ximemdup (void const *p, idx_t s) { return memcpy (ximalloc (s), p, s); } /* Clone an object P of size S, with error checking. Append a terminating NUL byte. */ char * ximemdup0 (void const *p, idx_t s) { char *result = ximalloc (s + 1); result[s] = 0; return memcpy (result, p, s); } /* Clone STRING. */ char * xstrdup (char const *string) { return xmemdup (string, strlen (string) + 1); }