summaryrefslogtreecommitdiffstats
path: root/gl/sha1.c
diff options
context:
space:
mode:
authorRincewindsHat <12514511+RincewindsHat@users.noreply.github.com>2022-09-14 12:50:23 +0200
committerRincewindsHat <12514511+RincewindsHat@users.noreply.github.com>2022-09-14 12:50:23 +0200
commit1909de2e843f1dfd5e031d3d4aa6901a5b9a139d (patch)
tree8f33ed557df0957c028de952d06763346ac4acea /gl/sha1.c
parent5da988e07a96ff154db040befb5472f0dc784a17 (diff)
downloadmonitoring-plugins-1909de2.tar.gz
Add Gnulib module "crypto/sha256" and remote "crypto/sha1"
Diffstat (limited to 'gl/sha1.c')
-rw-r--r--gl/sha1.c361
1 files changed, 0 insertions, 361 deletions
diff --git a/gl/sha1.c b/gl/sha1.c
deleted file mode 100644
index 79e50ba0..00000000
--- a/gl/sha1.c
+++ /dev/null
@@ -1,361 +0,0 @@
1/* sha1.c - Functions to compute SHA1 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-1.
3
4 Copyright (C) 2000-2001, 2003-2006, 2008-2022 Free Software Foundation, Inc.
5
6 This file is free software: you can redistribute it and/or modify
7 it under the terms of the GNU Lesser General Public License as
8 published by the Free Software Foundation; either version 2.1 of the
9 License, or (at your option) any later version.
10
11 This file is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public License
17 along with this program. If not, see <https://www.gnu.org/licenses/>. */
18
19/* Written by Scott G. Miller
20 Credits:
21 Robert Klep <robert@ilse.nl> -- Expansion function fix
22*/
23
24#include <config.h>
25
26/* Specification. */
27#if HAVE_OPENSSL_SHA1
28# define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
29#endif
30#include "sha1.h"
31
32#include <stdalign.h>
33#include <stdint.h>
34#include <string.h>
35
36#include <byteswap.h>
37#ifdef WORDS_BIGENDIAN
38# define SWAP(n) (n)
39#else
40# define SWAP(n) bswap_32 (n)
41#endif
42
43#if ! HAVE_OPENSSL_SHA1
44
45/* This array contains the bytes used to pad the buffer to the next
46 64-byte boundary. (RFC 1321, 3.1: Step 1) */
47static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
48
49
50/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
51 initialize it to the start constants of the SHA1 algorithm. This
52 must be called before using hash in the call to sha1_hash. */
53void
54sha1_init_ctx (struct sha1_ctx *ctx)
55{
56 ctx->A = 0x67452301;
57 ctx->B = 0xefcdab89;
58 ctx->C = 0x98badcfe;
59 ctx->D = 0x10325476;
60 ctx->E = 0xc3d2e1f0;
61
62 ctx->total[0] = ctx->total[1] = 0;
63 ctx->buflen = 0;
64}
65
66/* Copy the 4 byte value from v into the memory location pointed to by *cp,
67 If your architecture allows unaligned access this is equivalent to
68 * (uint32_t *) cp = v */
69static void
70set_uint32 (char *cp, uint32_t v)
71{
72 memcpy (cp, &v, sizeof v);
73}
74
75/* Put result from CTX in first 20 bytes following RESBUF. The result
76 must be in little endian byte order. */
77void *
78sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
79{
80 char *r = resbuf;
81 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
82 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
83 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
84 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
85 set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E));
86
87 return resbuf;
88}
89
90/* Process the remaining bytes in the internal buffer and the usual
91 prolog according to the standard and write the result to RESBUF. */
92void *
93sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
94{
95 /* Take yet unprocessed bytes into account. */
96 uint32_t bytes = ctx->buflen;
97 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
98
99 /* Now count remaining bytes. */
100 ctx->total[0] += bytes;
101 if (ctx->total[0] < bytes)
102 ++ctx->total[1];
103
104 /* Put the 64-bit file length in *bits* at the end of the buffer. */
105 ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
106 ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
107
108 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
109
110 /* Process last bytes. */
111 sha1_process_block (ctx->buffer, size * 4, ctx);
112
113 return sha1_read_ctx (ctx, resbuf);
114}
115
116/* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
117 result is always in little endian byte order, so that a byte-wise
118 output yields to the wanted ASCII representation of the message
119 digest. */
120void *
121sha1_buffer (const char *buffer, size_t len, void *resblock)
122{
123 struct sha1_ctx ctx;
124
125 /* Initialize the computation context. */
126 sha1_init_ctx (&ctx);
127
128 /* Process whole buffer but last len % 64 bytes. */
129 sha1_process_bytes (buffer, len, &ctx);
130
131 /* Put result in desired memory area. */
132 return sha1_finish_ctx (&ctx, resblock);
133}
134
135void
136sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
137{
138 /* When we already have some bits in our internal buffer concatenate
139 both inputs first. */
140 if (ctx->buflen != 0)
141 {
142 size_t left_over = ctx->buflen;
143 size_t add = 128 - left_over > len ? len : 128 - left_over;
144
145 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
146 ctx->buflen += add;
147
148 if (ctx->buflen > 64)
149 {
150 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
151
152 ctx->buflen &= 63;
153 /* The regions in the following copy operation cannot overlap,
154 because ctx->buflen < 64 ≤ (left_over + add) & ~63. */
155 memcpy (ctx->buffer,
156 &((char *) ctx->buffer)[(left_over + add) & ~63],
157 ctx->buflen);
158 }
159
160 buffer = (const char *) buffer + add;
161 len -= add;
162 }
163
164 /* Process available complete blocks. */
165 if (len >= 64)
166 {
167#if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
168# define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
169 if (UNALIGNED_P (buffer))
170 while (len > 64)
171 {
172 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
173 buffer = (const char *) buffer + 64;
174 len -= 64;
175 }
176 else
177#endif
178 {
179 sha1_process_block (buffer, len & ~63, ctx);
180 buffer = (const char *) buffer + (len & ~63);
181 len &= 63;
182 }
183 }
184
185 /* Move remaining bytes in internal buffer. */
186 if (len > 0)
187 {
188 size_t left_over = ctx->buflen;
189
190 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
191 left_over += len;
192 if (left_over >= 64)
193 {
194 sha1_process_block (ctx->buffer, 64, ctx);
195 left_over -= 64;
196 /* The regions in the following copy operation cannot overlap,
197 because left_over ≤ 64. */
198 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
199 }
200 ctx->buflen = left_over;
201 }
202}
203
204/* --- Code below is the primary difference between md5.c and sha1.c --- */
205
206/* SHA1 round constants */
207#define K1 0x5a827999
208#define K2 0x6ed9eba1
209#define K3 0x8f1bbcdc
210#define K4 0xca62c1d6
211
212/* Round functions. Note that F2 is the same as F4. */
213#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
214#define F2(B,C,D) (B ^ C ^ D)
215#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
216#define F4(B,C,D) (B ^ C ^ D)
217
218/* Process LEN bytes of BUFFER, accumulating context into CTX.
219 It is assumed that LEN % 64 == 0.
220 Most of this code comes from GnuPG's cipher/sha1.c. */
221
222void
223sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
224{
225 const uint32_t *words = buffer;
226 size_t nwords = len / sizeof (uint32_t);
227 const uint32_t *endp = words + nwords;
228 uint32_t x[16];
229 uint32_t a = ctx->A;
230 uint32_t b = ctx->B;
231 uint32_t c = ctx->C;
232 uint32_t d = ctx->D;
233 uint32_t e = ctx->E;
234 uint32_t lolen = len;
235
236 /* First increment the byte count. RFC 1321 specifies the possible
237 length of the file up to 2^64 bits. Here we only compute the
238 number of bytes. Do a double word increment. */
239 ctx->total[0] += lolen;
240 ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
241
242#define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
243
244#define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
245 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
246 , (x[I&0x0f] = rol(tm, 1)) )
247
248#define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
249 + F( B, C, D ) \
250 + K \
251 + M; \
252 B = rol( B, 30 ); \
253 } while(0)
254
255 while (words < endp)
256 {
257 uint32_t tm;
258 int t;
259 for (t = 0; t < 16; t++)
260 {
261 x[t] = SWAP (*words);
262 words++;
263 }
264
265 R( a, b, c, d, e, F1, K1, x[ 0] );
266 R( e, a, b, c, d, F1, K1, x[ 1] );
267 R( d, e, a, b, c, F1, K1, x[ 2] );
268 R( c, d, e, a, b, F1, K1, x[ 3] );
269 R( b, c, d, e, a, F1, K1, x[ 4] );
270 R( a, b, c, d, e, F1, K1, x[ 5] );
271 R( e, a, b, c, d, F1, K1, x[ 6] );
272 R( d, e, a, b, c, F1, K1, x[ 7] );
273 R( c, d, e, a, b, F1, K1, x[ 8] );
274 R( b, c, d, e, a, F1, K1, x[ 9] );
275 R( a, b, c, d, e, F1, K1, x[10] );
276 R( e, a, b, c, d, F1, K1, x[11] );
277 R( d, e, a, b, c, F1, K1, x[12] );
278 R( c, d, e, a, b, F1, K1, x[13] );
279 R( b, c, d, e, a, F1, K1, x[14] );
280 R( a, b, c, d, e, F1, K1, x[15] );
281 R( e, a, b, c, d, F1, K1, M(16) );
282 R( d, e, a, b, c, F1, K1, M(17) );
283 R( c, d, e, a, b, F1, K1, M(18) );
284 R( b, c, d, e, a, F1, K1, M(19) );
285 R( a, b, c, d, e, F2, K2, M(20) );
286 R( e, a, b, c, d, F2, K2, M(21) );
287 R( d, e, a, b, c, F2, K2, M(22) );
288 R( c, d, e, a, b, F2, K2, M(23) );
289 R( b, c, d, e, a, F2, K2, M(24) );
290 R( a, b, c, d, e, F2, K2, M(25) );
291 R( e, a, b, c, d, F2, K2, M(26) );
292 R( d, e, a, b, c, F2, K2, M(27) );
293 R( c, d, e, a, b, F2, K2, M(28) );
294 R( b, c, d, e, a, F2, K2, M(29) );
295 R( a, b, c, d, e, F2, K2, M(30) );
296 R( e, a, b, c, d, F2, K2, M(31) );
297 R( d, e, a, b, c, F2, K2, M(32) );
298 R( c, d, e, a, b, F2, K2, M(33) );
299 R( b, c, d, e, a, F2, K2, M(34) );
300 R( a, b, c, d, e, F2, K2, M(35) );
301 R( e, a, b, c, d, F2, K2, M(36) );
302 R( d, e, a, b, c, F2, K2, M(37) );
303 R( c, d, e, a, b, F2, K2, M(38) );
304 R( b, c, d, e, a, F2, K2, M(39) );
305 R( a, b, c, d, e, F3, K3, M(40) );
306 R( e, a, b, c, d, F3, K3, M(41) );
307 R( d, e, a, b, c, F3, K3, M(42) );
308 R( c, d, e, a, b, F3, K3, M(43) );
309 R( b, c, d, e, a, F3, K3, M(44) );
310 R( a, b, c, d, e, F3, K3, M(45) );
311 R( e, a, b, c, d, F3, K3, M(46) );
312 R( d, e, a, b, c, F3, K3, M(47) );
313 R( c, d, e, a, b, F3, K3, M(48) );
314 R( b, c, d, e, a, F3, K3, M(49) );
315 R( a, b, c, d, e, F3, K3, M(50) );
316 R( e, a, b, c, d, F3, K3, M(51) );
317 R( d, e, a, b, c, F3, K3, M(52) );
318 R( c, d, e, a, b, F3, K3, M(53) );
319 R( b, c, d, e, a, F3, K3, M(54) );
320 R( a, b, c, d, e, F3, K3, M(55) );
321 R( e, a, b, c, d, F3, K3, M(56) );
322 R( d, e, a, b, c, F3, K3, M(57) );
323 R( c, d, e, a, b, F3, K3, M(58) );
324 R( b, c, d, e, a, F3, K3, M(59) );
325 R( a, b, c, d, e, F4, K4, M(60) );
326 R( e, a, b, c, d, F4, K4, M(61) );
327 R( d, e, a, b, c, F4, K4, M(62) );
328 R( c, d, e, a, b, F4, K4, M(63) );
329 R( b, c, d, e, a, F4, K4, M(64) );
330 R( a, b, c, d, e, F4, K4, M(65) );
331 R( e, a, b, c, d, F4, K4, M(66) );
332 R( d, e, a, b, c, F4, K4, M(67) );
333 R( c, d, e, a, b, F4, K4, M(68) );
334 R( b, c, d, e, a, F4, K4, M(69) );
335 R( a, b, c, d, e, F4, K4, M(70) );
336 R( e, a, b, c, d, F4, K4, M(71) );
337 R( d, e, a, b, c, F4, K4, M(72) );
338 R( c, d, e, a, b, F4, K4, M(73) );
339 R( b, c, d, e, a, F4, K4, M(74) );
340 R( a, b, c, d, e, F4, K4, M(75) );
341 R( e, a, b, c, d, F4, K4, M(76) );
342 R( d, e, a, b, c, F4, K4, M(77) );
343 R( c, d, e, a, b, F4, K4, M(78) );
344 R( b, c, d, e, a, F4, K4, M(79) );
345
346 a = ctx->A += a;
347 b = ctx->B += b;
348 c = ctx->C += c;
349 d = ctx->D += d;
350 e = ctx->E += e;
351 }
352}
353
354#endif
355
356/*
357 * Hey Emacs!
358 * Local Variables:
359 * coding: utf-8
360 * End:
361 */