/***************************************************************************** * * Monitoring check_ntp_time plugin * * License: GPL * Copyright (c) 2006 Sean Finney <seanius@seanius.net> * Copyright (c) 2006-2008 Monitoring Plugins Development Team * * Description: * * This file contains the check_ntp_time plugin * * This plugin checks the clock offset between the local host and a * remote NTP server. It is independent of any commandline programs or * external libraries. * * If you'd rather want to monitor an NTP server, please use * check_ntp_peer. * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * *****************************************************************************/ const char *progname = "check_ntp_time"; const char *copyright = "2006-2008"; const char *email = "devel@monitoring-plugins.org"; #include "common.h" #include "netutils.h" #include "utils.h" static char *server_address=NULL; static char *port="123"; static int verbose=0; static int quiet=0; static char *owarn="60"; static char *ocrit="120"; int process_arguments (int, char **); thresholds *offset_thresholds = NULL; void print_help (void); void print_usage (void); /* number of times to perform each request to get a good average. */ #ifndef AVG_NUM #define AVG_NUM 4 #endif /* max size of control message data */ #define MAX_CM_SIZE 468 /* this structure holds everything in an ntp request/response as per rfc1305 */ typedef struct { uint8_t flags; /* byte with leapindicator,vers,mode. see macros */ uint8_t stratum; /* clock stratum */ int8_t poll; /* polling interval */ int8_t precision; /* precision of the local clock */ int32_t rtdelay; /* total rt delay, as a fixed point num. see macros */ uint32_t rtdisp; /* like above, but for max err to primary src */ uint32_t refid; /* ref clock identifier */ uint64_t refts; /* reference timestamp. local time local clock */ uint64_t origts; /* time at which request departed client */ uint64_t rxts; /* time at which request arrived at server */ uint64_t txts; /* time at which request departed server */ } ntp_message; /* this structure holds data about results from querying offset from a peer */ typedef struct { time_t waiting; /* ts set when we started waiting for a response */ int num_responses; /* number of successfully recieved responses */ uint8_t stratum; /* copied verbatim from the ntp_message */ double rtdelay; /* converted from the ntp_message */ double rtdisp; /* converted from the ntp_message */ double offset[AVG_NUM]; /* offsets from each response */ uint8_t flags; /* byte with leapindicator,vers,mode. see macros */ } ntp_server_results; /* bits 1,2 are the leap indicator */ #define LI_MASK 0xc0 #define LI(x) ((x&LI_MASK)>>6) #define LI_SET(x,y) do{ x |= ((y<<6)&LI_MASK); }while(0) /* and these are the values of the leap indicator */ #define LI_NOWARNING 0x00 #define LI_EXTRASEC 0x01 #define LI_MISSINGSEC 0x02 #define LI_ALARM 0x03 /* bits 3,4,5 are the ntp version */ #define VN_MASK 0x38 #define VN(x) ((x&VN_MASK)>>3) #define VN_SET(x,y) do{ x |= ((y<<3)&VN_MASK); }while(0) #define VN_RESERVED 0x02 /* bits 6,7,8 are the ntp mode */ #define MODE_MASK 0x07 #define MODE(x) (x&MODE_MASK) #define MODE_SET(x,y) do{ x |= (y&MODE_MASK); }while(0) /* here are some values */ #define MODE_CLIENT 0x03 #define MODE_CONTROLMSG 0x06 /* In control message, bits 8-10 are R,E,M bits */ #define REM_MASK 0xe0 #define REM_RESP 0x80 #define REM_ERROR 0x40 #define REM_MORE 0x20 /* In control message, bits 11 - 15 are opcode */ #define OP_MASK 0x1f #define OP_SET(x,y) do{ x |= (y&OP_MASK); }while(0) #define OP_READSTAT 0x01 #define OP_READVAR 0x02 /* In peer status bytes, bits 6,7,8 determine clock selection status */ #define PEER_SEL(x) ((ntohs(x)>>8)&0x07) #define PEER_INCLUDED 0x04 #define PEER_SYNCSOURCE 0x06 /** ** a note about the 32-bit "fixed point" numbers: ** they are divided into halves, each being a 16-bit int in network byte order: - the first 16 bits are an int on the left side of a decimal point. - the second 16 bits represent a fraction n/(2^16) likewise for the 64-bit "fixed point" numbers with everything doubled :) **/ /* macros to access the left/right 16 bits of a 32-bit ntp "fixed point" number. note that these can be used as lvalues too */ #define L16(x) (((uint16_t*)&x)[0]) #define R16(x) (((uint16_t*)&x)[1]) /* macros to access the left/right 32 bits of a 64-bit ntp "fixed point" number. these too can be used as lvalues */ #define L32(x) (((uint32_t*)&x)[0]) #define R32(x) (((uint32_t*)&x)[1]) /* ntp wants seconds since 1/1/00, epoch is 1/1/70. this is the difference */ #define EPOCHDIFF 0x83aa7e80UL /* extract a 32-bit ntp fixed point number into a double */ #define NTP32asDOUBLE(x) (ntohs(L16(x)) + (double)ntohs(R16(x))/65536.0) /* likewise for a 64-bit ntp fp number */ #define NTP64asDOUBLE(n) (double)(((uint64_t)n)?\ (ntohl(L32(n))-EPOCHDIFF) + \ (.00000001*(0.5+(double)(ntohl(R32(n))/42.94967296))):\ 0) /* convert a struct timeval to a double */ #define TVasDOUBLE(x) (double)(x.tv_sec+(0.000001*x.tv_usec)) /* convert an ntp 64-bit fp number to a struct timeval */ #define NTP64toTV(n,t) \ do{ if(!n) t.tv_sec = t.tv_usec = 0; \ else { \ t.tv_sec=ntohl(L32(n))-EPOCHDIFF; \ t.tv_usec=(int)(0.5+(double)(ntohl(R32(n))/4294.967296)); \ } \ }while(0) /* convert a struct timeval to an ntp 64-bit fp number */ #define TVtoNTP64(t,n) \ do{ if(!t.tv_usec && !t.tv_sec) n=0x0UL; \ else { \ L32(n)=htonl(t.tv_sec + EPOCHDIFF); \ R32(n)=htonl((uint64_t)((4294.967296*t.tv_usec)+.5)); \ } \ } while(0) /* NTP control message header is 12 bytes, plus any data in the data * field, plus null padding to the nearest 32-bit boundary per rfc. */ #define SIZEOF_NTPCM(m) (12+ntohs(m.count)+((m.count)?4-(ntohs(m.count)%4):0)) /* finally, a little helper or two for debugging: */ #define DBG(x) do{if(verbose>1){ x; }}while(0); #define PRINTSOCKADDR(x) \ do{ \ printf("%u.%u.%u.%u", (x>>24)&0xff, (x>>16)&0xff, (x>>8)&0xff, x&0xff);\ }while(0); /* calculate the offset of the local clock */ static inline double calc_offset(const ntp_message *m, const struct timeval *t){ double client_tx, peer_rx, peer_tx, client_rx; client_tx = NTP64asDOUBLE(m->origts); peer_rx = NTP64asDOUBLE(m->rxts); peer_tx = NTP64asDOUBLE(m->txts); client_rx=TVasDOUBLE((*t)); return (.5*((peer_tx-client_rx)+(peer_rx-client_tx))); } /* print out a ntp packet in human readable/debuggable format */ void print_ntp_message(const ntp_message *p){ struct timeval ref, orig, rx, tx; NTP64toTV(p->refts,ref); NTP64toTV(p->origts,orig); NTP64toTV(p->rxts,rx); NTP64toTV(p->txts,tx); printf("packet contents:\n"); printf("\tflags: 0x%.2x\n", p->flags); printf("\t li=%d (0x%.2x)\n", LI(p->flags), p->flags&LI_MASK); printf("\t vn=%d (0x%.2x)\n", VN(p->flags), p->flags&VN_MASK); printf("\t mode=%d (0x%.2x)\n", MODE(p->flags), p->flags&MODE_MASK); printf("\tstratum = %d\n", p->stratum); printf("\tpoll = %g\n", pow(2, p->poll)); printf("\tprecision = %g\n", pow(2, p->precision)); printf("\trtdelay = %-.16g\n", NTP32asDOUBLE(p->rtdelay)); printf("\trtdisp = %-.16g\n", NTP32asDOUBLE(p->rtdisp)); printf("\trefid = %x\n", p->refid); printf("\trefts = %-.16g\n", NTP64asDOUBLE(p->refts)); printf("\torigts = %-.16g\n", NTP64asDOUBLE(p->origts)); printf("\trxts = %-.16g\n", NTP64asDOUBLE(p->rxts)); printf("\ttxts = %-.16g\n", NTP64asDOUBLE(p->txts)); } void setup_request(ntp_message *p){ struct timeval t; memset(p, 0, sizeof(ntp_message)); LI_SET(p->flags, LI_ALARM); VN_SET(p->flags, 4); MODE_SET(p->flags, MODE_CLIENT); p->poll=4; p->precision=(int8_t)0xfa; L16(p->rtdelay)=htons(1); L16(p->rtdisp)=htons(1); gettimeofday(&t, NULL); TVtoNTP64(t,p->txts); } /* select the "best" server from a list of servers, and return its index. * this is done by filtering servers based on stratum, dispersion, and * finally round-trip delay. */ int best_offset_server(const ntp_server_results *slist, int nservers){ int i=0, cserver=0, best_server=-1; /* for each server */ for(cserver=0; cserver<nservers; cserver++){ /* We don't want any servers that fails these tests */ /* Sort out servers that didn't respond or responede with a 0 stratum; * stratum 0 is for reference clocks so no NTP server should ever report * a stratum 0 */ if ( slist[cserver].stratum == 0){ if (verbose) printf("discarding peer %d: stratum=%d\n", cserver, slist[cserver].stratum); continue; } /* Sort out servers with error flags */ if ( LI(slist[cserver].flags) == LI_ALARM ){ if (verbose) printf("discarding peer %d: flags=%d\n", cserver, LI(slist[cserver].flags)); continue; } /* If we don't have a server yet, use the first one */ if (best_server == -1) { best_server = cserver; DBG(printf("using peer %d as our first candidate\n", best_server)); continue; } /* compare the server to the best one we've seen so far */ /* does it have an equal or better stratum? */ DBG(printf("comparing peer %d with peer %d\n", cserver, best_server)); if(slist[cserver].stratum <= slist[best_server].stratum){ DBG(printf("stratum for peer %d <= peer %d\n", cserver, best_server)); /* does it have an equal or better dispersion? */ if(slist[cserver].rtdisp <= slist[best_server].rtdisp){ DBG(printf("dispersion for peer %d <= peer %d\n", cserver, best_server)); /* does it have a better rtdelay? */ if(slist[cserver].rtdelay < slist[best_server].rtdelay){ DBG(printf("rtdelay for peer %d < peer %d\n", cserver, best_server)); best_server = cserver; DBG(printf("peer %d is now our best candidate\n", best_server)); } } } } if(best_server >= 0) { DBG(printf("best server selected: peer %d\n", best_server)); return best_server; } else { DBG(printf("no peers meeting synchronization criteria :(\n")); return -1; } } /* do everything we need to get the total average offset * - we use a certain amount of parallelization with poll() to ensure * we don't waste time sitting around waiting for single packets. * - we also "manually" handle resolving host names and connecting, because * we have to do it in a way that our lazy macros don't handle currently :( */ double offset_request(const char *host, int *status){ int i=0, j=0, ga_result=0, num_hosts=0, *socklist=NULL, respnum=0; int servers_completed=0, one_written=0, one_read=0, servers_readable=0, best_index=-1; time_t now_time=0, start_ts=0; ntp_message *req=NULL; double avg_offset=0.; struct timeval recv_time; struct addrinfo *ai=NULL, *ai_tmp=NULL, hints; struct pollfd *ufds=NULL; ntp_server_results *servers=NULL; /* setup hints to only return results from getaddrinfo that we'd like */ memset(&hints, 0, sizeof(struct addrinfo)); hints.ai_family = address_family; hints.ai_protocol = IPPROTO_UDP; hints.ai_socktype = SOCK_DGRAM; /* fill in ai with the list of hosts resolved by the host name */ ga_result = getaddrinfo(host, port, &hints, &ai); if(ga_result!=0){ die(STATE_UNKNOWN, "error getting address for %s: %s\n", host, gai_strerror(ga_result)); } /* count the number of returned hosts, and allocate stuff accordingly */ for(ai_tmp=ai; ai_tmp!=NULL; ai_tmp=ai_tmp->ai_next){ num_hosts++; } req=(ntp_message*)malloc(sizeof(ntp_message)*num_hosts); if(req==NULL) die(STATE_UNKNOWN, "can not allocate ntp message array"); socklist=(int*)malloc(sizeof(int)*num_hosts); if(socklist==NULL) die(STATE_UNKNOWN, "can not allocate socket array"); ufds=(struct pollfd*)malloc(sizeof(struct pollfd)*num_hosts); if(ufds==NULL) die(STATE_UNKNOWN, "can not allocate socket array"); servers=(ntp_server_results*)malloc(sizeof(ntp_server_results)*num_hosts); if(servers==NULL) die(STATE_UNKNOWN, "can not allocate server array"); memset(servers, 0, sizeof(ntp_server_results)*num_hosts); DBG(printf("Found %d peers to check\n", num_hosts)); /* setup each socket for writing, and the corresponding struct pollfd */ ai_tmp=ai; for(i=0;ai_tmp;i++){ socklist[i]=socket(ai_tmp->ai_family, SOCK_DGRAM, IPPROTO_UDP); if(socklist[i] == -1) { perror(NULL); die(STATE_UNKNOWN, "can not create new socket"); } if(connect(socklist[i], ai_tmp->ai_addr, ai_tmp->ai_addrlen)){ /* don't die here, because it is enough if there is one server answering in time. This also would break for dual ipv4/6 stacked ntp servers when the client only supports on of them. */ DBG(printf("can't create socket connection on peer %i: %s\n", i, strerror(errno))); } else { ufds[i].fd=socklist[i]; ufds[i].events=POLLIN; ufds[i].revents=0; } ai_tmp = ai_tmp->ai_next; } /* now do AVG_NUM checks to each host. We stop before timeout/2 seconds * have passed in order to ensure post-processing and jitter time. */ now_time=start_ts=time(NULL); while(servers_completed<num_hosts && now_time-start_ts <= socket_timeout/2){ /* loop through each server and find each one which hasn't * been touched in the past second or so and is still lacking * some responses. For each of these servers, send a new request, * and update the "waiting" timestamp with the current time. */ one_written=0; now_time=time(NULL); for(i=0; i<num_hosts; i++){ if(servers[i].waiting<now_time && servers[i].num_responses<AVG_NUM){ if(verbose && servers[i].waiting != 0) printf("re-"); if(verbose) printf("sending request to peer %d\n", i); setup_request(&req[i]); write(socklist[i], &req[i], sizeof(ntp_message)); servers[i].waiting=now_time; one_written=1; break; } } /* quickly poll for any sockets with pending data */ servers_readable=poll(ufds, num_hosts, 100); if(servers_readable==-1){ perror("polling ntp sockets"); die(STATE_UNKNOWN, "communication errors"); } /* read from any sockets with pending data */ for(i=0; servers_readable && i<num_hosts; i++){ if(ufds[i].revents&POLLIN && servers[i].num_responses < AVG_NUM){ if(verbose) { printf("response from peer %d: ", i); } read(ufds[i].fd, &req[i], sizeof(ntp_message)); gettimeofday(&recv_time, NULL); DBG(print_ntp_message(&req[i])); respnum=servers[i].num_responses++; servers[i].offset[respnum]=calc_offset(&req[i], &recv_time); if(verbose) { printf("offset %.10g\n", servers[i].offset[respnum]); } servers[i].stratum=req[i].stratum; servers[i].rtdisp=NTP32asDOUBLE(req[i].rtdisp); servers[i].rtdelay=NTP32asDOUBLE(req[i].rtdelay); servers[i].waiting=0; servers[i].flags=req[i].flags; servers_readable--; one_read = 1; if(servers[i].num_responses==AVG_NUM) servers_completed++; } } /* lather, rinse, repeat. */ } if (one_read == 0) { die(STATE_CRITICAL, "NTP CRITICAL: No response from NTP server\n"); } /* now, pick the best server from the list */ best_index=best_offset_server(servers, num_hosts); if(best_index < 0){ *status=STATE_UNKNOWN; } else { /* finally, calculate the average offset */ for(i=0; i<servers[best_index].num_responses;i++){ avg_offset+=servers[best_index].offset[i]; } avg_offset/=servers[best_index].num_responses; } /* cleanup */ for(j=0; j<num_hosts; j++){ close(socklist[j]); } free(socklist); free(ufds); free(servers); free(req); freeaddrinfo(ai); if(verbose) printf("overall average offset: %.10g\n", avg_offset); return avg_offset; } int process_arguments(int argc, char **argv){ int c; int option=0; static struct option longopts[] = { {"version", no_argument, 0, 'V'}, {"help", no_argument, 0, 'h'}, {"verbose", no_argument, 0, 'v'}, {"use-ipv4", no_argument, 0, '4'}, {"use-ipv6", no_argument, 0, '6'}, {"quiet", no_argument, 0, 'q'}, {"warning", required_argument, 0, 'w'}, {"critical", required_argument, 0, 'c'}, {"timeout", required_argument, 0, 't'}, {"hostname", required_argument, 0, 'H'}, {"port", required_argument, 0, 'p'}, {0, 0, 0, 0} }; if (argc < 2) usage ("\n"); while (1) { c = getopt_long (argc, argv, "Vhv46qw:c:t:H:p:", longopts, &option); if (c == -1 || c == EOF || c == 1) break; switch (c) { case 'h': print_help(); exit(STATE_OK); break; case 'V': print_revision(progname, NP_VERSION); exit(STATE_OK); break; case 'v': verbose++; break; case 'q': quiet = 1; break; case 'w': owarn = optarg; break; case 'c': ocrit = optarg; break; case 'H': if(is_host(optarg) == FALSE) usage2(_("Invalid hostname/address"), optarg); server_address = strdup(optarg); break; case 'p': port = strdup(optarg); break; case 't': socket_timeout=atoi(optarg); break; case '4': address_family = AF_INET; break; case '6': #ifdef USE_IPV6 address_family = AF_INET6; #else usage4 (_("IPv6 support not available")); #endif break; case '?': /* print short usage statement if args not parsable */ usage5 (); break; } } if(server_address == NULL){ usage4(_("Hostname was not supplied")); } return 0; } char *perfd_offset (double offset) { return fperfdata ("offset", offset, "s", TRUE, offset_thresholds->warning->end, TRUE, offset_thresholds->critical->end, FALSE, 0, FALSE, 0); } int main(int argc, char *argv[]){ int result, offset_result; double offset=0; char *result_line, *perfdata_line; setlocale (LC_ALL, ""); bindtextdomain (PACKAGE, LOCALEDIR); textdomain (PACKAGE); result = offset_result = STATE_OK; /* Parse extra opts if any */ argv=np_extra_opts (&argc, argv, progname); if (process_arguments (argc, argv) == ERROR) usage4 (_("Could not parse arguments")); set_thresholds(&offset_thresholds, owarn, ocrit); /* initialize alarm signal handling */ signal (SIGALRM, socket_timeout_alarm_handler); /* set socket timeout */ alarm (socket_timeout); offset = offset_request(server_address, &offset_result); if (offset_result == STATE_UNKNOWN) { result = (quiet == 1 ? STATE_UNKNOWN : STATE_CRITICAL); } else { result = get_status(fabs(offset), offset_thresholds); } switch (result) { case STATE_CRITICAL : xasprintf(&result_line, _("NTP CRITICAL:")); break; case STATE_WARNING : xasprintf(&result_line, _("NTP WARNING:")); break; case STATE_OK : xasprintf(&result_line, _("NTP OK:")); break; default : xasprintf(&result_line, _("NTP UNKNOWN:")); break; } if(offset_result == STATE_UNKNOWN){ xasprintf(&result_line, "%s %s", result_line, _("Offset unknown")); xasprintf(&perfdata_line, ""); } else { xasprintf(&result_line, "%s %s %.10g secs", result_line, _("Offset"), offset); xasprintf(&perfdata_line, "%s", perfd_offset(offset)); } printf("%s|%s\n", result_line, perfdata_line); if(server_address!=NULL) free(server_address); return result; } void print_help(void){ print_revision(progname, NP_VERSION); printf ("Copyright (c) 2006 Sean Finney\n"); printf (COPYRIGHT, copyright, email); printf ("%s\n", _("This plugin checks the clock offset with the ntp server")); printf ("\n\n"); print_usage(); printf (UT_HELP_VRSN); printf (UT_EXTRA_OPTS); printf (UT_IPv46); printf (UT_HOST_PORT, 'p', "123"); printf (" %s\n", "-q, --quiet"); printf (" %s\n", _("Returns UNKNOWN instead of CRITICAL if offset cannot be found")); printf (" %s\n", "-w, --warning=THRESHOLD"); printf (" %s\n", _("Offset to result in warning status (seconds)")); printf (" %s\n", "-c, --critical=THRESHOLD"); printf (" %s\n", _("Offset to result in critical status (seconds)")); printf (UT_CONN_TIMEOUT, DEFAULT_SOCKET_TIMEOUT); printf (UT_VERBOSE); printf("\n"); printf("%s\n", _("This plugin checks the clock offset between the local host and a")); printf("%s\n", _("remote NTP server. It is independent of any commandline programs or")); printf("%s\n", _("external libraries.")); printf("\n"); printf("%s\n", _("Notes:")); printf(" %s\n", _("If you'd rather want to monitor an NTP server, please use")); printf(" %s\n", _("check_ntp_peer.")); printf("\n"); printf(UT_THRESHOLDS_NOTES); printf("\n"); printf("%s\n", _("Examples:")); printf(" %s\n", ("./check_ntp_time -H ntpserv -w 0.5 -c 1")); printf (UT_SUPPORT); } void print_usage(void) { printf ("%s\n", _("Usage:")); printf(" %s -H <host> [-4|-6] [-w <warn>] [-c <crit>] [-v verbose]\n", progname); }