diff options
author | RincewindsHat <12514511+RincewindsHat@users.noreply.github.com> | 2023-02-19 14:39:08 +0100 |
---|---|---|
committer | RincewindsHat <12514511+RincewindsHat@users.noreply.github.com> | 2023-02-19 14:39:08 +0100 |
commit | 74b6984047d330a3cc7cb7f63645849fe7676c63 (patch) | |
tree | 65a26800103d8d66f7e6cb4acfbfc9f315ec750b /gl/sha1.c | |
parent | 423284edfa980fc3fdb51ab20af96685a988ba97 (diff) | |
parent | c07206f2ccc2356aa74bc6813a94c2190017d44e (diff) | |
download | monitoring-plugins-74b6984.tar.gz |
Merge branch 'master' into check_icmp_cleanup
Diffstat (limited to 'gl/sha1.c')
-rw-r--r-- | gl/sha1.c | 426 |
1 files changed, 0 insertions, 426 deletions
diff --git a/gl/sha1.c b/gl/sha1.c deleted file mode 100644 index 778389af..00000000 --- a/gl/sha1.c +++ /dev/null | |||
@@ -1,426 +0,0 @@ | |||
1 | /* sha1.c - Functions to compute SHA1 message digest of files or | ||
2 | memory blocks according to the NIST specification FIPS-180-1. | ||
3 | |||
4 | Copyright (C) 2000-2001, 2003-2006, 2008-2013 Free Software Foundation, Inc. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the | ||
8 | Free Software Foundation; either version 3, or (at your option) any | ||
9 | later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License | ||
17 | along with this program; if not, see <http://www.gnu.org/licenses/>. */ | ||
18 | |||
19 | /* Written by Scott G. Miller | ||
20 | Credits: | ||
21 | Robert Klep <robert@ilse.nl> -- Expansion function fix | ||
22 | */ | ||
23 | |||
24 | #include <config.h> | ||
25 | |||
26 | #include "sha1.h" | ||
27 | |||
28 | #include <stdalign.h> | ||
29 | #include <stdint.h> | ||
30 | #include <stdlib.h> | ||
31 | #include <string.h> | ||
32 | |||
33 | #if USE_UNLOCKED_IO | ||
34 | # include "unlocked-io.h" | ||
35 | #endif | ||
36 | |||
37 | #ifdef WORDS_BIGENDIAN | ||
38 | # define SWAP(n) (n) | ||
39 | #else | ||
40 | # define SWAP(n) \ | ||
41 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | ||
42 | #endif | ||
43 | |||
44 | #define BLOCKSIZE 32768 | ||
45 | #if BLOCKSIZE % 64 != 0 | ||
46 | # error "invalid BLOCKSIZE" | ||
47 | #endif | ||
48 | |||
49 | /* This array contains the bytes used to pad the buffer to the next | ||
50 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | ||
51 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | ||
52 | |||
53 | |||
54 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and | ||
55 | initialize it to the start constants of the SHA1 algorithm. This | ||
56 | must be called before using hash in the call to sha1_hash. */ | ||
57 | void | ||
58 | sha1_init_ctx (struct sha1_ctx *ctx) | ||
59 | { | ||
60 | ctx->A = 0x67452301; | ||
61 | ctx->B = 0xefcdab89; | ||
62 | ctx->C = 0x98badcfe; | ||
63 | ctx->D = 0x10325476; | ||
64 | ctx->E = 0xc3d2e1f0; | ||
65 | |||
66 | ctx->total[0] = ctx->total[1] = 0; | ||
67 | ctx->buflen = 0; | ||
68 | } | ||
69 | |||
70 | /* Copy the 4 byte value from v into the memory location pointed to by *cp, | ||
71 | If your architecture allows unaligned access this is equivalent to | ||
72 | * (uint32_t *) cp = v */ | ||
73 | static void | ||
74 | set_uint32 (char *cp, uint32_t v) | ||
75 | { | ||
76 | memcpy (cp, &v, sizeof v); | ||
77 | } | ||
78 | |||
79 | /* Put result from CTX in first 20 bytes following RESBUF. The result | ||
80 | must be in little endian byte order. */ | ||
81 | void * | ||
82 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) | ||
83 | { | ||
84 | char *r = resbuf; | ||
85 | set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A)); | ||
86 | set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B)); | ||
87 | set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C)); | ||
88 | set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D)); | ||
89 | set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E)); | ||
90 | |||
91 | return resbuf; | ||
92 | } | ||
93 | |||
94 | /* Process the remaining bytes in the internal buffer and the usual | ||
95 | prolog according to the standard and write the result to RESBUF. */ | ||
96 | void * | ||
97 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) | ||
98 | { | ||
99 | /* Take yet unprocessed bytes into account. */ | ||
100 | uint32_t bytes = ctx->buflen; | ||
101 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | ||
102 | |||
103 | /* Now count remaining bytes. */ | ||
104 | ctx->total[0] += bytes; | ||
105 | if (ctx->total[0] < bytes) | ||
106 | ++ctx->total[1]; | ||
107 | |||
108 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | ||
109 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); | ||
110 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); | ||
111 | |||
112 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | ||
113 | |||
114 | /* Process last bytes. */ | ||
115 | sha1_process_block (ctx->buffer, size * 4, ctx); | ||
116 | |||
117 | return sha1_read_ctx (ctx, resbuf); | ||
118 | } | ||
119 | |||
120 | /* Compute SHA1 message digest for bytes read from STREAM. The | ||
121 | resulting message digest number will be written into the 16 bytes | ||
122 | beginning at RESBLOCK. */ | ||
123 | int | ||
124 | sha1_stream (FILE *stream, void *resblock) | ||
125 | { | ||
126 | struct sha1_ctx ctx; | ||
127 | size_t sum; | ||
128 | |||
129 | char *buffer = malloc (BLOCKSIZE + 72); | ||
130 | if (!buffer) | ||
131 | return 1; | ||
132 | |||
133 | /* Initialize the computation context. */ | ||
134 | sha1_init_ctx (&ctx); | ||
135 | |||
136 | /* Iterate over full file contents. */ | ||
137 | while (1) | ||
138 | { | ||
139 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the | ||
140 | computation function processes the whole buffer so that with the | ||
141 | next round of the loop another block can be read. */ | ||
142 | size_t n; | ||
143 | sum = 0; | ||
144 | |||
145 | /* Read block. Take care for partial reads. */ | ||
146 | while (1) | ||
147 | { | ||
148 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | ||
149 | |||
150 | sum += n; | ||
151 | |||
152 | if (sum == BLOCKSIZE) | ||
153 | break; | ||
154 | |||
155 | if (n == 0) | ||
156 | { | ||
157 | /* Check for the error flag IFF N == 0, so that we don't | ||
158 | exit the loop after a partial read due to e.g., EAGAIN | ||
159 | or EWOULDBLOCK. */ | ||
160 | if (ferror (stream)) | ||
161 | { | ||
162 | free (buffer); | ||
163 | return 1; | ||
164 | } | ||
165 | goto process_partial_block; | ||
166 | } | ||
167 | |||
168 | /* We've read at least one byte, so ignore errors. But always | ||
169 | check for EOF, since feof may be true even though N > 0. | ||
170 | Otherwise, we could end up calling fread after EOF. */ | ||
171 | if (feof (stream)) | ||
172 | goto process_partial_block; | ||
173 | } | ||
174 | |||
175 | /* Process buffer with BLOCKSIZE bytes. Note that | ||
176 | BLOCKSIZE % 64 == 0 | ||
177 | */ | ||
178 | sha1_process_block (buffer, BLOCKSIZE, &ctx); | ||
179 | } | ||
180 | |||
181 | process_partial_block:; | ||
182 | |||
183 | /* Process any remaining bytes. */ | ||
184 | if (sum > 0) | ||
185 | sha1_process_bytes (buffer, sum, &ctx); | ||
186 | |||
187 | /* Construct result in desired memory. */ | ||
188 | sha1_finish_ctx (&ctx, resblock); | ||
189 | free (buffer); | ||
190 | return 0; | ||
191 | } | ||
192 | |||
193 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The | ||
194 | result is always in little endian byte order, so that a byte-wise | ||
195 | output yields to the wanted ASCII representation of the message | ||
196 | digest. */ | ||
197 | void * | ||
198 | sha1_buffer (const char *buffer, size_t len, void *resblock) | ||
199 | { | ||
200 | struct sha1_ctx ctx; | ||
201 | |||
202 | /* Initialize the computation context. */ | ||
203 | sha1_init_ctx (&ctx); | ||
204 | |||
205 | /* Process whole buffer but last len % 64 bytes. */ | ||
206 | sha1_process_bytes (buffer, len, &ctx); | ||
207 | |||
208 | /* Put result in desired memory area. */ | ||
209 | return sha1_finish_ctx (&ctx, resblock); | ||
210 | } | ||
211 | |||
212 | void | ||
213 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
214 | { | ||
215 | /* When we already have some bits in our internal buffer concatenate | ||
216 | both inputs first. */ | ||
217 | if (ctx->buflen != 0) | ||
218 | { | ||
219 | size_t left_over = ctx->buflen; | ||
220 | size_t add = 128 - left_over > len ? len : 128 - left_over; | ||
221 | |||
222 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | ||
223 | ctx->buflen += add; | ||
224 | |||
225 | if (ctx->buflen > 64) | ||
226 | { | ||
227 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | ||
228 | |||
229 | ctx->buflen &= 63; | ||
230 | /* The regions in the following copy operation cannot overlap. */ | ||
231 | memcpy (ctx->buffer, | ||
232 | &((char *) ctx->buffer)[(left_over + add) & ~63], | ||
233 | ctx->buflen); | ||
234 | } | ||
235 | |||
236 | buffer = (const char *) buffer + add; | ||
237 | len -= add; | ||
238 | } | ||
239 | |||
240 | /* Process available complete blocks. */ | ||
241 | if (len >= 64) | ||
242 | { | ||
243 | #if !_STRING_ARCH_unaligned | ||
244 | # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0) | ||
245 | if (UNALIGNED_P (buffer)) | ||
246 | while (len > 64) | ||
247 | { | ||
248 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | ||
249 | buffer = (const char *) buffer + 64; | ||
250 | len -= 64; | ||
251 | } | ||
252 | else | ||
253 | #endif | ||
254 | { | ||
255 | sha1_process_block (buffer, len & ~63, ctx); | ||
256 | buffer = (const char *) buffer + (len & ~63); | ||
257 | len &= 63; | ||
258 | } | ||
259 | } | ||
260 | |||
261 | /* Move remaining bytes in internal buffer. */ | ||
262 | if (len > 0) | ||
263 | { | ||
264 | size_t left_over = ctx->buflen; | ||
265 | |||
266 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | ||
267 | left_over += len; | ||
268 | if (left_over >= 64) | ||
269 | { | ||
270 | sha1_process_block (ctx->buffer, 64, ctx); | ||
271 | left_over -= 64; | ||
272 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | ||
273 | } | ||
274 | ctx->buflen = left_over; | ||
275 | } | ||
276 | } | ||
277 | |||
278 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ | ||
279 | |||
280 | /* SHA1 round constants */ | ||
281 | #define K1 0x5a827999 | ||
282 | #define K2 0x6ed9eba1 | ||
283 | #define K3 0x8f1bbcdc | ||
284 | #define K4 0xca62c1d6 | ||
285 | |||
286 | /* Round functions. Note that F2 is the same as F4. */ | ||
287 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) | ||
288 | #define F2(B,C,D) (B ^ C ^ D) | ||
289 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) | ||
290 | #define F4(B,C,D) (B ^ C ^ D) | ||
291 | |||
292 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | ||
293 | It is assumed that LEN % 64 == 0. | ||
294 | Most of this code comes from GnuPG's cipher/sha1.c. */ | ||
295 | |||
296 | void | ||
297 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
298 | { | ||
299 | const uint32_t *words = buffer; | ||
300 | size_t nwords = len / sizeof (uint32_t); | ||
301 | const uint32_t *endp = words + nwords; | ||
302 | uint32_t x[16]; | ||
303 | uint32_t a = ctx->A; | ||
304 | uint32_t b = ctx->B; | ||
305 | uint32_t c = ctx->C; | ||
306 | uint32_t d = ctx->D; | ||
307 | uint32_t e = ctx->E; | ||
308 | uint32_t lolen = len; | ||
309 | |||
310 | /* First increment the byte count. RFC 1321 specifies the possible | ||
311 | length of the file up to 2^64 bits. Here we only compute the | ||
312 | number of bytes. Do a double word increment. */ | ||
313 | ctx->total[0] += lolen; | ||
314 | ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen); | ||
315 | |||
316 | #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) | ||
317 | |||
318 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ | ||
319 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ | ||
320 | , (x[I&0x0f] = rol(tm, 1)) ) | ||
321 | |||
322 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ | ||
323 | + F( B, C, D ) \ | ||
324 | + K \ | ||
325 | + M; \ | ||
326 | B = rol( B, 30 ); \ | ||
327 | } while(0) | ||
328 | |||
329 | while (words < endp) | ||
330 | { | ||
331 | uint32_t tm; | ||
332 | int t; | ||
333 | for (t = 0; t < 16; t++) | ||
334 | { | ||
335 | x[t] = SWAP (*words); | ||
336 | words++; | ||
337 | } | ||
338 | |||
339 | R( a, b, c, d, e, F1, K1, x[ 0] ); | ||
340 | R( e, a, b, c, d, F1, K1, x[ 1] ); | ||
341 | R( d, e, a, b, c, F1, K1, x[ 2] ); | ||
342 | R( c, d, e, a, b, F1, K1, x[ 3] ); | ||
343 | R( b, c, d, e, a, F1, K1, x[ 4] ); | ||
344 | R( a, b, c, d, e, F1, K1, x[ 5] ); | ||
345 | R( e, a, b, c, d, F1, K1, x[ 6] ); | ||
346 | R( d, e, a, b, c, F1, K1, x[ 7] ); | ||
347 | R( c, d, e, a, b, F1, K1, x[ 8] ); | ||
348 | R( b, c, d, e, a, F1, K1, x[ 9] ); | ||
349 | R( a, b, c, d, e, F1, K1, x[10] ); | ||
350 | R( e, a, b, c, d, F1, K1, x[11] ); | ||
351 | R( d, e, a, b, c, F1, K1, x[12] ); | ||
352 | R( c, d, e, a, b, F1, K1, x[13] ); | ||
353 | R( b, c, d, e, a, F1, K1, x[14] ); | ||
354 | R( a, b, c, d, e, F1, K1, x[15] ); | ||
355 | R( e, a, b, c, d, F1, K1, M(16) ); | ||
356 | R( d, e, a, b, c, F1, K1, M(17) ); | ||
357 | R( c, d, e, a, b, F1, K1, M(18) ); | ||
358 | R( b, c, d, e, a, F1, K1, M(19) ); | ||
359 | R( a, b, c, d, e, F2, K2, M(20) ); | ||
360 | R( e, a, b, c, d, F2, K2, M(21) ); | ||
361 | R( d, e, a, b, c, F2, K2, M(22) ); | ||
362 | R( c, d, e, a, b, F2, K2, M(23) ); | ||
363 | R( b, c, d, e, a, F2, K2, M(24) ); | ||
364 | R( a, b, c, d, e, F2, K2, M(25) ); | ||
365 | R( e, a, b, c, d, F2, K2, M(26) ); | ||
366 | R( d, e, a, b, c, F2, K2, M(27) ); | ||
367 | R( c, d, e, a, b, F2, K2, M(28) ); | ||
368 | R( b, c, d, e, a, F2, K2, M(29) ); | ||
369 | R( a, b, c, d, e, F2, K2, M(30) ); | ||
370 | R( e, a, b, c, d, F2, K2, M(31) ); | ||
371 | R( d, e, a, b, c, F2, K2, M(32) ); | ||
372 | R( c, d, e, a, b, F2, K2, M(33) ); | ||
373 | R( b, c, d, e, a, F2, K2, M(34) ); | ||
374 | R( a, b, c, d, e, F2, K2, M(35) ); | ||
375 | R( e, a, b, c, d, F2, K2, M(36) ); | ||
376 | R( d, e, a, b, c, F2, K2, M(37) ); | ||
377 | R( c, d, e, a, b, F2, K2, M(38) ); | ||
378 | R( b, c, d, e, a, F2, K2, M(39) ); | ||
379 | R( a, b, c, d, e, F3, K3, M(40) ); | ||
380 | R( e, a, b, c, d, F3, K3, M(41) ); | ||
381 | R( d, e, a, b, c, F3, K3, M(42) ); | ||
382 | R( c, d, e, a, b, F3, K3, M(43) ); | ||
383 | R( b, c, d, e, a, F3, K3, M(44) ); | ||
384 | R( a, b, c, d, e, F3, K3, M(45) ); | ||
385 | R( e, a, b, c, d, F3, K3, M(46) ); | ||
386 | R( d, e, a, b, c, F3, K3, M(47) ); | ||
387 | R( c, d, e, a, b, F3, K3, M(48) ); | ||
388 | R( b, c, d, e, a, F3, K3, M(49) ); | ||
389 | R( a, b, c, d, e, F3, K3, M(50) ); | ||
390 | R( e, a, b, c, d, F3, K3, M(51) ); | ||
391 | R( d, e, a, b, c, F3, K3, M(52) ); | ||
392 | R( c, d, e, a, b, F3, K3, M(53) ); | ||
393 | R( b, c, d, e, a, F3, K3, M(54) ); | ||
394 | R( a, b, c, d, e, F3, K3, M(55) ); | ||
395 | R( e, a, b, c, d, F3, K3, M(56) ); | ||
396 | R( d, e, a, b, c, F3, K3, M(57) ); | ||
397 | R( c, d, e, a, b, F3, K3, M(58) ); | ||
398 | R( b, c, d, e, a, F3, K3, M(59) ); | ||
399 | R( a, b, c, d, e, F4, K4, M(60) ); | ||
400 | R( e, a, b, c, d, F4, K4, M(61) ); | ||
401 | R( d, e, a, b, c, F4, K4, M(62) ); | ||
402 | R( c, d, e, a, b, F4, K4, M(63) ); | ||
403 | R( b, c, d, e, a, F4, K4, M(64) ); | ||
404 | R( a, b, c, d, e, F4, K4, M(65) ); | ||
405 | R( e, a, b, c, d, F4, K4, M(66) ); | ||
406 | R( d, e, a, b, c, F4, K4, M(67) ); | ||
407 | R( c, d, e, a, b, F4, K4, M(68) ); | ||
408 | R( b, c, d, e, a, F4, K4, M(69) ); | ||
409 | R( a, b, c, d, e, F4, K4, M(70) ); | ||
410 | R( e, a, b, c, d, F4, K4, M(71) ); | ||
411 | R( d, e, a, b, c, F4, K4, M(72) ); | ||
412 | R( c, d, e, a, b, F4, K4, M(73) ); | ||
413 | R( b, c, d, e, a, F4, K4, M(74) ); | ||
414 | R( a, b, c, d, e, F4, K4, M(75) ); | ||
415 | R( e, a, b, c, d, F4, K4, M(76) ); | ||
416 | R( d, e, a, b, c, F4, K4, M(77) ); | ||
417 | R( c, d, e, a, b, F4, K4, M(78) ); | ||
418 | R( b, c, d, e, a, F4, K4, M(79) ); | ||
419 | |||
420 | a = ctx->A += a; | ||
421 | b = ctx->B += b; | ||
422 | c = ctx->C += c; | ||
423 | d = ctx->D += d; | ||
424 | e = ctx->E += e; | ||
425 | } | ||
426 | } | ||